N/A
This invention relates to flocked transfers, and, in particular to an improved method incorporating thermoplastic polymer film, in the making of the flocked transfer, which can reduce the cost and time required of producing transfers by a significant amount.
Heretofore, flocked transfers have generally been produced by applying a release agent to a release sheet. The flocking is applied to the release sheet in the desired pattern. A binder and a permanent hot melt adhesive are applied to the back of the flocking, and the transfer is allowed to dry. The binder is required to hold the flocking in the desired pattern. The hot melt adhesive, which is applied to the transfer as a powder, is used to adhere the transfer to a substrate, such as an article of clothing, a rubber pad, etc. The transfer is applied to the substrate by placing the transfer on the substrate with the dried hot melt adhesive in contact with the substrate. Heat, such as from an iron, is then applied to the release sheet. The heat melts the hot melt adhesive, to cause hot melt adhesive to flow into intimate contact with the substrate, forming a mechanical or physical adhesion with the substrate. The release agent then allows the release sheet to be removed from the transfer, leaving the flocking exposed on the substrate.
This traditional method has worked well for years. However, the method can be improved upon to reduce the cost of producing the transfer, and hence, the cost of the item containing the transfer.
In my co-pending application, I have described the usage of a thermoset film in lieu of the bond and powder for adhesion, which film, when subject to heat, adheres to the substrate, functions as an inherence for the flock. This current invention adds further enhancements to this process, by allowing the application and usage of a thermoplastic film, for adherence of the flock transfer.
In accordance with the invention, generally stated, a flocked transfer of the present invention is produced by applying a release agent to a release sheet, and then applying the flocking to the release agent. Unlike the traditional method, a binder and adhesive are not applied to the ends of the flock, but rather, a thermoplastic polymer film is used in lieu thereof.
To form an article of manufacture with the flocked transfer, a hot melt film (in the form of a sheet are cut to shape) is positioned on the substrate to which the transfer is to be applied. The hot melt is preferably a blank or blank film, but can be any thermoplastic type of polymer film. The flock with the release adhesive and release sheet (i.e., the transfer) is then placed on the sheet of hot melt film with the release sheet up, so that the flocking is in contact with the hot melt film. Heat is then applied to the transfer. The heat melts the hot melt film, and secures the flock to the substrate. Because the film is thermoplastic, even if it is subsequently subjected to heat, below a particular temperature, it will not remelt, nor become tacky, and hence, there is no risk of the fibers becoming matted down in any of this type of adhesive, which could otherwise ruin the plush pile effect. It is known that there is a enhanced adhesion with thermoplastic materials, because the thermoplastic materials will cross-attach, and thereby adhere the flock fibers to it, which may become chemically attached thereto. Through the usage of this invention, the finished flock surface is more plush, soft, because more of the fiber is exposed and extends upwardly out of the adhesive, than with the screen-printed latex, as currently used. Also, this affords better soil release during washing or cleaning because of less fiber/adhesive entanglement occurs with the flock, during application.
The use of a thermoplastic type of film for achieving adherence of a transfer to a surface, can be done either before or after the heat transferring operation, or where the heat transfer is produced. The thermoplastic film can be brought into the process at either stage, with respect to the manufacture of the transfer. It is most practical to combine the hot melt film before the heat transfer is fabricated, so it is combined in a convenient and portable manner, which operation was not possible with the previous type of application, for the thermoset film, because once the thermoset film was heated, it sets, and cannot be reheated.
In addition, it is possible to use a two-part thermoplastic type of film, such as commonly available in the industry, having different properties on each side in terms of, for example, melting point, and viscosity of structure. In this way, one can use a higher melting point hot melt film, of thermoplastic material, on the side that attaches to the flock fibers, so that the transfer is initially put together with higher heat in order to set the fibers in place, and then subsequently during application of the transfer to a textile, it may be done at a lower temperature to activate the hot melt on the substrate side while not hot enough to remelt the film holding the flock in place. Also, the hot melt holding the flock can be a very high viscosity, that is, it will not flow much when melted, in order to keep the fibers in place and not mat them together, while the film on the substrate side could be a lower viscosity type of film, that will readily flow so it will penetrate and establish a good mechanical adhesion of the transfer or grid to any substrate upon which the transfer is applied.
Thus, it is an object of this invention to provide for the development of a flock, that may be temporarily adhered onto a release film carrier, fabricated of a thermoplastic film. And, it is a further object that the hot melt film may be used as an intermediate layer, to attach the fibers to the substrate, when developing the transfer initially.
