Flocked shapewear garments

Information

  • Patent Grant
  • 10455866
  • Patent Number
    10,455,866
  • Date Filed
    Monday, February 19, 2018
    6 years ago
  • Date Issued
    Tuesday, October 29, 2019
    5 years ago
Abstract
Disclosed herein are flocked shapewear garments. The flocked shapewear garments comprise a fabric, an elastomeric coating, and flocking fibers embedded in the elastomeric coating.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to flocked shapewear garments, comprising a fabric, an elastomeric coating, and flocking fibers embedded in the elastomeric coating.


BACKGROUND

Many people face recurring problems with bulges of undesirable body fat on their torso (e.g., abdominal fat, back fat, etc.) and or legs (e.g., thigh fat). Designers have produced a variety of garments designed to restrain, smooth, and conceal undesirable bulges of body fat. However, a need exists for more comfortable garments that can restrain, smooth, and conceal undesirable bulges of body fat in targeted areas.


SUMMARY OF THE DISCLOSURE

Disclosed herein are flocked shapewear garments comprising a fabric, an elastomeric coating on at least the portion of the fabric configured to cover the abdominals of the garment wearer, and flocked fibers embedded in the elastomeric coating, wherein the garment comprises a sufficient amount of elastomeric coating and flocked fibers to provide compression to the abdominal area of the garment wearer. In some embodiments, the elastomeric coating is in an X-pattern over the abdominal region of the garment wearer. The flocked shapewear garment can alternatively comprise a fabric, an elastomeric coating on at least the portion of the fabric configured to cover the inner thighs and/or the outer thighs of the garment wearer, and flocked fibers embedded in the elastomeric coating, wherein the garment comprises a sufficient amount of elastomeric coating and flocked fibers to provide compression to the thigh area of the garment wearer. In some embodiments, the fabric comprises from 40% to 80% nylon. In some embodiments, the fabric comprises an elastomer fiber. In some embodiments, the elastomer fiber is spandex, and wherein the fabric comprises from 20% to 60% spandex. In some embodiments, the elastomeric coating comprises silicone.


Also disclosed herein is a flocked shapewear garment for tummy control of a wearer, the garment comprising a fabric panel configured to extend anteriorly over the wearer, and a flocked portion of the fabric panel, the flocked portion having a tummy covering portion and a pair of lateral portions extending laterally therefrom, at least one of the lateral portions having at least one bifurcation defining a cutout portion. The cutout portion can expand progressively as it extends laterally to the adjacent hip of the wearer. In some embodiments, both of the lateral portions have bifurcations defining the cutout portions. The flocked portion can includes superior and inferior edges. The superior and inferior edges have a minimal distance from each other over the tummy (e.g., from 6 inches to 15 inches). In some embodiments, the superior and inferior edges progressively diverge from each other extending away from the tummy in the lateral direction. The superior and inferior edges can have a minimal distance from each other of from 8 inches to 18 inches in the lateral portions. In some embodiments, the cutout portions are located nearer to the superior edge than to the inferior edge.


The details of one or more embodiments are set forth in the description below. Other features, objects, and advantages will be apparent from the description and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an anterior perspective view of one embodiment of a flocked shapewear garment disclosed herein.



FIG. 2 depicts an anterior view of one embodiment of a flocked shapewear garment disclosed herein.



FIG. 3 depicts a posterior view of one embodiment of a flocked shapewear garment disclosed herein.





DETAILED DESCRIPTION

Disclosed herein are flocked shapewear garments. The flocked shapewear garments comprise a fabric, an elastomeric coating, and flock fibers embedded in the elastomeric coating.


The fabric can be any fabric known in the art for use in garments such as shapewear. The flocked shapewear garments disclosed herein can be any garment wherein restraining, smoothing, or concealing bulges of fat (e.g., abdominal fat or leg fat) could be desirable. In some embodiments, the flocked shapewear garment is a pair of pants, jeans, a pair of shorts, underwear, a panty, Capri pants, a slip, a half-slip, a mid-thigh pant, a skirt, leggings, or tights. In some embodiments, the garment is a shirt, t-shirt, camisole, strapless top, tube top, brassiere, bustier, or tank-top.


