Not Applicable.
This invention relates to floating docks, piers, etc., and, in particular, to a floating drive-on watercraft dock on which watercraft, such as personal watercraft and small boats can be dry-docked.
Watercraft docks commonly comprise pilings which are embedded in the floor of a body of water (such as a lake, river, ocean, etc.) to which a wooden deck is secured. Such docks, piers, etc. are difficult and time consuming to construct and require significant upkeep. Additionally, if the dock is not a floating dock, it is further subject to the rise and fall of the water level of the water body in which the dock is located.
Plastic docks were introduced to overcome some of the problems associated with wooden docks and piers. Such docks do not require the upkeep that is necessary for wooden docks. An example of such a modular dock is shown in U.S. Pat. No. 5,281,055, which is incorporated herein by reference. The floating modular dock described in the just noted patent is a dock section or dock building block, and several of the dock sections can be connected together to form a dock of a desired size and shape. Various components have been introduced which can be added to plastic docks. A commonly desired add-on for docks is a drive-on watercraft dock for small watercraft, and more commonly, for personal watercraft (PWC) such as a Jet Ski® or Sea Doo® personal watercraft and small boats, such as boats under about 25 feet in length. Drive-on watercraft docks keep the watercraft out of the water when on the dock, making it easier to service the watercraft and board and disembark from the watercraft. Dry docking of watercraft also protects the watercraft from algae, barnacles, etc. which, depending on where the craft is used, can grow on the craft's hull. Several drive-on watercraft docks have been developed. However, they are generally complicated in shape and expensive to manufacture and assemble.
A floating drive-on watercraft dock of the present invention comprises a body having an upper surface, a lower surface, and front, back, and side surfaces extending between the upper and lower surfaces. The upper, lower, front, back and side surfaces define a volume which is preferably air filled, however, it may be filled with a buoyant material. The dock includes a watercraft receiving area formed in the upper surface of the dock. The watercraft receiving area is open at the back surface of the dock and comprises an entrance section extending forwardly from the dock back surface and a main section extending forwardly of the entrance section.
The watercraft receiving area main section includes a bottom surface and sidewalls. Pockets are formed in one, and preferably both, of the watercraft receiving area bottom surface and side walls. The pocket in the bottom surface receives a bottom roller or glide assembly; and the pockets formed in the side walls receive side wall glide assemblies. The watercraft receiving area entrance section includes a sloped ramp, sidewalls extending from the watercraft receiving area entrance section bottom surface to the dock body top surface, and opposed side wall pockets on the entrance section side walls. Side wall glide assemblies are received in each of the side wall pockets of the main and entrance sections to the watercraft receiving area and bottom roller or glide assemblies are received in each of the bottom roller pockets of the watercraft receiving area.
Shoulders border the bottom roller pockets, and transverse grooves are formed in the shoulders. The bottom roller assembly comprises an axle, the opposed ends of which are received in the shoulder grooves, and at least one roller rotatably mounted on the axle. A plate extends over the axle and is secured to the shoulder to maintain the bottom wall roller assembly in place.
The side wall glide assemblies in one embodiment comprise a base member having a plate sized and shaped to be received and held in the side wall roller pocket and a transverse member which extends up from the base. A bracket is selectively positionable horizontally along the transverse member. An axle is pivotally received in a selected vertical position on the bracket, and roller members are received on opposite ends of the axle. The ability to selectively position the bracket along the transverse member and to selectively position the axle on the bracket allows for the side wall roller assembly to be configured for different shaped watercraft and watercraft hulls. In a second embodiment of the glide assembly, the rollers are replaced with a pad which the hull of a watercraft can slide over. A third embodiment of the glide assembly comprises two base members positioned in spaced apart side pockets. A track of rollers extends between and is mounted to the two base members.
The floating watercraft dock includes a plurality of compartments in the dock's bottom surface along the sides of the dock. Inflatable/deflatable bladders can be placed in the compartments. The bladders are operatively connected to a compressor or pump to inflate the bladders when desired.