Corresponding reference numerals will used throughout the several views of the drawings.
The following detailed description illustrates the invention by way of example, and not by way of limitation. This description will enable one skilled in the art to make and use the invention, including what is presently believed is the best mode of carrying out the invention.
A prior art flock transfer 101 is shown in
In addition, I have described a similar transfer to that of this current invention, utilizing a thermosetting film, in my application having Ser. No. 09/621,830, filed on Jul. 24, 2000. The contents of that application are incorporated herein by reference.
A flocked transfer 1 of the present invention is shown in
An article of manufacture, such as an item of clothing having a transfer 1 applied thereto, a mouse pad, coaster, or any numerous items having a flocked surface, can be manufactured in accordance with this invention and is easily produced using the transfer 1. Referring to
The basic premise of this application in utilizing a thermoplastic film which will semi-cure, after heat has been used to apply the transfer to a substrate, is that after heat application, if the temperature of the transfer does not rise to a particular heat level, it should not remelt again. In other words, the object is to use a hot melt film which has a melting point significantly high enough, so that when the transfer is applied through heat, it will adhere to the substrate, but that when the transfer and the substrate to which it is applied is not exposed to excessive heat, it will not remelt, even through the polymer film is thermoplastic, and for all practical purposes, in actual usage, the film will not remelt since it does not see those high temperatures again. In other words, if the melting point of the thermoplastic film is 350° F., and the top temperature that the flocked finished product will encounter, for example sunlight in a hot car, is only 250° F., then there is not a problem associated with the fact that the film is a thermoplastic and therefore can theoretically melt again, but only if it encounters those excessive temperatures.
Another attribute of the use of a thermoplastic film is that in the event one desires to remove the flocked transfer from, for example, an item of clothing, subjecting the transfer to those elevated temperatures, again, will allow the flock to be removed, if that is a need of the owner.
Articles, such as mouse pads or coasters, in which the entire top surface of the article is covered with the flocking can be produced on a continuous basis, as shown in
Preferably the release sheet is flocked and supplied in roll form as shown in
To produce flocked articles, such as shirts, jackets, sports bags, etc., which cannot be easily flocked on a continuous basis, the hot melt sheet can be applied to the transfer 1 prior to applying the transfer to the substrate. To do this, the thermoplastic hot melt film is placed in contact with the flock of the transfer, and the transfer and release sheet are heated to a temperature at which the thermoplastic hot melt film becomes tacky, but below the temperature at which the thermoplastic hot melt film begins to cure or physically adhere. This will adhere the thermoplastic hot melt film to the transfer 1 to form a transfer which can later be applied to an article by positioning the transfer with the hot melt film in position on the article (i.e., a piece of clothing) and applying heat and pressure to the transfer, for example, with an iron, sufficient to melt the hot melt film, to cause the hot melt film to somewhat cure or physically adhere, to adhere the flock, and secure to the clothing.
The method eliminates two steps from the prior art method: (1). Application of the binder adhesive, and (2) application, cleaning, sintering, and drying of the hot melt adhesive. In a continuous process, the present method also eliminates a station for applying the binder of hot melt adhesives as well as a station for drying the completed transfer. Because the station is not needed to apply (i.e., print) the binder and hot melt adhesives are applied to the flocking as part of the transfer, the machinery required to produce the article 11 is much less expensive (both in actual cost and in maintenance cost). Additionally, because the binder adhesive and hot melt adhesive is not used, the cost of the article of manufacture is reasonably reduced.
It is conceivable in the performance of the manufacture of the transfer of this invention, that the thermoplastic film may be a dual laminated type of film. For example, the upper surface may include a polyester type of film, that may have a melting point at a higher temperature. The lower film, laminated thereto, may be a polyethylene type of film, designed to have a lower temperature melting point. Hence, when the flock is applied to the upper surface of the laminated film, it will embed slightly into that film when heated, and the flock is electrostatically or otherwise applied, and while the bottom surface of the laminated film may likewise soften, once the transfer is cooled, all the films will become structurally sound, once again, in a film structure. Then, when a lower heat is applied to the transfer, for application of the transfer to a textile, rubber, or other surface, as when the transfer is being applied, the bottom polyethylene or EVA film will slightly soften, or melt, to function as an adhesive, for application of the entire transfer to its supporting substrate or surface. This is an example as to how the thermoplastic film(s) of this invention can be used not only for constructing of the transfer, but to function in a dual manner to allow for the application of the transfer to a shirt, bag, or other material, during its final application.