The garment can comprise any fabric or fibers known in the art for use in a shapewear garment. The garment can comprise a natural fabric or fiber, a synthetic fabric or fiber, or a blended fabric comprising multiple fibers, so long as adequate compression is provided to give the desired smoothing, contouring, restraining/concealing body fat, or combinations thereof to the garment wearer. In some embodiments, the flocked shapewear garment comprises denim, twill, woven fabric, or knit fabric. Exemplary flocked shapewear garments can comprise, for example, cotton, leather, faux leather, suede, faux suede, polyester, denim, twill, tweed, wood pulp, bamboo, corn fibers, leaves, moleskin, barkcloth, barathea, silk, rayon, nylon, wool, batiste, Bedford cord, bengaline, acetate, berber fleece, burlap, flannel, canvas, lace, goat skin, satin, sateen, charmeuse, cheesecloth, corduroy, linen, crinoline, velvet, spandex, animal pelts, faux animal pelts, jersey, terry cloth, velour, velveteen, nonwoven fabrics such as felt, and blends thereof. The flocked shapewear garment can comprise any number of layers of fabric. In some embodiments, the flocked shapewear garment comprises one layer. In some embodiments, the flocked shapewear garment comprises two layers. The flocked shapewear garment can comprise, for instance, a bonded fabric comprising two or more layers joined together with, for instance, an adhesive, resin, foam, fusible membrane, or sewn together. The flocked shapewear garment can be reversible (e.g., inside-out reversible or forward/backward reversible) to give garment wearers a variety of options for wearing the flocked shapewear garments disclosed herein.


In some embodiments, the flocked shapewear garment comprises an elastomer fiber. In some embodiments, the elastomer fiber is spandex. In some embodiments, the flocked shapewear garment comprises a spandex blend. In some embodiments, the flocked shapewear garment comprises a polyester/spandex blend. In some embodiments, the flocked shapewear garment comprises a nylon/spandex blend. In some embodiments, the flocked shapewear garment comprises a rayon/spandex blend. In some embodiments, the flocked shapewear garment comprises a nylon/lycra blend. In some embodiments, the flocked shapewear garment comprises a polyester/lycra blend. In some embodiments, the flocked shapewear garment comprises a rayon/lycra blend. In some embodiments, the flocked shapewear garment comprises 50% or less of spandex (e.g., 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, or 15% or less). In some embodiments, the flocked shapewear garment comprises 10% or greater of spandex (e.g., 15% or greater, 20% or greater, 25% or greater, 30% or greater, 35% or greater, or 40% or greater). In some embodiments, the flocked shapewear garment comprises 90% or less of nylon (e.g., 85% or less, 80% or less, 75% or less, 70% or less, or 60% or less). In some embodiments, the flocked shapewear garment comprises 50% or greater of nylon (e.g., 60% or greater, 65% or greater, 70% or greater, 75% or greater, 80% or greater, or 85% or greater). In some embodiments, the flocked shapewear garment comprises 40% or less of polyester (e.g., 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less). In some embodiments, the flocked shapewear garment comprises 5% or greater of polyester (e.g., 10% or greater, 15% or greater, 20% or greater, 25% or greater, 30% or greater, or 35% or greater). In some embodiments, the flocked shapewear garment comprises nylon and spandex. The flocked shapewear garment can be made, for instance, by circular knitting, warp knitting, or any weaving or knitting technique known in the art. In some embodiments, the flocked shapewear garment has varied properties. For instance, the flocked shapewear garment can have a gradient of elasticity, horizontally or vertically across the flocked shapewear garment. In some embodiments, the flocked shapewear garment comprises a denser fabric in portions needing additional contouring. In some embodiments, the flocked shapewear garment comprises a double layer with sandwiched elastic at the waist. In some embodiments, the flocked shapewear garment comprises a single layer with no elastic.


The fabric or fiber composition of the panels can impact the compression. Compression can be measured by the modulus and elongation in accordance with, for instance, ASTM 4964.


In some embodiments, the flocked shapewear garment is seamless. In some embodiments, the flocked shapewear comprises cut panels. In some embodiments, the cut panels include a front portion and a back portion. The cut of the panels can be adjusted to affect the compressibility of the garment in targeted areas. In some embodiments, the garment (and the panels therein) are cut in an hour-glass shape to provide additional compression to the garment wearer's waist. The panels can be attached together by any means capable of attaching garment layers together. The front portion and the back portion of the garment can be attached together by any means capable of attaching garment sections together. In some embodiments, the panels and/or sections are attached together by sewing, serging, zipping, buttoning, snapping, heat sealing, welding, gluing, bonding, laser cutting, and combinations thereof. In the two-layer garments of some embodiments, the bottoms of the panels can be attached by bonding for a smoother appearance. In some embodiments, the lateral edges of the panels or portions can be attached by sewing.


