This invention relates to fastener combination including a groove and a nut which is primarily designed for a floating dock but which can be used in other areas than the floating dock.
It is one object of the present invention to provide a floating dock which uses extruded side rails.
According to one aspect of the invention there is provided a floating dock comprising:
a fabricated frame including a pair of longitudinal side rails and a plurality of cross rails interconnecting the side rails to form a rigid generally rectangular structure;
the frame being arranged to receive one of more buoyancy members for floating the frame on a body of water;
a plurality of floor planks bridging the side rails for forming a floor surface on the frame to be supported above the water;
each of the side rails being formed of an extruded member;
wherein each of the side rails is generally rectangular in cross section with an outwardly facing upstanding surface, an inwardly facing upstanding surface, a top surface and a bottom surface and wherein each of the side rails includes a mounting groove formed into at least the top surface, bottom surface and outwardly facing upstanding surface;
each mounting groove being arranged to receive a nut of a fastening system for attachment to a male fastener.
Preferably the inwardly facing upstanding surface also includes at least one mounting groove.
Preferably the inwardly facing upstanding surface has two vertically spaced mounting grooves for attachment to connecting brackets.
Preferably the inwardly facing upstanding surface includes a channel for receiving ends of the floor planks.
Preferably the outwardly facing upstanding surface has a channel outwardly of the mounting groove within which an elongate member can be received and fastened to the rail by a plurality of fasteners at spaced positions along the rail.
Preferably the inwardly facing upstanding surface includes an upper receptacle for receiving ends of the floor planks and at least one lower mounting groove arranged to receive a nut of a fastening system for attachment to a male fastener of an attachment bracket.
Preferably each mounting groove has a mouth located at a surface of the mounting body and a receptacle portion behind the mouth, the receptacle portion being wider than the mouth so as to define two shoulders each on a respective side of the mouth; wherein there is provided a nut member having female threaded hole therein, the nut member being shaped and arranged to be located in the groove, the nut member having a width greater than the width of the mouth so as to define front bearing surfaces on each side of the hole for engaging the shoulders, the female threaded hole being located between the bearing surfaces and arranged in an operating position with the hole at right angles to the mouth; wherein there is provided a fastener member having a male thread thereon shaped and arranged to pass through the mouth and to engage the female threaded hole in the nut member so as to pull the bearing surfaces of the nut member against the shoulders; and wherein the nut member being shaped such that its width in a direction longitudinal of the female threaded hole is less than the width of the mouth so that the nut member can be inserted into the groove through the mouth with the hole at right angles to the operating position and can be rotated in the receptacle portion to turn the hole to the operating position.
Preferably the nut member includes a pair of elements each element being arranged along or adjacent a respective side edge of the nut member and arranged to engage with a respective element along a respective shoulder so as to resist outward movement of the shoulders.
Preferably one of the elements comprises a rib and the other a groove.
According to a second aspect of the invention there is provided a floating dock comprising:
a fabricated frame including a pair of longitudinal side rails and a plurality of cross rails interconnecting the side rails to form a rigid generally rectangular structure;
the frame being arranged to receive one of more buoyancy members for floating the frame on a body of water;
a plurality of floor planks for forming a floor surface on the frame to be supported above the water;
each of the side rails being formed of an extruded member;
wherein each of the side rails is generally rectangular in cross section with an outwardly facing upstanding surface, an inwardly facing upstanding surface, a top surface and a bottom surface; and
wherein the inwardly facing upstanding surface includes an upper receptacle for receiving ends of the floor planks and at least one lower mounting groove arranged to receive a nut of a fastening system for attachment to a male fastener of an attachment bracket.
Preferably the inwardly facing upstanding surface has two vertically spaced mounting grooves.
Preferably the outwardly facing upstanding surface has a channel outwardly of the mounting groove within which an elongate member can be received and fastened to the rail by a plurality of fasteners at spaced positions along the rail.
Preferably the upper receptacle for the floor planks is formed as a recess in the inwardly facing upstanding surface.
According to a third aspect of the invention there is provided a floating dock comprising:
a fabricated frame including a pair of longitudinal side rails and a plurality of cross rails interconnecting the side rails to form a rigid generally rectangular structure;
the frame being arranged to receive one of more buoyancy members for floating the frame on a body of water;
a plurality of floor planks for forming a floor surface on the frame to be supported above the water;
each of the side rails being formed of an extruded member;
wherein each of the side rails is generally rectangular in cross section with an outwardly facing upstanding surface, an inwardly facing upstanding surface, a top surface and a bottom surface;
wherein the outwardly facing upstanding surface includes at least one mounting groove for receiving a fastener therein; and
wherein the outwardly facing upstanding surface has a channel outwardly of the mounting groove within which an elongate member can be received and fastened to the rail by a plurality of fasteners at spaced positions along the rail and engaging into the mounting groove.