Another one of the advantages of utilization of thermoplastics, in the fabrication of flocked transfers, is that the binder adhesives previously used in the flocking process, typically contain an acrylic, or other materials, which may be flammable. Thermoplastics avoid that predicament. Furthermore, the thermoplastic type binder exhibits wash fastness, and will hold the flock in place even during severe washing conditions. Furthermore, thermoplastic films exhibit better elasticity, than can be obtained from the thermoset or other binder hot melt systems now in use. In addition, the use of the film provides a thinner profile for the finished product, providing a less bulky type of flock transfer, both visually and structural wise, when applied to a garment or other textiles. For example, flock transfers made in accordance with this invention can even be used upon sheer garment textiles. The usage of the thermoplastic film of this invention, avoids the necessity for application of binders, as previously used, and which contain formaldehyde or other undesirable chemicals, as used in previous adhesives to achieve cross linking for flocking purposes in the prior art. There are other miscellaneous film properties that are enhanced through the usage of thermoplastic films, versus the usage of the binder-hot melt powder combination, because there are films that have performance characteristics that cannot be obtained nor are they available for the binder-powder systems. For example, adhesions to leather, or other tough-to-stick-to-surfaces, that exhibit greater tensile strength, such as stretching that will not split, can be better accommodated through the usage of thermoplastic film.
Variations or modifications to the subject matter of this invention may occur to those skilled in the art upon reviewing the invention as described herein. Such variations, if within the scope of this invention, are intended to be encompassed within the claims to issue upon the invention of this application. The description of the preferred embodiment, as shown in the drawings, is set forth for illustrative purposes only.
The present application is a divisional patent application of U.S. patent application Ser. No. 09/735,721, filed Dec. 13, 2000 of the same title, which is a continuation-in-part patent application of U.S. patent application Ser. No. 09/621,830, filed Jul. 24, 2000 entitled “FLOCKED TRANSFER AND ARTICLE OF MANUFACTURE INCLUDING THE FLOCKED TRANSFER”, each of which is incorporated in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
D66035 | McIntosh | Nov 1924 | S |
1905989 | Safir et al. | Apr 1933 | A |
D108581 | Robinson | Feb 1938 | S |
D114814 | Hoos | May 1939 | S |
D122192 | De Moreau | Aug 1940 | S |
D125860 | Haas | Mar 1941 | S |
D162533 | Goldfarb | Mar 1951 | S |
2592602 | Saks | Apr 1952 | A |
2636837 | Summers | Apr 1953 | A |
2916403 | Calderwood | Dec 1959 | A |
2999763 | Sommer | Sep 1961 | A |
D195245 | Edesess | May 1963 | S |
3215584 | McConnell et al. | Nov 1965 | A |
3314845 | Perri | Apr 1967 | A |
3377232 | Mencock et al. | Apr 1968 | A |
3459579 | Newman | Aug 1969 | A |
3496054 | Baigas | Feb 1970 | A |
3529986 | Kappas et al. | Sep 1970 | A |
3565742 | Stephens et al. | Feb 1971 | A |
3622434 | Newman | Nov 1971 | A |
3639149 | Spalding | Feb 1972 | A |
3644267 | Jackson, Jr. et al. | Feb 1972 | A |
3657060 | Haigh | Apr 1972 | A |
3660200 | Anderson et al. | May 1972 | A |
3674611 | Petry et al. | Jul 1972 | A |
3772132 | Dulin, Jr. | Nov 1973 | A |
3775205 | Hermann et al. | Nov 1973 | A |