The garment can comprise a gusset comprising natural fibers (e.g., cotton).


The elastomeric coating can be a coating that flocked fibers can be embedded in, that is also compatible with the fabrics described above, and that can provide the desired control of the garment wearer's undesirable fat bulges. In some embodiments, the elastomeric coating comprises silicone. Getting elastomeric coating to withstand normal wear and tear by a garment wearer (for instance, by undergoing twenty wash cycles without the elastomeric coating peeling off or disintegrating) when applied to some of the types of fabrics (e.g., certain synthetic fabrics) that can be used for shapewear was difficult.


The elastomer-coated portion of the flocked shapewear garment can be configured to extend across, for instance, a garment-wearer's abdominal region to a greater or lesser amount, depending on the amount of abdominal compression desired by the garment wearer. And in embodiments where more of the garment-wearer's abdominal region can be covered by the elastomer-coated portion of the flocked shapewear garment, greater smoothing, restraining, and/or concealing of undesirable bulges of abdominal fat can be achieved. The elastomer-coated portion of the flocked shapewear garment can be configured in any shape (e.g., full panel around abdominals, circular pattern over abdominals, X-pattern over abdominals) or position (e.g., lower abdominals, upper abdominals, or both) to maximize abdominal compression. Further, the flocked shapewear garments disclosed herein conveniently reduce or eliminate the undesirable fat bulges of the garment wearer while providing, for instance, enhanced breathability of the fabric in areas where smoothing, restraining, and/or concealing of undesirable bulges of fat is not needed. Additionally, the flocked fabric is smooth and soft, eliminating or reducing undesirable fat bulges while maximizing comfort for the garment wearer.


The elastomer-coated portion of the flocked shapewear garment can be configured to extend across, for instance, a garment-wearer's thigh region to a greater or lesser amount, depending on the amount of thigh compression is desired by the garment wearer. And in embodiments where more of the garment-wearer's thigh region can be covered by the elastomer-coated portion of the flocked shapewear garment, greater smoothing, restraining, and/or concealing of undesirable bulges of thigh fat can be achieved. The elastomer-coated portion of the flocked shapewear garment can be configured in any shape (e.g., full panel around thighs, straight panels down thighs, curved panels down thighs) or position (e.g., inner thighs, outer thighs, or both) to maximize thigh compression.


Flocked fabrics can be made by any known method for making flocked fabrics (e.g., as described in U.S. Patent Application Publication No. 2009/0271914). For instance, flocked fabrics can be made using a silkscreen configuration for applying an elastomeric coating to a garment, and then adding flock fibers to the elastomeric coating. For instance, a fabric can be placed beneath a silkscreen on an area where an elastomeric coating is desired. An elastomeric coating substance can be passed through screen apertures of a silkscreen using squeegees. In some embodiments, the elastomeric coating substance is transferred to the fabric by capillary action in controlled and prescribed quantities to form an elastomeric coating on the fabric. The apertures can be provided in a wide variety of patterns and squeegees can be operated in a number of orientations and directions. The elastomeric coating can form a three dimensional (3D) structure on the fabric. The thickness of the 3D structure can be determined by parameters including, but not limited to, the distance between the garment and the silkscreen, the dimension of the apertures of the silkscreen, and the viscosity of the elastomeric coating substance. Hereinafter, “thickness” refers to the dimension of the elastomeric coating from elastomeric coating/fabric interface to the top of the elastomeric coating.


Alternatively, an elastomeric coating substance can be sprayed onto a fabric with or without a silkscreen. The thickness of the coating can vary, and depends on the type and configuration of the fabric (e.g., the type and size of fabric used), as well as customer requirements. A stencil other than that of a silkscreen configuration can also be used to further enhance the process, whereby a stencil with a particular pattern is placed on the fabric and the elastomeric coating sprayed through the stencil onto the fabric to achieve desired pattern on the fabric.


Alternatively, an elastomeric coating can also be applied to a fabric by a process of extrusion, whereby an elastomeric coating substance is extruded onto the fabric in controlled and prescribed quantities, and can be applied in the form of pre-designed patterns with or without the use of stencils.