Preferably the channel is recessed inwardly from the outwardly facing upstanding surface.
Preferably the channel includes upper and lower receptacles defined by edge flanges at the outwardly facing upstanding surface.
One embodiment of the invention will now be described in conjunction with the accompanying drawings in which:
In the drawings like characters of reference indicate corresponding parts in the different figures.
Turning firstly to
Each of the top surface, bottom surface and outwardly facing upstanding surface of the extrusion 10 includes a mounting groove or receptacle 16 formed into the surface and recessed inwardly therefrom. The inwardly facing upstanding surface 13 has two vertically spaced mounting grooves 16A and 16B.
Each of the grooves has a mouth 17 located at a surface of the mounting body and a receptacle portion 18 behind the mouth, the receptacle portion being wider 18 than the mouth 17 so as to define two shoulders 19 and 19A each on a respective side of the mouth.
A nut member 21 has a female threaded hole 22 therein. The nut member 21 has a flat front surface 23 and a semi-cylindrical rear surface 24. The hole 22 is located at the center of the flat front face 23 and at right angles to it.
The nut 21 is shaped and arranged to be located in the groove 16 so that the nut member has a width W greater than the width of the mouth 17 so as to define front bearing surfaces 23A and 23B on each side of the hole 22 for engaging the shoulders 19 and 20. The female threaded hole 22 is located between the bearing surfaces 23A and 23B and arranged in an operating position with the hole at right angles to the mouth.
The nut member has the bearing surfaces 23A and 23B thereof along substantially the full length thereof so as to bear against the shoulders 19 and 20 of the groove with an adequate bearing surface so that the nut member becomes a structural part of the groove.
A fastener member 29 has a male thread 29A thereon shaped and arranged to pass through the mouth 17 and to engage the female threaded hole 22 in the nut member 21 so as to pull the bearing surfaces 23A and 23B of the nut member 21 against the shoulders 19A and 19B. The nut member is shaped such that its width W1 in a direction longitudinal of the female threaded hole 22 is less than the width W of the mouth so that the nut member can be inserted into the groove 16 through the mouth 17 with the hole 22 at right angles to the operating position and can be rotated in the receptacle portion to turn the hole to the operating position.
The groove 16 has a base 18A of the receptacle portion 18 opposite the mouth 17 which is smoothly curved which matches the curvature of the rear surface 24 of the nut 21 opposite the bearing surfaces both of which are smoothly curved and preferably semi-cylindrical.
The groove 16 is substantially continuous along the mounting body as it is formed as an extrusion of constant cross section. However other forming techniques may be used so that the groove is not wholly continuous. However the nut member 21 is short in relation to the mounting body so that it can be inserted into the mouth at any point along the groove 16.
The length of the nut is such that it provides sufficient surface contact to allow transfer of the required fastening loads. However double or triple length or more nuts 21A can be used as shown in
Preferably the mounting member 10 and the grooves 16 therein are extruded and cut to length and also the nut 21, 21A is similarly extruded and cut to length with the holes 22 drilled in a second action.
The shape of the recessed portion 18 is such that it has sides 18B and 18C which are substantially tangential to the semi-cylindrical base 18A so that the depth D of the groove is greater than the width W1 of the nut 21 giving some clearance behind the nut 21 when it is pulled forwardly to butt the shoulders 19 and 19A. Thus the width W1 of the nut member in the direction longitudinal of the hole 22 is sufficiently short to provide leeway for a cap screw to go right through the nut 21 with clearance behind the semi-circular surface 24.
The nut also includes two male ribs 30 and 31 running along the full length of the flat face 23 of the nut and arranged along the respective side edges or bearing surfaces 23A and 23B of the flat face 23. These male ribs 30 and 31 nest into two matching female grooves 33 and 34 at the shoulders 19 and 19A of the related extruded groove on the extrusion 10.
These two nesting ribs and grooves are not essential to the operation but when provided serve essentially two purposes. They are:
a) The interlocking ribs 30, 31 on the nut and the grooves 33, 34 on the extruded groove 16 strengthen the connection between the nut and extruded groove, essentially locking the two together, when the connection is made and the nut tightened. The extruded groove is weak at its open mouth 17 where the bolt passes through so that the front walls 19 and 19A can easily open further by the mouth 17 spreading apart with applied loads on the extrusion 10 greater than an intended maximum. This is because the semi-circular bottom part 18 of the extruded groove 16 can flex when over-loaded. Tightening the nut 21, in an arrangement without the ribs 30, 31, can causes friction between the nut 21 and extruded groove 16, and this helps by resisting opening of the groove 16 further under load. However, at large enough loads, this clamping force will allow the extruded groove 16 to open up potentially allowing the nut 21 to escape. For this reason, the mating ribs 30, 31 and grooves 33, 34 are added in some cases where higher loads are to be expected. With the ribs and grooves engaged, no opening up of the extruded groove 16 at the mouth 17 is possible. Material would have to shear in order for any relative movement to occur, while without the ribs ad grooves, parts need only to slide for relative movement to occur. The nut 21 and groove 16 are now locked together, not just held together by friction. This is important where increased loads are applied on the extrusion, for whatever reason. This design feature makes the assembled extrusion magnitudes stronger, where required, than it is without the ribs and grooves.