An extension unit can be connected to the dock to increase the overall length of the dock to allow for the dock to receive longer watercraft. The extension unit comprises an extension body and a tongue extending from a forward surface of the extension body. The tongue has a bottom surface corresponding in shape to at least a back portion of the entrance section of the dock watercraft receiving area, so that the tongue will nest in the entrance section of the dock watercraft receiving area. The extension unit body includes a watercraft receiving area in its upper surface having a ramp, a bottom roller pocket adjacent a top edge of the ramp with a bottom roller assembly mounted in the bottom roller pocket, and side wall pockets formed in opposed side walls of the extension watercraft receiving area with side wall glide assemblies mounted in the side wall pockets.
The side walls of the entrance sections of both the extension unit and the dock body flare outwardly to define an entrance to the watercraft receiving area of the extension unit and the dock body. This flared wall guides watercraft into the watercraft receiving area of the dock.
Corresponding reference numerals will be used throughout the several figures of the drawings.
The following detailed description illustrates the invention by way of example and not by way of limitation. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what we presently believe is the best mode of carrying out the invention. Additionally, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
An illustrative embodiment of a floating drive-on watercraft dock body or section 10 sized to receive a small watercraft, such as a personal watercraft (PWC) or small boats is shown generally in the figures. To receive personal watercraft, the dock section 10 preferably has the following dimensions: 180″ L×80″ W×15″ D. Although described for use with personal watercraft, the floating dock could be sized to be used with larger watercraft, such as speed boats, which can be twenty feet or more in length, by adding an extension member 130 to the rear of the watercraft dock section 10. To receive a larger (i.e., wider) watercraft, the dimensions of the dock section 10 would be increased appropriately. The dock section 10 and extension member 130 are both formed as a one-piece section molded from a plastic. For example, the dock section 10 and extension member 130 can be formed by rotomolding. Both the dock section and extension member define a volume and are preferably empty (i.e., air filled). However, they may be filled with a buoyant material, such as a foam, if desired.
The dock section 10 includes a front 12, sides 14, a back 16, a top surface 18, and a bottom surface 20 (
Connector sockets 24 are formed in the sides, front and back of the dock section 10. The sockets 24 include corresponding pockets 24a and 24b on the deck surface 18 and bottom surface 20 of the dock, respectively. A tie-rod receiving groove 24c extends between the two pockets 24a,b. The sockets 24 receive a connector 25 (
A series of grooves 26 extend along the sides 14 between the top and bottom surfaces of the dock section 10. When two dock sections are connected together, the grooves 26 of the adjacent and connected dock sections will form openings between the dock sections through which water can pass to facilitate removal of water from the deck surface 18 of the connected dock sections 10.
A watercraft receiving area 30 is formed in the dock top surface 18. The watercraft receiving area 30 is generally centered between the opposite sides 14 of the dock section 10, such that the deck surface 18 forms a bow deck section 18a and two side deck sections 18b. The watercraft receiving section opens at the back of the dock 10 to receive a watercraft. The watercraft receiving section 30 includes a bow portion 32, a central portion 34, and an aft or entrance portion 36. The three sections, in combination, have a shape which corresponds generally to the shape of a watercraft hull. The bow portion 32 is generally arch-shaped and includes side surfaces 32a which curve upwardly from a center line 32b toward the sides of the dock section. The bow portion also curves upwardly toward the front of the dock section and the sides surfaces 32b also curve inwardly towards the bow of the dock section to meet at an apex. Hence, as seen best in
The center section 34 of the watercraft receiving area 30 has generally parallel sides 34a which curve upwardly and outwardly from a central channel 38. The channel 38 has a bow section 38a which defines a pointed or apexed arch. A main section 38b extends rearwardly from the channel bow section 38a to the aft section 36 of the watercraft receiving area 30. The channel main section 38b is defined by generally parallel side walls and a bottom surface. A shoulder 39 extends along opposite sides of the channel main section 38b. The channel main section slopes downwardly from the bow to the stern or aft of the dock. Hence, the outside wall of the shoulder 39 increases in height from the front of the shoulder towards the rear of the shoulder.