The elastomeric coating can be applied to a fabric in predetermined areas to minimize or eliminate undesirable bulges of body fat when the garment is worn. The elastomeric coating increases the modulus of the fabric in areas where it is applied, thereby providing compression over a specific area of the garment wearer when the garment is worn. Thus, a single panel of fabric can be designed to possess varied compression features at multiple locations as desired.


The thickness of an elastomeric coating can be varied by techniques including, but not limited to, varied diameter of apertures of a single silkscreen and varied squeegee pressures. The thickness can vary linearly along the entire extent of an individual coating area. The thickness can vary in a repeating pattern such that the thickness varies linearly over a portion of the fabric and the thickness profile over that portion is repeated successively along the extent of the coated fabric. Gaps where no elastomeric coating is applied can be located between successive portions. Further, the thickness can vary in a non-linear manner.


The elastomeric coating can be applied to the interior, exterior, or both sides of a garment. The elastomeric coating including various designs, patterns, and builds in various orientations as mentioned above, such as to form X-patterns for example, can also contribute to the visual aesthetics of the garment, especially if the elastomeric coating is applied to the exterior of the garment or is visible from the exterior of the garment. Enhancements such as, but not limited to, coloring of the elastomeric coating as well as the addition of pigments to the elastomeric coating can also be used to further improve the visual aesthetics of a garment.


The elastomeric coating can be located on the interior of a fabric panel can be embedded with flock fibers to increase the aesthetics and the comfort to the wearer. One end of each flocked fiber can be embedded in the elastomeric adhesive. The flock fibers can be attracted to the adhesive by, for instance, electrostatic charges. The fibers of the flocking can be formed from any natural or synthetic material, including any fibers described above. Exemplary synthetic materials include, but are not limited to, nylons, polyamides, polyesters such as terephthalate polymers and acrylic. Exemplary natural materials include cotton, silk, rayon, and wool. A conductive coating or finish can be applied continuously or discontinuously over the exterior surface of the flocking fibers to permit the flocking fibers to hold an electrical charge.


The length of the fiber used for flocking can be varied as appropriate. In some embodiments, the flocking fibers are short. In some embodiments, the flocking fibers are long. In some embodiments, the flocking fibers are linear. In some embodiments, the flocking fibers are shaped (e.g., curled, crimped, or bent). The fibers can be substantially perpendicular to the elastomeric coating, randomly oriented, angled between perpendicular and parallel orientations, or substantially parallel depending on a variety of design factors. In some embodiments, the flocking fibers are made by chopping or cutting a length of filament to a desired length.


Also disclosed herein is a flocked shapewear garment 10, shown in FIGS. 1-3 (wherein FIGS. 1 and 2 depict the anterior view 1 of the garment wearer, and FIG. 3 depicts the posterior view 7 of the garment wearer), for tummy control of a wearer, the garment comprising a fabric panel configured to extend anteriorly over the wearer, and a flocked portion 2 of the fabric panel, the flocked portion having a tummy covering portion 2 and a pair of lateral portions 5a, 5b extending laterally therefrom, at least one of the lateral portions having at least one bifurcation defining a cutout portion 6a, 6b. The cutout portion can expand progressively as it extends laterally to the adjacent hip of the wearer. In some embodiments, both of the lateral portions have bifurcations defining the cutout portions. The flocked portion can include a superior edge 3 and an inferior edge 4. The superior and inferior edges have a minimal distance from each other over the tummy (e.g., from 6 inches to 15 inches). In some embodiments, the superior and inferior edges progressively diverge from each other extending away from the tummy in the lateral direction. The superior and inferior edges can have a minimal distance from each other of from 8 inches to 18 inches in the lateral portions. In some embodiments, the cutout portions are located nearer to the superior edge than to the inferior edge.


The garments and methods of the appended claims are not limited in scope by the specific garments and methods described herein, which are intended as illustrations of a few aspects of the claims and any garments and methods that are functionally equivalent are intended to fall within the scope of the claims. Various modifications of the garments and methods in addition to those shown and described herein are intended to fall within the scope of the appended claims. Further, while only certain representative garments and method steps disclosed herein are specifically described, other combinations of the garments and method steps also are intended to fall within the scope of the appended claims, even if not specifically recited. Thus, a combination of steps, elements, components, or constituents may be explicitly mentioned herein; however, other combinations of steps, elements, components, and constituents are included, even though not explicitly stated. The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. Although the terms “comprising” and “including” have been used herein to describe various embodiments, the terms “consisting essentially of” and “consisting of” can be used in place of “comprising” and “including” to provide for more specific embodiments of the invention and are also disclosed.

