The present invention relates to a floating swimming pool cover useful in reducing evaporation and retaining heat and, more particularly, to a floating cover formed of corrugated polyethylene, with the corrugations formed along the surface that contacts the water, creating a vapor barrier.
Swimming pools lose a significant amount of heat and water through surface evaporation. To maintain a comfortable temperature in the pool, as well as to keep a relatively consistent water level, it is necessary to frequently add both water and heat to the pool. This can not only add considerable expense, but may also shorten the season during which the pool is usable. It is known to use a removable cover that functions as a vapor barrier to reduce evaporation. Similar vapor barriers are also beneficial for use with indoor pools, where evaporated water not only requires adding heat to the pool, but also produces humidity issues in the pool room.
One exemplary type of vapor barrier is formed of a type of flexible bubble wrap, similar in form to packing material. While useful for relatively small pools, the effort required to cover larger, competition-sized pools is problematic. That is, the covers are challenging to put on and take off as they often do not hold their shape or wind up “true”. And even if it is possible to evenly roll up a cover of such an extensive size, it is difficult to find a place to store the cover where it isn't an eyesore (and where it is protected when not in use).
Other types of pool covering have been developed. In one case, a plurality of individual, floating plastic pads is used, where a multiple number of pads are positioned on the surface (obviously, larger pools needing a larger number of these pads). Since they need to be individually placed and removed, their use is time-consuming. Again, these pads present storage problems.
Some systems utilize a cover that is attached to a pair of tracks that extend along the length of the pool, where the cover is moved via a cable-driven system to slide along the tracks and cover the pool. While effective, this type of configuration is obviously expensive and cannot be used on large pools.
Thus, a need remains for a relatively simple and efficient pool cover that may be quickly and easily placed on a pool and function to reduce evaporation and retain heat, using a system of covering/uncovering that avoids the various problems of the prior art.
The needs remaining in the prior art are addressed by the present invention, which relates to a floating swimming pool cover useful in reducing evaporation and retaining heat and, more particularly, to a floating cover formed of corrugated polyethylene, with the corrugations formed along the surface that contacts the water, creating a vapor barrier.
In accordance with an exemplary embodiment of the present invention, the corrugated polyethylene pool cover (which is flexible) is wound onto a storage shaft when not in use to cover a pool. A drive shaft is disposed in a spaced-apart relationship with the storage shaft. When it is desired to deploy the cover over the surface of a pool, the cover passes over the drive shaft and the corrugations on the polyethylene sheet engage with gear teeth on the drive shaft. Thus, as the drive shaft is rotated, the cover is pulled off the storage shaft and pushed out and away from the shafts and onto the pool. Conversely, when it is desired to remove the cover from the pool, the storage shaft is rotated in a manner that functions as a take-up reel and allows the cover to be pulled off of the pool and wound up on the storage shaft.
In a preferred embodiment of the present invention, an external drive motor is used to control the operation of both the drive shaft and the storage shaft. However, it is to be understood that conventional manual operations may be used to crank the appropriate shaft so as to either “pay out” or “take up” the cover.
In an exemplary embodiment of the present invention, the drive shaft may be covered with a piece of polyethylene having the same corrugations as the pool cover, these corrugations functioning as the gear teeth. A conventional drive shaft with machined teeth (or any other suitable type of teeth) may also be used.
One particular embodiment of the present invention includes an outer housing, with both the storage shaft and the drive shaft formed as components within the housing. A hinged ramp may be included in a specific configuration of the outer housing, where the ramp bridges the distance between the housing and the edge of a given pool and serves as a platform to support the movement of the cover between the drive shaft and the pool, ensuring that the edge of the cover is launched onto the water's surface.
An additional pressure shaft may be included in any embodiment of the present invention, where the pressure shaft is disposed over the drive shaft and positioned such that the cover is threaded between the pressure shaft and the drive shaft. In this manner, the cover is more likely to remain in contact with the drive shaft, where the rotation of the drive shaft urges the cover forward and onto the surface of the pool.
