Not applicable.
Not applicable.
The present invention relates generally to photovoltaic power systems, and more particularly to support structures for solar photovoltaic collector panels, and still more particularly to a modular floating support structure for a solar panel array.
With a few exceptions, solar panel support structures are almost invariably adapted for installation of a solar panel on the ground or a rooftop. Notable exceptions include support frameworks for mounting solar panels on vehicles and boats, and more exotic uses may even call for an installation with no support framework, such as with small glue on/screw on thin solar panels for use in extreme environments.
Rooftop solar arrays require the modification of the rooftop structure, can be dangerous and difficult to work on, and provide only a limited footprint. On the other hand, land is increasingly expensive and may be exploited for a number of purposes other than solar array installation. Additionally, the amount of land required for a solar array that generates a significant amount of electrical power can be considerable. Accordingly, because bodies of water comprise two thirds of the surface area of the earth, and because many large areas of water surfaces have no critical uses that cannot be provided for elsewhere, it may be desirable to dedicate large surface areas of water to the collection of solar energy and the conversion of solar energy to electricity.
There is as yet no known art showing suitable flotation elements for installing and deploying a large solar array on a body of water.
The present invention is a floating support structure for solar collectors. The invention provides for water-mounting of an array of solar panels with no ground mounts, roof mounts, minimal materials and minimal labor in installation. In addition, the invention includes a pre-angled mounting component for tilting the array (herein after referred to as “framework”) at a desired angle for best collection of solar radiation (e.g., 20 degrees). It also provides for transverse angling of the entire array on water, which incorporates posts mounted vertical and separately.
The inventive apparatus comprises a number of lightweight elongate tube elements that can be assembled at the time of manufacture. Alternatively, because the tubular elements are easily stacked and compactly stored, the assembly elements can be transported to an installation site and assembled at the site.
It is therefore an object of the present invention to provide a new and improved modular floating support structure for a solar panel.
It is another object of the present invention to provide a new and improved floating support structure for a solar panel array that may be connected to other like modules to form an array.
A further object or feature of the present invention is a new and improved floating structure for a solar panel array that permits solar panels to be tilted for optimum solar energy collection while afloat.
An even further object of the present invention is to provide a novel floating structure for a solar panel array that is lightweight and easily transported to and assembled at or near an installation site.
There has thus been broadly outlined the more important features of the invention in order that the detailed description that follows may be better understood, and in order that the present contribution to the art may be better appreciated. Additional objects, advantages and novel features of the invention will be set forth in part in the description as follows, and in part will become apparent to those skilled in the art upon examination of the following. Furthermore, such objects, advantages and features may be learned by practice of the invention, or may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
Still other objects and advantages of the present invention will become readily apparent to those skilled in this art from the following detailed description, which shows and describes only the preferred embodiments of the invention, simply by way of illustration of the best mode now contemplated of carrying out the invention. As will be realized, the invention is capable of modification in various obvious respects without departing from the invention. Accordingly, the drawings and description of the preferred embodiment are to be regarded as illustrative in nature, and not as restrictive.
The invention will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein:
Referring to
Straddling the ends of each flotation element are angled upright supports, 210, 220, and 230, 240, glued, welded, bolted, or otherwise affixed at their lower ends to the connector tubes extending longitudinally from the flotation element, or to the flotation elements themselves, and which angle inwardly toward one another to join or substantially join at their respective upper ends, 250, 260, and 270, 280. The angled uprights are preferably fabricated from square tubing. The manufacturing means may be adapted to the anticipated installation, as welding or gluing may provide a sturdier structure with greater durability, but assembly with nuts and bolts may allow for easy transportation for assembly at an installation site.
Spaced apart parallel plates 290/300, and 310/320, may be glued, welded, bolted, or otherwise rigidly affixed to the opposite sides of the uprights at or near the junction of the upper ends of the angled uprights to provide increased structural integrity. Additionally, the plates may be provided with holes in which to journal the ends 330, 340 of a rotatable panel frame mounting tube 350. Two or more additional transverse tubes 360, 370, may be disposed between, and connected to, the angled uprights, so as to make a generally rigid framework structure. Adjustment/locking means 380 may be provided to permit selective release, rotation, and re-locking of the mounting tube. A number of suitable devices can be provided, including hole and nipple assemblies, pawl and ratchet, locking collar and ring, and the like. The drawings show a pawl and ratchet assembly as an illustrative mechanism.
The rotatable panel frame mounting tube can be provided with a plurality of support rails 390 on which to fasten and secure one or more solar photovoltaic panels 400.