Claims
  • 1. A shapewear garment for control of an abdominal region, the garment comprising: a. at least one fabric panel that extends over at least the abdominal region; andb. a fabric portion applied to the fabric panel, the fabric portion including a tummy covering portion that extends over at least a portion of the abdominal region and a pair of lateral portions extending laterally from lateral sides of the tummy covering portion;wherein: at least one of the lateral portions has subportions bifurcating to define therebetween a portion without the fabric portion; andthe tummy covering portion and the pair of lateral portions provide compression to the abdominal area.
  • 2. The shapewear garment of claim 1, wherein the portion without the fabric portion progressively widens as the portion without the fabric portion extends laterally to an adjacent hip of the wearer.
  • 3. The shapewear garment of claim 1, wherein both of the lateral portions have bifurcating subportions.
  • 4. The shapewear garment of claim 1, wherein the fabric portion includes a superior edge and an inferior edge.
  • 5. The shapewear garment of claim 4, wherein the superior and inferior edges are closer together at the tummy covering portion than at the lateral portions.
  • 6. The shapewear garment of claim 5, wherein the superior and inferior edges are from 6 inches to 15 inches apart at the tummy covering portion.
  • 7. The shapewear garment of claim 5, wherein the superior and inferior edges progressively diverge from each other extending laterally away from the tummy covering portion.
  • 8. The shapewear garment of claim 7, wherein the superior and inferior edges are from 8 inches to 18 inches apart at the lateral portions.
  • 9. The shapewear garment of claim 4, wherein the portion without the fabric portion is located nearer to the superior edge than to the inferior edge.
  • 10. A method of making a compression region for a shapewear garment, the method comprising: providing a first fabric panel comprising an abdominal region, the abdominal region configured to extend over the abdominal area of a wearer wearing the garment,applying a fabric portion to the abdominal region of the garment, wherein the fabric portion is at least partially defined by a superior edge and an inferior edge and comprises a central portion positioned between the superior and inferior edges, and wherein the superior edge and the inferior edge diverge from each other extending laterally away from the central portion to provide compression to the abdominal region, andembedding fibers into the fabric portion, wherein embedding fibers into the fabric portion provides compression to the abdominal region.
  • 11. The method of claim 10, wherein the fabric panel is attached to one or more additional fabric panels to create leg regions during construction of the shapewear garment, wherein the leg regions are configured to extend around the legs of a wearer wearing the garment.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/822,280, filed Aug. 10, 2015, now U.S. Pat. No. 9,930,916, granted Apr. 3, 2018, which is a continuation of U.S. patent application Ser. No. 13/957,101, filed Aug. 1, 2013, now U.S. Pat. No. 9,179,713, granted Nov. 10, 2015. Each of these applications are incorporated by reference in their entireties for all purposes.

