The invention relates to a pistol with an ammunition magazine that fires Flobert cartridges.
The Flobert cartridge, also known as a 0.22 CB Cap (Conical Ball Cap) cartridge, is a variety of 0.22 caliber rimfire ammunition which has a very small propellant charge (usually no gunpowder, just the primer), resulting in a low muzzle velocity. The Flobert cartridge has a similar muzzle velocity as is produced by a low to mid-power 0.22 pellet gun, however the bullet from a 0.22 CB cartridge is significantly heavier than a typical air gun pellet and therefore carries more energy.
Flobert cartridge guns produce less noise than most guns and are useful where a low power cartridge is desirable, for example, in pest control or indoor target shooting. The 0.22CB cartridge has not been popular in the United States, but has remained somewhat popular in Eastern Europe. In some countries, 0.22 CB weapons are in the category of air guns, so are not subject to gun laws. In recent years, there has been renewed interest in Flobert cartridge weapons as low cost training weapons and recreational shooting weapons with a minimal cost per shot.
As a training weapon for handling semi-automatic pistols, a Flobert cartridge pistol may be desirable as a low cost, low power weapon. A true semi-automatic pistol has a slide that is forced backwards from the recoil on firing a round. The backward action ejects the spent cartridge, and typically cocks the hammer for the next shot. A spring forces the slide back to its originally position. The return action strips a new cartridge from the ammunition magazine and chambers the round, ready for the next shot with the hammer cocked. However, the relatively small propellant charge of Flobert cartridges does not generate sufficient energy to force the slide back against the spring, eject the spent cartridge, cock the hammer for a new shot, and strip and chamber a new cartridge from an ammunition magazine.
In typical semi-automatic pistols, the hammer is cocked by the recoil action of the slide, so each trigger pull subsequent to the first shot is single action, meaning that the trigger only releases the cocked hammer In a double action trigger pull, the first part of the trigger pull cocks the hammer, and a second step in the trigger pull releases the hammer to fire the shot. Most modern semi-automatic pistols have a double action trigger pull feature for the first round.
In some semi-automatic pistols, the slide recoil does not cock the hammer Thus, each trigger pull is double action, also called “double-action only.” Examples of such weapons include the Kel-Tec P-11 and Sig Sauer P290RS Nitron Sub-Compact.
Most Flobert cartridge weapons available on the market are revolvers. Some of them are styled as Flobert cartridge pistols, but actually have a small revolver drum, which is characteristic for revolvers. For examples, see http://gunmag.com.ua/pistolety-pod-patron-flobera-pervye-shagi and the PMF-1 Makarov pistol (http://guns-review.com/documents/review.php?entry_id=1405415205).
Other Flobert cartridge weapons styled as pistols do not have semi-automatic functions. For example, the “P1F ULTRA MK7/1” pistol uses bullet-shaped sleeve that each Flobert round must be inserted into (http://www.commando.sk/zbrane/flobert-4mm-6mm/flobert-6mm/grand-power-plf-ultra-mk71-flobert-pistol-6mm) This weapon also requires the user to manually pull the slide back after each discharge. That is, this pistol has no semiautomatic functions, making such pistols unsuitable for field firing practices.
The present invention provides a Flobert cartridge pistol with semi-automatic pistol features including a slide that recoils on firing a round and ejecting the spent shell, and reloading a new round from an ammunition magazine in the pistol handle. The inventive pistol has a hammer mechanism using a decoupler which disables the mechanical linkage of the hammer spring with the hammer after the round is fired. As a result, when a cartridge is discharged, the slide moves backwards and the spent cartridge is ejected without cocking the hammer The hammer is cocked only when the trigger is pulled. That is, the trigger pull is a double-action for all shots. With this weapon, as with a semi-automatic combat pistol, the user does not need to manually reload after each shot.
The ammunition magazine is a conventional ammunition magazine that stores cartridges in a linear configuration. In an embodiment, the ammunition magazine is nested in the handle of a pistol.
In an embodiment, this invention provides a Flobert cartridge pistol having a barrel with a chamber, a slide, a receiver containing a hammer, a trigger, and an ammunition magazine in the handle of the pistol, wherein a trigger pull causes a Flobert round in the chamber to be fired, and the energy from the discharge of the round causes the slide to move back and causes the spent shell from the round to be ejected from the pistol, and wherein the slide returns to its starting position, and the slide-return action strips a new round from the magazine and chambers the round, ready for firing.
In an embodiment, this invention provides a Flobert cartridge pistol having a barrel with a chamber, a slide, a receiver containing a hammer, a trigger, a decoupler, and an ammunition magazine in the handle of the pistol, wherein a trigger pull causes a Flobert round in the chamber to be fired, and the energy from the discharge of the round causes the slide to move back and causes the spent shell from the round to be ejected from the pistol, and wherein the slide returns to its starting position, and the slide-return action strips a new round from the magazine and chambers the round, ready for firing, and wherein the decoupler prevents the slide from cocking the hammer
The inventors have established experimentally that the discharge of a Flobert cartridge produces enough recoil to move a slide backward, to extract the spent case and return the slide under the force of the return spring to feed the next cartridge, but is not sufficient to cock the hammer.