The module framework may also be provided with side connector rings 410, 420, 430, 440, disposed along each of the sides of the support structure. While only one side connector ring need be provided for each side of the support structure, and may be positioned anywhere along the length of the flotation element or connector tubes, it is preferable to have two side connector rings, one each extending outwardly from a each front and rear connector tube. Referring now to
The end caps 780 are preferably polygonal when viewed on end (see
The foundation of the mounting structures includes front and back lowermost structural channel 860 preferably aluminum extrusions, which are mounted on the top side of the floatation elements with mounting bolts 850 and span transversely across the top sides of the floatation elements to join each adjacent pair into a structural foundation for one or more solar panels 870 in a solar panel array 880.
The second elements in the mounting structure include front and rear longitudinal structural channels 890, 900, which are removably mounted onto the lowermost structural channels 860 in a generally perpendicular orientation. A front foot 910, preferably bent solid bar, is removably mounted on the front longitudinal structural channel 890. A back modified queen post truss 920, with or without interior vertical supports, and also preferably bent solid bar, is removably mounted on the rear longitudinal structural channel 900. The truss includes a horizontal keystone portion 930 having apertures (not shown) for passing bolts 940 to removably mount a rear foot 950, also preferably bent sold bar. Front and rear panel rails 960, 970, attached to and disposed on the underside of each of the solar panels, are attached to the front foot and rear foot, respectively.
Mounting elements are disposed along the length of the floatation elements and proximate the ends. These structures include a slightly flexible metal band 1440 having ends 1450 with bolts 1460 extending therefrom. A mounting bracket 1470 is provided for placement over the top portion 1480 of the cylindrical pipe 1420. The mounting bracket 1470 includes a mounting post 1480 having an angled top 1490 with apertures for passing mounting bolts on which to connect panel rails 1500 disposed on the underside of solar panels 1510. The mounting brackets further include downwardly angling shoulders 1520 each having a horizontally extending tab 1530 with apertures for passing the bolts 1460 on the ends of band 1440. When bolts 1460 are tightened onto tabs 1530, the band and mounting bracket form a clamp over the cylindrical floatation element. The shoulders 1520 of the mounting bracket each also include an integral or welded reinforcement bar 1540 having an aperture 1550 for passing a fastener to join a connector bar 1560 between mounting brackets. The connector bars may be structural channel, solid bars, round or rectangular tubes, or other suitably strong elongate connector.
In the above-described and illustrated configuration, the floatation elements, mounting brackets, and connector bars provide a platform for mounting axially disposed gangways 1570, which are placed over the connector bars and provide access to the panels disposed along the length of the floatation elements, even when the apparatus is floating in deep water. Referring now to
The third preferred embodiment of the inventive floating support structure for a solar panel array also includes a catwalk 1620 disposed over a plurality of floatation elements proximate their respective ends, or between any set of mounting brackets anywhere along the length of the floatation elements where solar panels are not mounted. The catwalk is disposed over mounting bars 1630, preferably extruded aluminum structural channel or steel channel, which extend between mounting brackets 1470. At a first end 1640 the catwalk is firmly attached to a mounting bar. A second end 1650 includes casters 1660 having a small amount of travel in a channel 1670 attached to a mounting bar. This provides some accommodation to movements caused by surface waves on the water. Either the catwalk or any one of the gangways may be joined to a dock to provide access from land to the floating array.
As will be appreciated by those with skill in the art, a number of suitable materials may be employed for the tubing and flotation elements of the support structure of the present invention for either of the preferred embodiments, including fibre glass, ABS, HDPE, PVC, CPVC, and the like, as well as composite materials, metals and metal alloys, and so forth. The various components need not be fabricated from the same material, and some combination of plastic, composite, and/or metal may be preferable.
The flotation element used in the present invention—i.e., the pontoon—is preferably sealed and may be left either with an unfilled void or it may be filled with polyethylene foam, polystyrene foam, or the like.
The above disclosure is sufficient to enable one of ordinary skill in the art to practice the invention, and provides the best mode of practicing the invention presently contemplated by the inventor. While there is provided herein a full and complete disclosure of the preferred embodiments of this invention, it is not desired to limit the invention to the exact construction, dimensional relationships, and operation shown and described. Various modifications, alternative constructions, changes and equivalents will readily occur to those skilled in the art and may be employed, as suitable, without departing from the true spirit and scope of the invention. Such changes might involve alternative materials, components, structural arrangements, sizes, shapes, forms, functions, operational features or the like.
Therefore, the above description and illustrations should not be construed as limiting the scope of the invention, which is defined by the appended claims.
The present application is a continuation-in-part of U.S. Utility patent application Ser. No. 11/264,285, filed 10/31/2005 (Oct. 31, 2005), which claims the benefit of U.S. Provisional Patent Application, Ser. No. 60/623,328, filed 10/29/2004 (Oct. 29, 2004).
Number | Date | Country | |
---|---|---|---|
60623328 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11264285 | Oct 2005 | US |
Child | 11861226 | Sep 2007 | US |