US Referenced Citations (68)
Number Name Date Kind
1156757 Collett Oct 1915 A
1909273 Hennessy May 1933 A
2168009 Van Praag Aug 1939 A
D123777 Greco Dec 1940 S
2250218 Cadous Jul 1941 A
D132058 Sarge Apr 1942 S
2305736 Rhea Dec 1942 A
2310864 Pegg Feb 1943 A
RE23202 Long Mar 1950 E
2527926 Frischer Oct 1950 A
2531769 Desrochers Nov 1950 A
D165698 Rockwell Jan 1952 S
2644945 Lewis Jul 1953 A
2758310 Lewis Aug 1956 A
D179336 Bayer et al. Dec 1956 S
3168099 Morano Feb 1965 A
3339554 Nobbs Sep 1967 A
3393675 Trznadel Jul 1968 A
3431913 Melin Mar 1969 A
D213667 Salisky Apr 1969 S
D213947 Dubner Apr 1969 S
3683935 Rosner Aug 1972 A
3813697 Belpaume Jun 1974 A
D238623 Lo Casclo Feb 1976 S
5465594 Imboden Nov 1995 A
5756180 Squires May 1998 A
5863633 Squires Jan 1999 A
5944708 Philpott Aug 1999 A
6430752 Bay Aug 2002 B1
6874337 Uno Apr 2005 B2
7074204 Fujii Jul 2006 B2
7087032 Ikeda Aug 2006 B1
7418742 Yoo Sep 2008 B2
7509822 Ishida Mar 2009 B2
7559093 Sudo Jul 2009 B2
D622477 Schindler Aug 2010 S
D642768 Sawle et al. Aug 2011 S
D645644 Iamartino Sep 2011 S
D654247 Osbourne Feb 2012 S
D661872 Iamartino Jun 2012 S
D662281 Iamartino Jun 2012 S
8381314 Takamoto Feb 2013 B2
D692208 LaCour-Phillippi Oct 2013 S
8752216 Sawle Jun 2014 B2
D707920 Hays et al. Jul 2014 S
8784351 Dumpson Jul 2014 B2
8850619 Rush Oct 2014 B2
D730624 Prpic et al. Jun 2015 S
D733994 Hays et al. Jul 2015 S
9179713 Hays Nov 2015 B2
D760471 Hays et al. Jul 2016 S
D796780 Hays et al. Sep 2017 S
D796784 Hays Sep 2017 S
9930916 Hays Apr 2018 B2
20010008672 Norvell Jul 2001 A1
20040107479 Dicker Jun 2004 A1
20080292788 Giloh Nov 2008 A1
20090038047 Di Lorenzo Feb 2009 A1
20090221982 Cecconi Sep 2009 A1
20090271914 Bauer Nov 2009 A1
20110083246 Vitarana Apr 2011 A1
20110314590 Perron Dec 2011 A1
20120164406 Defaux Jun 2012 A1
20130186150 Pilawa Jul 2013 A1
20140208484 Huff Jul 2014 A1
20150038052 Hays Feb 2015 A1
20150296894 Turlan-Van Der Hoeven Oct 2015 A1
20150342265 Hays Dec 2015 A1
Foreign Referenced Citations (5)
Number Date Country
19942996 Mar 2001 DE
2808972 Nov 2001 FR
03034853 May 2003 WO
2009133469 Nov 2009 WO
2011045655 Apr 2011 WO
Non-Patent Literature Citations (7)
Entry
English-language abstract for DE19942996, published Mar. 15, 2001, from Espacenet (downloaded Nov. 19, 2013).
English-language abstract for FR2808972, published Nov. 23, 2001, from Espacenet (downloaded Nov. 19, 2013).
Spanx Skinny Britches Open-Bust Mid-Thigh Body, Office Action dated Oct. 3, 2014, available at URL: http://www.spanx.comi/ . . . ar/style/open- bust/skinnybritches-open-bust-mid-thigh-body-zid38-1909/cat-38-catidfncat_spx_sw_styl_openb?CategoryDomainName=SPXNA-38&var_id=38-1909&_t=pfm%3Dcategory%26pfmvalue%3Dfaceted.
Skinny Britches Underbust Mid Thigh Shaper, Office Action dated Oct. 3, 2014, available at URL: http://shop.nordstrom.com/s/spanx-skinny-brithces-underbustmid-thigh-shaper/3465205.
Spanx Skinny Britches Super Open-Bust Mid-Thigh Body Shaper, Office Action dated Oct. 3, 2014, available at URL: http://www.zappos.com/spanx-skinnybritches-super-open-bust-mid-thigh-body-shaper?orderBy=latest.
Skinny Britches Mid-Thigh Shaper (on-line); copending U.S. Appl. No. 29/462,332, Similar article for sale with reviews posted to Nordstrom.com as early as May 3, 2013. Retrieved from the internet on Feb. 2, 2015. URL: http://shop.nordstrom.com/s/spanx-skinny-britches-mid-thigh-shaper/3465206.
Spanx Skinny Britches Open-Bust Mid-Thigh Body (on-line); Article for sale with reviews posted to Amazon.com as early as Jun. 20, 2013. Retrieved from the internet on Sep. 25, 2014. URL: http://www.amazon.com/SPANX-Britches-Open-Bust-Mid-Thigh-Natural/dp/B00945C8QQ/ref=cm_cr_pr_pb_i. (7 pgs).
Related Publications (1)
Number Date Country
20190021404 A1 Jan 2019 US
Continuations (2)
Number Date Country
Parent 14822280 Aug 2015 US
Child 15898992 US
Parent 13957101 Aug 2013 US
Child 14822280 US