Accordingly, in an embodiment of the present invention this problem is solved by mechanically decoupling the hammer spring arming process from the process of recoiling of the moving parts. A decoupler employed in the design of the hammer mechanism disables the mechanical linkage of the hammer spring with the hammer immediately after the hammer strikes the cartridge during the firing sequence. Consequently, the hammer spring is not engaged by the force of the slide moving backwards. The hammer is cocked only using the force of the shooter squeezing the trigger, or optionally the hammer may be cocked by the shooter manually.
As Flobert cartridges are designed with a strongly protruded rim, the classical scheme for feeding cartridges from the magazine case is inapplicable. The bullet extraction force is extremely low (approx. 0.5 to 1 N), which makes such cartridge sensitive to the forces of inertia associated with the operation of automatic mechanisms.
The Flobert shell is made of sheet metal and its side body and shell mouth are easily deformed when compressed in the weapon structural elements. The shells are therefore subject to deformation that could cause jams or misfires. To prevent this, the cartridges are placed and fixed in the weapon by a guiding and retaining mechanism by clasping the rim of the shell base, which is the hardest part of the case. The cartridges are displaced when feeding and ramming for the minimum distances required for the operation conditioned by the cartridge length and diameter, with the speeds which exclude self-induced extraction of the bullet under the forces of inertia/momentum. The required displacement speeds of the moving parts are provided by matching the strains of the return spring and the magazine case follower spring.
The breech block is connected to the slide to allow a longitudinal displacement that opens the breech on discharge of a round. At the end of the recoil, the breech block reaches a stop and remains motionless while the slide continues moving backwards allowing a fresh cartridge to push upward from the magazine case under the force of the magazine case follower spring and enter the open breach against the cartridge bearing surface of the breech block. Meanwhile, when the slide reaches its stop, the slide moves forward by the action of the return spring and together with the breech block rams the cartridge from the cartridge bearing surface of the breech block and moves it into the chamber.
With reference to the figures, the terms “up”, “down”, “above”, “below”, “rear” and “front” are all descriptors of relative positions of parts when the inventive pistol is oriented with the barrel pointed as shown in
In an embodiment of this invention, as shown in the figures, a semi-automatic pistol is provided, comprising a barrel 35, a receiver with an opening for a magazine case 1 to be inserted, a hammer mechanism and a breech block 7. The hammer mechanism is equipped with a hammer 18, a hammer spring 21, a trigger 16, a tie rod (trigger bar) 17, and a decoupler 27, which decouples the hammer spring 21 from the hammer 18, by disabling the mechanical linkage of the hammer 18 and the hammer base 24. The decoupler 27 is installed in the hammer base 24 and when engaged by a cam 23, fixed on the receiver, it can rotate around the hammer axis 19 and interact with the bulge 22 on the tie rod 17.
A lock 4 is located at the upper side of the magazine which prevents a cartridge from being pushed out of the magazine case 1 by a follower spring 3 (
Cartridges are loaded into the magazine case 1 with the cartridge rim placed into a T-shaped groove guiding mechanism 2 of the magazine case 1 (
Having installed the loaded magazine case 1 into the pistol, the shooter, similar to using a combat pistol, pulls back the slide 5 manually into its maximum rearward position at slide stop 6 (
To fire a round, the trigger 16 is pulled. As a double-action trigger pull, there are two steps to the trigger pull.
In the first step, as depicted in
In the second step of the trigger pull, as depicted in
Alternatively, in an embodiment as shown, the hammer 18 is external to the weapon and the hammer can be cocked manually by the shooter. If manually cocked, the trigger pull is single action only, i.e., only the second step of the trigger pull described above applies.
As the cartridge fires, the bullet affected by gas pressure exits the case and interacts with the conical forcing cone 31 in the barrel, that is designed to effectively amplify the gas pressure for the reliable extraction and recoiling of the moving parts. The cartridge's diameter decreases under the pressure which enables the cartridge to be expelled through the barrel throat 32.
Under the gas pressure acting on the case bottom and the breech face 10, the breech block 7 and the slide 5 move backwards, i.e., recoil. As the trigger 16 is still pressed down, and the cam 23 is engaging the decoupler 27, the hammer 18, released from the main spring 21, freely rotates about its axis 19. Thus, the recoil of the slide is not impeded by the hammer or the force of the main spring.
In the action that ejects the spent shell, the empty shell is engaged by the hook of the extractor 11 and cylindrical surface 33 of the ejector on the breech block 7. For facilitating the extraction the chamber has a conical shape. As the slide recoils, when the shell base reaches the ejector bulge 34 on the ejector and starts interacting with it, a rotational movement is transmitted to the shell around the point of contact with the hook of the extractor 11 that forces the shell away from the breech block 7 and out of the ejection port of the slide.
Having ejected the spent shell from the weapon, as the recoil continues, the breech block 7 reaches its stop 8 while the slide 5 is still moving backwards. At this point, the breech block is rearward of the ammunition magazine, and the next cartridge is pushed from the magazine case 1 to the breech block 7 and the loading cycle is repeated as previously described, with the return spring 14 forcing the slide back to the starting position. Optionally, the magazine lock 4 may prevent the slide from slide from moving forward if there is no ammunition remaining in the magazine.
Upon release of the trigger 16, the tie rod 17 goes back to its initial position. The decoupler is thereby disengaged, and tie rod re-couples with the hammer base 24, and cam 23 becomes disengaged which in turn releases the decoupler 27. The mechanical linkage between the hammer 18 and the main spring 21 is restored and the pistol is ready for a new shot.