Side pockets 40 are formed on the opposite side walls 34a approximately midway along the length of the central portion 34 of the watercraft receiving area 30. The side pockets 40 each have a generally vertical end wall 40a, generally vertical side walls 40b and a sloped bottom 40c. Each side pocket 40 is opened at its bottom opposite the end wall 40a to open into the channel main section 38b. The sloped bottom 40c of the side pocket 40 is generally flat, whereas the watercraft receiving area sides walls 34a are curved. Hence, the roller pocket side walls 40b vary in height along the length of the walls.
The side pocket 40 receives a glide assembly 42. The glide assembly 42 (shown in more detail in
In one embodiment of the glide assembly, a bracket 48 is mounted to the channel member 45. The bracket 48 comprises a pair of mirror image members 50 each of which includes a bottom or base section 52 and an upper section 54. The bracket base section 52 includes openings 52a which are sized and spaced to be aligned with the spaced openings 46 of the channel member 45. Fasteners 53 pass through the aligned openings of the channel member 45 and the bracket base sections 50 to secure the bracket 48 to the channel member. The bracket upper section 54 extends generally vertically from the base section 52, and is set inwardly slightly from the base section to define a shoulder 56 on the bracket which rests on the channel member 45. Hence, the members 50 are generally “”-shaped in side elevation. The two upper sections are generally parallel to each other. A series of openings 58 are spaced vertically along the upper section 54.
An axle 60 is mounted to the bracket 48 between the two bracket members 50 by means of a pin 61 which extends through a selected one of the bracket openings 58 and the axle 60. The pin defines a pivot point about which the axle can rotate. The axle 60 comprises a generally U-shaped central section 60a with a pair of arms 60b extending outwardly from the opposite ends of the U-shaped central section. The arms 60b are co-linear, and receive rollers 62.
As shown in
An alternative glide assembly 42a is shown in
As noted above, the bases 43 of the glide assemblies are received and held in the side pockets 40 by fasteners, such as screws. Over time, the glide member (i.e., the rollers 62 or the pad 62a) may need replacing. For example, the rollers 62 may stop rotating readily on the axle arms 60b. In this instance, because the glide assemblies are held in place using screws, the glide assemblies 42 and 43 can be easily removed from the side pockets 40 to be replaced with a new roller assembly.
Returning to
The channel or bottom pockets 68 receive bottom roller or glide assemblies 72. The roller assemblies 72 (
Although the bottom roller assembly axle is shown to be received in the shoulder grooves 70, the bottom roller assembly 72 could be held in place by other means. For example, opposite ends of the roller assembly axle 74 could be in brackets which in turn are secured to the dock section 10, either within the pocket 68 or adjacent the pocket 68. Other conventional means to secure the roller assembly 72 in the pocket 68 can be used. Preferably, such means would allow for removal of the roller assembly 72, should the roller assembly need replacement. Alternatively, the shoulder slots or grooves 70 could be shaped to snappingly receive and secure the axles 74 in place.
Turning back to
A pair of opposed side pockets 90 are formed in the forward surface 88b slightly rearwardly of the front end of the ramp 86. The pockets 90 each receive a glide assembly 42 (or 42a). Lastly, a cutout 92 is formed at the back edge of the dock 10, at the back end of the ramp 86 to receive an aft roller. The side walls of the cutout 92 are provided with grooves 94 formed in a shoulder. The grooves 94 receive an axle of an aft roller assembly (seen in
Turning to
The dock bottom 20 includes several compartments 108a–d spaced along the periphery of the dock bottom, and positioned to be generally under the dock section surfaces 18a and 18b. The forward compartments 108a are generally trapezoidal in shape; the forward central compartments 108b are generally rectangular in shape; the rear central compartments 108c and the rear compartments 108d are generally L-shaped. The compartments 108a–d are arranged on opposite sides of the dock bottom 20, such that an axis of symmetry with respect to the compartments extends through the center of the dock between the front and rear edges of the dock. The compartments 108a–d all have upper surfaces 110 having transversely extending channels 112 formed therein to provide structural rigidity to the pocket surfaces. The upper surfaces 110 of compartments 108a and 108b are generally level. However, the upper surface of the compartments 108c and 108d include a level portion 110a and a sloped portion 110b. The level portion 110a extends along the side of the dock section, and the sloped portion 110b extends transversely toward the center of the dock section 10 from the inner edge of the surface 110a. Thus, the compartments 108c,d are deepest adjacent the edge of the dock section 10, and progressively get shallower towards the center of the dock section along the inwardly extending portion of the L-shaped pocket. The top surface of the compartments 108a–d is spaced from the underside of the dock deck 18, and the channels 112 have a peak which is adjacent the bottom side the dock deck 18. Preferably, the channels contact, or are spaced only slightly from, the bottom side of the dock deck 18. Preferably, the channels 112 are attached to the underside of the dock deck 18. In contacting (and being attached to) the bottom side of the dock deck 18, the channels 112 provide support for the dock deck.
