1. Field of the Invention
The present invention relates to a technique for writing data onto a disk of a hard disk drive.
2. Background Information
Hard disk drives contain a plurality of magnetic heads that are coupled to rotating disks. The heads can magnetize and sense the magnetic fields of the disks to write and read data, respectively. The heads are coupled to a pivoting actuator arm that has a voice coil motor.
Data is typically stored on tracks that extend radially across the disk surfaces. The voice coil motor can be energized to pivot the actuator arm and move the heads to different track locations. Each track is typically divided into a number of sectors. Each sector contains at least one data field.
It is generally desirable to increase the storage capacity of a hard disk drive. Storage can be increased by reducing the width of each track. As shown in
A hard disk drive that includes a disk with data written onto a plurality of tracks, a spindle motor that rotates the disk, and a head that is coupled to the disk. The disk drive also includes a circuit that writes data onto a first writable shingle band of tracks if the first writable shingle band is adjacent to a guard band of tracks. The first writable shingle band includes a number of tracks that is a function of a head width. The guard band of tracks is capable of becoming a writable shingle band.
Disclosed is a hard disk drive that includes a disk with data written onto a plurality of tracks, a spindle motor that rotates the disk, and a head that is coupled to the disk. The disk drive also includes a circuit that writes data onto a first writable shingle band of tracks if the first writable shingle band is adjacent to a guard band of tracks. The first writable shingle band includes a number of tracks that is a function of a head width. The guard band of tracks is capable of becoming a writable shingle band. Changing the designation of a shingle band between guard and writable creates floating guard bands. The creation of floating guard bands allows for the writing of a single band without having to move and restore adjacent tracks until reaching a fixed guard band as required in the prior art.
Referring to the drawings more particularly by reference numbers,
The disk drive 10 may include a plurality of heads 20 located adjacent to the disks 12. Each head 20 may have separate write (not shown) and read elements (not shown). The heads 20 are gimbal mounted to a flexure arm 26 as part of a head gimbal assembly (HGA). The flexure arms 26 are attached to an actuator arm 28 that is pivotally mounted to the base plate 16 by a bearing assembly 30. A voice coil 32 is attached to the actuator arm 28. The voice coil 32 is coupled to a magnet assembly 34 to create a voice coil motor (VCM) 36. Providing a current to the voice coil 32 will create a torque that swings the actuator arm 28 and moves the heads 20 across the disks 12.
The hard disk drive 10 may include a printed circuit board assembly 38 that includes a plurality of integrated circuits 40 coupled to a printed circuit board 42. The printed circuit board 40 is coupled to the voice coil 32, heads 20 and spindle motor 14 by wires (not shown).
The read/write channel circuit 58 is connected to a controller 64 through read and write channels 66 and 68, respectively, and read and write gates 70 and 72, respectively. The read gate 70 is enabled when data is to be read from the disks 12. The write gate 72 is to be enabled when writing data to the disks 12. The controller 64 may be a digital signal processor that operates in accordance with a firmware and/or software routine(s), including a routine(s) to write and read data from the disks 12. The read/write channel circuit 58 and controller 64 may also be connected to a motor control circuit 74 which controls the voice coil motor 36 and spindle motor 14 of the disk drive 10. The controller 64 may be connected to a non-volatile memory device 76. The memory 76 may contain the firmware and/or software routine(s) performed by the controller 64.
The controller 64 can write data onto the disk in accordance with a floating guard writing scheme. As shown in
As shown in
A data band is a shingle band that includes valid data. A guard band is a shingle band that includes invalid data. A writable band is a shingle band that includes invalid data and is adjacent to a guard band. A writable band may also be adjacent to another writable band as shown in
Data can be written into bands of tracks by creating adjacent floating guard bands. By way of example, data can be written with floating guard bands with a one-way mapping scheme. Generally speaking the method includes writing data to one or more writable bands. If the number of available writing bands is below a threshold the method invokes a house keeping routine.
Data can also be written with a round-trip mapping scheme that utilizes spare bands. If the number of spare bands is below a threshold the process may perform a house keeping routine. One embodiment of the house keeping routine designates floating guard bands as fixed guard bands and writes data by moving and restoring adjacent tracks until the head reaches a fixed guard band.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
4839753 | Ide et al. | Jun 1989 | A |
4942486 | Kutaragi et al. | Jul 1990 | A |
5903411 | Tomita et al. | May 1999 | A |
5917669 | Johnson et al. | Jun 1999 | A |
7082007 | Liu et al. | Jul 2006 | B2 |
7486460 | Tsuchinaga et al. | Feb 2009 | B2 |
7490212 | Kasiraj et al. | Feb 2009 | B2 |
20050071537 | New et al. | Mar 2005 | A1 |
20060227449 | Che et al. | Oct 2006 | A1 |
20080304172 | Bi et al. | Dec 2008 | A1 |
20100232057 | Sanvido et al. | Sep 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20110304935 A1 | Dec 2011 | US |