Configurations of the present invention that utilized motorized control of the rotation of the storage shaft and drive shaft may include the use of limit switches that sense when the entire cover has been played out over the surface (and thus turning “off” the drive shaft) and sense when the entire cover has been removed from the pool (and thus turning “off” the storage shaft). A remote control feature may be added to this motorized power source as well.
One particular embodiment of the present invention may be defined as a pool cover apparatus comprising a vapor barrier sheet formed of a flexible material, the vapor barrier flexible material for covering a defined surface of a and including a corrugated lower surface for contacting the water when in place on the pool, a storage shaft for supporting the vapor barrier sheet when not in use (the vapor barrier sheet wound upon the storage shaft in this condition) and a drive shaft disposed in relation to the storage shaft such that as the vapor barrier sheet is unwound from the storage shaft, it passes over the drive shaft and onto the pool, the drive shaft including gear teeth that mate with the corrugated lower surface of the vapor barrier sheet such that as the drive shaft is rotated, the corrugated lower surface of the vapor barrier sheet engage with the gear teeth and impart forward movement of the sheet.
Other and further aspects and embodiments of the present invention will become apparent during the course of the following discussion and by reference to the accompanying drawings.
Referring now to the drawings where like numerals represent like parts in several views,
As will be discussed in detail below, cover apparatus 10 includes a vapor barrier sheet 12 that is formed of a flexible material (preferably, polyethylene) having a corrugated surface.
As mentioned above, corrugated polyethylene layer 14 includes a series of corrugations 18 disposed in parallel across the width W of sheet 12. In accordance with the present invention, the open end faces 18-O of the corrugations are filled, joined together, or in some manner pinched close so as to prevent water from entering these openings and weighting down vapor barrier sheet 12. The air pockets formed by closing end faces 18-O provides buoyancy and stiffness to the cover, while allowing the sheet to retain sufficient flexibility to be rolled up when not in use. While the specific embodiment of
Vapor barrier sheet 12 is shown in
In accordance with the present invention, therefore, the rotation of drive shaft 22 functions to deploy vapor barrier sheet 12, extending sheet 12 across water surface S. Vapor barrier sheet 12 is wound on storage shaft 20 such that as it begins to deploy, lower corrugated surface 14 of sheet 12 contacts the water, with corrugations 18 floating on the surface. The rotation of drive shaft 22 can be accomplished by using a motorized system as the power source. Alternatively, a manual system utilizing a crank handle attached to drive shaft 22 may be used to “power” the shaft (and/or may serve as a back-up when other power sources are not available).
Continuing with the description of
The specific embodiment of the present invention as shown in
This specific embodiment as shown in
As mentioned above, a significant aspect of the present invention is that the specific components of cover apparatus 10 are stored within a housing that keeps vapor barrier sheet 12 protected when not in use, and can easily be stowed away. Referring to
Referring to
Power source 50 may also include limit switches. In particular, a first limit switch 52 may be used to sense when the entire sheet 12 has been unwound from storage shaft 20. At this occurrence, first limit switch 52 will stop the rotation of drive shaft 22 by turning off the power source. Similarly, a second limit switch 54 may be used to sense when the entire sheet 12 has been re-wound onto storage shaft 20. At this occurrence, second limit switch 54 will stop the rotation of storage shaft 20 by turning off the power source. In both cases, these limit switches provide the ability to control the rotational power delivered to the shafts and improve the performance of apparatus 10.
It is to be understood that the power source may operate via remote control, such as via RF signals received by an antenna 56. In this embodiment, an individual located within range of power source 50 may control the operation of apparatus 10 without needing to stand right next to the pool.
As mentioned above, a manual operation system may be used instead of power source 50 to control the operation of cover apparatus 10. That is, a crank arm may be attached to the proper bolts (i.e., either bolts 42 or bolts 46) and used to manually rotate the appropriate shaft to deploy or retract vapor barrier sheet 12.
Pressure shaft 26 is shown in
It is to be understood that the present invention is not limited to the above-described embodiments, but encompasses any and all variations that are contemplated as falling within the scope of the following claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/275,851, filed Jan. 9, 2016 and herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62275851 | Jan 2016 | US |