Watercraft are generally back heavy. Thus, when the watercraft is docked on the dock, the dock will slope rearwardly. That is, the back of the dock will be lower than the front of the dock. To raise the back of the dock, so that the dock will be level when a watercraft is positioned on the dock, inflatable/deflatable bladders 114 can be positioned in the rear two compartments 108c and 108d. When inflated, the bladders will increase the buoyancy of the back of the dock section 10, thereby raising the back of the dock, so that the dock will be level. The bladders 114 are operatively connected to a compressor/air pump 116 over air tubes 118, as seen schematically in
The compressor 116 can be provided with an automatic shut-off, such that the compressor will shut off when a predetermined pressure within the bladders 114 is reached or when the dock section is level. For example, a mercury switch or the like can be used to open the circuit when the dock 10 is level.
Although the bladders 114 are provided only in the rear two compartments 108c and 108d, inflatable/deflatable bladders could also be provided in the forward compartments 108a and 108b. Such additional bladders would also be connected to the air line 118 to be inflated by the compressor 116. The provision of air bladders in the front two compartments 108a–b would allow for the complete dock to be elevated to further ensure that a watercraft is out of the water when it is secured in the drive-on watercraft dock. Due to the fact that watercraft are generally back heavy, if bladders are provided in all the compartments 108a–d, the rear bladders could be larger than the front bladders to provide for increased buoyancy at the back of the dock to compensate for the increased weight in the back of the watercraft. Alternatively, a second valve could be provided for the bladders in the front pocket. Such a valve could be manually or automatically operated to maintain the dock level during inflation and deflation of the air bladders.
As shown in
As seen more clearly, in
The extension body 130 defines a watercraft receiving area 139 substantially similar to the aft section 36 of the watercraft receiving area 30 of the dock section 10. The watercraft receiving area 139 is bordered on its opposite sides by deck surface 141 which has a width substantially the same as the side deck surface 18b of the dock section 10. Connector sockets 137 are formed at the front and back of the extension body 132. The connector sockets 137 are identical to the connector sockets 24 of the dock section 10. The forward sockets are positioned to be aligned with the sockets 24 at the rear of the dock section 10, as seen in
As described in the just noted patent, the bone shaped couplers 25 are comprised of upper and lower anchors which are received in the upper and lower pockets of the connector sockets and a tie rod which extends between the anchors and is received in the channel extending between the upper and lower pockets. The coupler can be constructed of any suitable material, but preferably, is made of rubber. The rubber construction results in an anchor that can be positioned tightly into the sockets with sufficient strength to withstand the torsional stresses exerted upon it when in the socket by the actions of the waves and wind, yet is also flexible enough to be compressed by these forces without losing much of its strength or resiliency. The connection between the connector tie rod and the connector anchors allows for tightening of the connection. During assembly of a dock, after the connector anchors have been placed within the connector sockets, the tie rod is tightened to produce a snug fit between the two anchors of the connector. Hence, the connectors will maintain the extension 130 substantially adjacent the dock section 10 such that there will not be a substantial gap between the deck surface of the dock section 10 and the deck surface of the extension 130. The holding of the extension in close proximity to the dock section 10 coupled with the height of the dock section 10 and extension 130 will substantially prevent the extension 130 from moving relative to the dock section 10. That is, the connection between the extension 130 and the dock section 10 is a substantially rigid connection.
