Embodiments of the invention are better understood with reference to the following drawings. The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. The illustrated embodiments are not intended to be exhaustive of all embodiments according to the invention. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
With reference now to
It should be understood that for ease of description the connection system 10 is described herein with respect to a panel 20 having two apertures 22 (e.g., apertures 22a and 22b), a corresponding number of connection devices 30 (e.g., connection devices 30a and 30b), and a support block 40 configured for use with two apertures 22 and connection devices 30. However, the invention is not so limited. It practice, the panel 20 may have any number of apertures 22 and corresponding connection devices 30, and the support block 40 may be adapted for use with more or less than two apertures 22 and connection devices 30.
Panel 20 includes a back side 24 and a front side 26. Apertures 22 extend through panel 20 from back side 24 to front side 26 and define an axial direction (shown as the Z-axis in
In the illustrations, connection devices 30 are identically formed. Accordingly, only one of connection devices 30 is described herein, with the description being applicable for each of connection devices 30. Each connection device 30 includes a front portion 32 and a back portion 34. Front portion 32 is configured to be inserted in the axial direction into a corresponding one of the apertures 22. In one embodiment, the size and shape of aperture 22 (as defined by outer periphery 28) and the size and shape of front portion 32 are selected to allow a predetermined and limited floating movement of connection device 30 in a plane of the panel (i.e., the X-Y plane of
In one implementation, connection device 30 is a carrier configured to hold a plurality of connectors. For example, connection device 30 may be a carrier as described in U.S. Pat. No. 6,780,069, commonly assigned herewith and incorporated herein by reference. In another implementation, connection device 30 is itself a connector. For example, connection device 30 may be a connector as described in U.S. Pat. No. 6,368,120, commonly assigned herewith and incorporated herein by reference. In yet another implementation, connection device 30 is a probe block holding one or more probes. For example, connection device 30 may be a probe block as described in U.S. Pat. Nos. 6,551,126, 6,824,427 and 6,902,416, commonly assigned herewith and incorporated herein by reference
Support block 40 is configured to be releasably secured to back side 24 of panel 20 in fixed relationship thereto, adjacent back portion 34 of at least one connection device 30. Support block 40 is further configured to provide predetermined limited axial (i.e., in the Z-direction) floating movement of the connection device 30 through its corresponding aperture 22. Accordingly, support block 40 defines a panel engagement surface 42 and a plurality of connection device engagement surfaces 44a, 44b, 44c, 44d (collectively referred to herein as “connection device engagement surfaces 44”, or simply “engagement surfaces 44”). In one embodiment, as seen in
In the illustrated embodiment, support block 40 is formed as a unitary member and is generally H-shaped, such that panel engagement surface 42 of support block 40 engages back side 24 of panel 20 between two adjacent apertures 22 and supports a connection device 30 within each of the apertures 22. The illustrated support block 40 is configured to provide access to the back portion 34 of connection devices 30 when connection devices 30 are inserted into their respective aperture 22 and support block 40 is secured to panel 20. In this manner, cables, wires and the like may freely extend from connection devices 30 without interference and support block 40 may be easily positioned around connection devices 30 with attached cables or wires. In other embodiments, support block 40 may be configured to support more or less than two connection devices 30, may have a shape other than the illustrated H-shape, and/or may be formed from more than one piece.
Panel engagement surface 42 is held securely against panel 20 via fastening means 46. In the illustrated embodiment, fastening means 46 comprise one or more threaded fasteners 48 that pass through openings 50 in support block 40 and engage corresponding threaded openings 52 in panel 20, although any fastening device that permits disengagement of support block 40 from panel 20 may be used. It will readily be recognized that the numbers and positions of fasteners 48 may be altered from those shown. In addition, the fastening means 46 may optionally provide a keying function, such as by asymmetrically positioning fasteners 48.
In some implementations, means for aligning support block 40 on plate 20 may be necessary or desired. In the illustrated embodiment, support block 40 and panel 20 include optional alignment means 56 that are configured to accurately position and retain support block 40 with respect to apertures 22. In the illustrated embodiment, alignment means 56 comprise pins 58 extending from panel engagement surface 42, and corresponding holes 60 in panel 20 for receiving pins 58. It will readily be recognized that the numbers and positions of pins 58 and holes 60 may be altered from those shown, including placing pins 58 on panel 20 and forming holes 60 in support block 40. Alignment means 56 other than or in addition to pins 58 and holes 60 may be provided. For example, panel engagement surface 42 may be received in a mating slot (not shown) in panel 20. Alignment means 56 may optionally provide a keying function, such as by making the alignment means asymmetrical.
Connection device engagement surfaces 44 of support block 40 are axially spaced (i.e., along the Z-axis in
In one embodiment, movement or float of connection devices 30 in the X- and Y-axis directions is controlled by the size and shape of aperture 22 as it relates to the size and shape of front portion 32 of connection devices 30. As best seen in
In another embodiment according to the invention, movement or float of connection devices 30 in the X- and Y-axis directions is controlled by the support block, rather than by outer periphery 28 of aperture 22. The size and/or shape of apertures 20 may thus be manufactured with increased tolerances. An exemplary implementation of a support block 140 that controls float of connectors 30 in the X, Y and Z directions is illustrated in
Referring now to
Referring now to
In each of the embodiments and implementations described herein, the various components of the connection system and elements thereof are formed of any suitable material. The materials are selected depending upon the intended application and may include both polymers and metals. In one embodiment, the panel 20, connection devices 30 and/or support blocks 40, 140, 240 are formed of polymeric materials by methods such as injection molding, extrusion, casting, machining, and the like. In another embodiment, the panel 20, connection devices 30 and/or support blocks 40, 140, 240 are formed of metal by methods such as molding, casting, stamping, machining the like. Material selection will depend upon factors including, but not limited to, chemical exposure conditions, environmental exposure conditions including temperature and humidity conditions, flame-retardancy requirements, material strength, and rigidity, to name a few.
Although specific embodiments have been illustrated and described herein for purposes of description of the preferred embodiment, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. Those with skill in the art will readily appreciate that the present invention may be implemented in a very wide variety of embodiments. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
The present application claims priority to provisional U.S. Patent Application 60/806,405, filed Jun. 30, 2006.
| Number | Date | Country | |
|---|---|---|---|
| 60806405 | Jun 2006 | US |