b) The mating ribs and grooves between the nut and extrusion are tapered. That is the side edges of the ribs converge to an upper apex 35. The outer side edge of the rib is contiguous with the outer cylindrical face of the nut and the inner side edge commences at the flat face 23 and converges toward the outer side edge to the smoothly curved apex. This is for two reasons. First, the taper makes sure that the nut always nests properly in the extruded groove. In other words, it does not get hung up. The taper allows the raised male ribs on the face of the nut to always find their way into the female grooves located on the inside face of the extruded groove. This is very important, as the assembler of the system has no way of making sure this will happen. The nut is just slipped into the groove, rotated, and tightened. It must, on its own, find the nested position, and the tapers allow for this to occur. The second reason for the tapers is that it allows the nut to essentially grab the extruded groove during tightening, and then continue to hold on once the assembly is loosened and disassembled. This is a convenience factor. It may be convenient to leave the nuts in position within the groove, as this would speed up reassembly. When required, a light tap on the nut would loosen it from the grooves, and allow it to fall loosely to the bottom of the extruded groove, and be extracted.
The nut, even with the addition of the two male ribs, still can enter the extruded groove from the outside, anywhere along the groove. Entry is accomplished by first putting in one male rib 30, 31 into the extruded groove 16, then rotating the nut 21 slightly to allow entry of the other male rib 30, 31. Without the male ribs, the nut just enters the groove 16 by sliding straight through sideways. Once within the extruded groove, the nut can rotate. The outside of the male ribs added to the nut maintains the circle diameter of the nut, so rotation within the extruded groove is unaffected by the addition of the male ribs. Thus the width W2 from the outside surface 18 of the nut 21 to the plane containing the apexes 60 is thus slightly larger than the width of the mouth 17.
In addition, the nut has two grooves 36 and 37: one centered on the flat face and the other centered on the semicircular back side. These grooves 36 and 37 facilitate holes being drilled in the required centered location, and from either side. Typically the nut 21 is supplied as a blank which are then made in various lengths and the appropriate threaded holes put in place a second process. The blanks can either be extruded aluminum lengths or forged stainless steel lengths. Either way, threaded holes are machined in later, and then the blanks cut to length. Lengths may have one or more threaded holes in them. One typical example is a cleat length which attaches a cleat to the extruded groove 16, and has two threaded holes that match the cleat's spacing. This makes attachment of the cleat more convenient than individual nuts.
The fastener system described above can be used in many different constructions but is particularly designed for use in the floating dock shown in
A plurality of floor planks 47 form a floor surface on the frame to be supported above the water. The floor planks 47 are received into a channel 48 formed in the rear surface of the profile 10 as shown in
The outwardly facing upstanding surface 12 has a channel 12A outwardly of the mounting groove 16 therein within which an elongate member 11 can be received and fastened to the rail by a plurality of fasteners 29 at spaced positions along the rail using the fastening system described above in the grooves 16. This can form a bumper or other fastener for the rail. The channel 12A is recessed inwardly from the outwardly facing upstanding surface 12 and includes upper and lower receptacles 12B and 12C defined by edge flanges 12D and 12E at the outwardly facing upstanding surface.
The grooves 16 in the top and bottom surfaces 14, 15 can be used to fasten various elements including dock rails, mounting points for boats and other items well known to a person skilled in this art.
The grooves 16A and 16B are used as shown in
Since various modifications can be made in my invention as herein above described, and many apparently widely different embodiments of same made within the spirit and scope of the claims without department from such spirit and scope, it is intended that all matter contained in the accompanying specification shall be interpreted as illustrative only and not in a limiting sense.
This application claims the benefit under 35 U.S.C. 119 from Provisional Application Ser. No. 61/180,900 filed May 25, 2009 and from Provisional Application Ser. No. 61/236,357 filed Aug. 24, 2009. This application relates to a co-pending application filed on the same day as this application Ser. No. 12/732,342 and relating to the floating dock described herein.
Number | Name | Date | Kind |
---|---|---|---|
5779412 | Nagai et al. | Jul 1998 | A |
6536992 | Floe | Mar 2003 | B1 |
7784419 | Bigler et al. | Aug 2010 | B2 |
20100303538 | Kor et al. | Dec 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100294190 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61180900 | May 2009 | US | |
61236357 | Aug 2009 | US |