The watercraft receiving area 139 of the extension 130 includes a ramp 140 extending generally along the center of the extension 130. Side walls 142 extend up from the sides of the ramp. The sidewalls 142 are substantially similar to the side walls 88 of the watercraft receiving section of the dock section 10. The extension watercraft receiving section side walls 142 include a generally flared lower and rear surface 142a and a curved upper and forward surface 142b. The rear surface 142a flares outwardly from the ramp 140 to define the back opening into the watercraft receiving area 139. A pair of opposed side pockets 146 are formed in the forward surface 142b approximately mid-way along the length of the extension. The pockets 146 each receive a side wall glide assembly 42 (or 42a). A forward roller pocket 148 is formed at the top of the ramp 140. A shoulder 150 is formed on either side of the pocket 148 and includes grooves 152 (
The extension tongue 134 extends forwardly from the forward surface 142 of the extension body 132. The tongue has a length such that the forward end of the tongue reaches to be even with, or slightly rearwardly of the aft section wall roller pockets 90 when the extension is connected to the dock section 10. The tongue has a lower surface 160 that is curved both transversely and lengthwise to form a surface that is complimentary to the walls 88a of the watercraft receiving area aft section 36 of the dock section 10. The upper surface 162 of the tongue includes a flat central channel section 164 and curved side walls 166. The channel section 164 is sized, shaped, and positioned to be aligned with the dock section ramp 86. The curved side walls 166 are shaped to correspond to the shape of the aft section walls 88b.
Turning to
As best seen in
Turning to
A third side glide assembly 300 is shown mounted in a side pocket of the dock. The glide assembly 300 can be positioned in either of the side pockets 40 or 90 of the dock section 10 or in the side pocket 146 of the extension 130. The glide assembly 300 comprises a pair of brackets 302 which are secured to the floor of the pocket as seen in
A central roller 316 is positioned between the bracket legs 308. The roller includes opposite ends 320, an outer cylindrical surface 322, and a passage 318 between the opposed ends 320. Although the passage 318 is shown to extend all the way through the roller 316, the roller could be provided with opposed aligned passages or bores which extend axially inwardly from each end of the roller. As shown, the central roller 316 includes a central metal or rigid core 324 which is surrounded by a softer material 326 (such as a plastic or polyurethane, or other material which will not mar a boat hull as the boat hull passes over the roller). The rigid core provides structural rigidity to the roller 316 and the outer material 326 provides for a surface which will not scratch or mar the boat hull. The core 324 could be omitted from the roller 316, and the roller 316 instead would be formed completely from the outer material, which as noted, can be a plastic, polyurethane, or other material which will not mar a boat hull as the boat hull passes over the roller.
The passage 318 is sized to frictionally receive the axle 312. As seen in
A roller cap 328 is received on the end of each axle 312. The roller cap 328 is generally cylindrical, having a diameter substantially equal to the diameter of the roller 16. The cap, however, is provided with a curved outer end, such that there are no sharp outer edges on the roller cap. A passage 330 extends axially through the roller cap 328 and opens into a counter-sunk portion 332 in the outer end of the cap 328. The axles 312 are sized to extend through cap passage 330 such that the axle threaded end 314 is exposed in the counter sunk portion 332. A nut 334 is received on the end of each axle 312 to secure the roller caps on the end of the axles. The counter sunk section 332 is sized, as seen in
When assembled, the brackets 302 are positioned in the side glide pocket, such that the inner surfaces of the legs will be adjacent the opposite ends of the central roller 16. The axles 312 and the caps 328 are sized, such that when the caps 328 are on the axles 312, the inner ends of the caps will be substantially adjacent the outer surface of the bracket legs 308. This will reduce the gap between the bracket legs 308 and the roller 316 and the cap 328, to thereby reduce the axial play in the roller assembly. Because the central roller and roller cap are frictionally received on the axle 312, and because the axle 312 is sized to rotate freely in the leg opening 310, the roller 316 and roller caps 328 can rotate relative to the brackets 302.
The dock section 10 and extension 130 are both one-piece modules each having a minimum of movable parts. Because they are one-piece, the modules or dock sections are easily connected together or to an existing dock, to form a dock system. Further, the extension allows for the size of the watercraft dock to be easily increased to enable the watercraft dock to receive larger watercraft. Further, because the rollers are the only movable parts on the watercraft dock, and because they are easily replaced, as noted above, repair of the watercraft dock and extension is easily performed.
When a watercraft is to be docked in a dock made from the dock section 10 (with or without the extension 130), the driver idles the watercraft up to the back of the dock to align the watercraft with the watercraft receiving area of the dock. The driver then eases the watercraft into throttle. This will urge the watercraft forward, and the watercraft will slide up the ramp of the dock and onto the glide assembly at the back of the dock. The inertia or momentum of the watercraft as it is urged on to the glide assembly will carry the watercraft forward, even when the engine is out of the water. The watercraft receiving area 30 is, as noted above, shaped to correspond generally to the shape of a watercraft hull. Hence, as the watercraft is urged into the watercraft receiving area, the alignment of the watercraft relative to the watercraft receiving area will be corrected, as may be necessary. After the watercraft has been secured to the dock, the air bladders 114, if provided, can be inflated to raise the dock to ensure that the watercraft is out of the water.
As can be appreciated, when the watercraft is driven onto the dock, the weight of the watercraft will cause the rear of the dock to lower in the water, and the dock may take on a slight canter. As discussed above, connection between the extension 130 and the dock section 10 is a rigid connection. Hence, for a dock provided with an extension 130, when the watercraft is driven onto the dock, the complete dock (i.e., the extension and the dock section 10) will take on a slight canter. The extension 130 will not flex, pivot, or otherwise move substantially relative to the dock section 10.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. Although the dock is described for use with small watercraft, it could be modified for use with larger watercraft if so desired. Although the connector socket 24 and the connector disclosed in the above noted U.S. Pat. No. 5,281,055 is preferred to connect the extension to the dock, any conventional type of connecting mechanism can be used to connect the extension to the dock. The rollers of the bottom roller assembly 72 could be replaced pads which, like the rollers, would enhance the ability of the watercraft to move along the length of the dock. Although the extension and dock section are shown with both roller assemblies 72 on the bottom surface and glide assemblies 42, 42a on the wall surfaces, one or even both could be omitted. Hence the dock section and extension could be provided with just the bottom roller assembly or just the side wall glide assembly, or they could be provided with neither the bottom roller assembly nor the side wall glide assembly. Although the glide assembly 300 is shown with two axles 312, the glide assembly 300 could be provided with a single axle 312 which would extend the length of the roller assembly. These examples are merely illustrative.
This application claims priority to Provisional Application No. 60/542,140 filed Feb. 6, 2004, entitled Personal Watercraft Dock, and which is incorporated herein by reference. This application is also a Continuation-In-Part of application Ser. No. 29/211,862, filed Aug. 23, 2004 and entitled Floating Drive-On Boat Dock; application Ser. No. 29/211,860, filed Aug. 23, 2004 and entitled Floating Drive-On Boat Dock Extension; and application Ser. No. 29/211,867, filed Aug. 23, 2004 and entitled Extended Floating Drive-On Boat Dock, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3734046 | Schmidt et al. | May 1973 | A |
3824644 | Stranzinger | Jul 1974 | A |
4604962 | Guibault | Aug 1986 | A |
4773346 | Blanding et al. | Sep 1988 | A |
5281055 | Neitzke et al. | Jan 1994 | A |
5529013 | Eva, III et al. | Jun 1996 | A |
5682833 | Eva, III et al. | Nov 1997 | A |
D398576 | Hillman et al. | Sep 1998 | S |
5855180 | Masters | Jan 1999 | A |
5931113 | Eva, III et al. | Aug 1999 | A |
5941660 | Rueckert | Aug 1999 | A |
5947050 | Eva, III et al. | Sep 1999 | A |
6006687 | Hillman et al. | Dec 1999 | A |
6431106 | Eva, III et al. | Aug 2002 | B1 |
6526902 | Faber | Mar 2003 | B1 |
6592291 | Foxwell | Jul 2003 | B1 |
6602022 | Wilkins | Aug 2003 | B1 |
6745714 | Faber | Jun 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050172876 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
60542140 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29211862 | Aug 2004 | US |
Child | 11051418 | US | |
Parent | 29211860 | Aug 2004 | US |
Child | 29211862 | US | |
Parent | 29211867 | Aug 2004 | US |
Child | 29211860 | US |