3793050 | Mumpower, Jr. | Feb 1974 | A |
3803453 | Hull | Apr 1974 | A |
3816050 | Koskolos | Jun 1974 | A |
3816211 | Haigh | Jun 1974 | A |
3837946 | Gribbin | Sep 1974 | A |
3900676 | Alderson | Aug 1975 | A |
3903331 | Klein | Sep 1975 | A |
3917883 | Jepson | Nov 1975 | A |
3936554 | Squier | Feb 1976 | A |
3956552 | Geary | May 1976 | A |
3961116 | Klein | Jun 1976 | A |
3969559 | Boe | Jul 1976 | A |
3979538 | Gilman et al. | Sep 1976 | A |
3989869 | Neumaier et al. | Nov 1976 | A |
4018956 | Casey | Apr 1977 | A |
4025678 | Frank | May 1977 | A |
4031281 | Keeling | Jun 1977 | A |
4034134 | Gregorian et al. | Jul 1977 | A |
4035532 | Gregorian et al. | Jul 1977 | A |
4062992 | Power et al. | Dec 1977 | A |
4088708 | Riew | May 1978 | A |
4102562 | Harper et al. | Jul 1978 | A |
4120713 | Jensen et al. | Oct 1978 | A |
4142929 | Otomine et al. | Mar 1979 | A |
4160851 | Lienert et al. | Jul 1979 | A |
4201810 | Higashiguchi | May 1980 | A |
4218501 | Kameya et al. | Aug 1980 | A |
4269885 | Mahn | May 1981 | A |
4273817 | Matsuo et al. | Jun 1981 | A |
4282278 | Higashiguchi | Aug 1981 | A |
4292100 | Higashiguchi | Sep 1981 | A |
4294641 | Reed et al. | Oct 1981 | A |
4308296 | Chitouras | Dec 1981 | A |
4314813 | Maskai | Feb 1982 | A |
4314955 | Boden et al. | Feb 1982 | A |
4340623 | Justus | Jul 1982 | A |
4340632 | Wells et al. | Jul 1982 | A |
4352924 | Wooten et al. | Oct 1982 | A |
4362773 | Shikinami | Dec 1982 | A |
4369157 | Conner | Jan 1983 | A |
4370374 | Raabe et al. | Jan 1983 | A |
4385588 | Bennetot | May 1983 | A |
4387214 | Passmore et al. | Jun 1983 | A |
4388134 | Long et al. | Jun 1983 | A |
4390387 | Mahn | Jun 1983 | A |
4396662 | Higashiguchi | Aug 1983 | A |
4405401 | Stahl | Sep 1983 | A |
4418106 | Landler et al. | Nov 1983 | A |
4423106 | Mahn | Dec 1983 | A |
4430372 | Knoke et al. | Feb 1984 | A |
4438533 | Hefele | Mar 1984 | A |
4446274 | Okazaki et al. | May 1984 | A |
4465723 | Knoke et al. | Aug 1984 | A |
4510274 | Okazaki et al. | Apr 1985 | A |
4539166 | Richartz et al. | Sep 1985 | A |
4574018 | Masuda et al. | Mar 1986 | A |
4582658 | Reichmann et al. | Apr 1986 | A |
4588629 | Taylor | May 1986 | A |
4610904 | Mahn et al. | Sep 1986 | A |
4650533 | Parker et al. | Mar 1987 | A |
4652478 | Maii | Mar 1987 | A |
4668323 | Lenards et al. | May 1987 | A |
4670089 | Hanson | Jun 1987 | A |
4681791 | Shibahashi et al. | Jul 1987 | A |
4687527 | Higashiguchi | Aug 1987 | A |
4741791 | Howard et al. | May 1988 | A |
4790306 | Braun et al. | Dec 1988 | A |
4793884 | Horikiri | Dec 1988 | A |
4797320 | Kopp et al. | Jan 1989 | A |
4810321 | Wank et al. | Mar 1989 | A |
4810549 | Abrams et al. | Mar 1989 | A |
4812247 | Fahner et al. | Mar 1989 | A |
4834502 | Bristol et al. | May 1989 | A |
4895748 | Squires | Jan 1990 | A |
4931125 | Volkmann et al. | Jun 1990 | A |
4980216 | Rompp | Dec 1990 | A |
5008130 | Lenards | Apr 1991 | A |
5009950 | Wagner et al. | Apr 1991 | A |
5026591 | Henn et al. | Jun 1991 | A |
5041104 | Seal | Aug 1991 | A |
5043375 | Henning et al. | Aug 1991 | A |
5047103 | Abrams et al. | Sep 1991 | A |
5053179 | Masui et al. | Oct 1991 | A |
5059452 | Squires | Oct 1991 | A |
5077116 | Lefkowitz | Dec 1991 | A |
5108530 | Niebling, Jr. et al. | Apr 1992 | A |
5112423 | Liebe, Jr. | May 1992 | A |
5115104 | Bunyan | May 1992 | A |
5154871 | Wagner et al. | Oct 1992 | A |
5198277 | Hamilton et al. | Mar 1993 | A |
5207851 | Abrams | May 1993 | A |
5217563 | Niebling et al. | Jun 1993 | A |
5217781 | Kuipers | Jun 1993 | A |
5248536 | Du Katz | Sep 1993 | A |
5274039 | Sirinyan et al. | Dec 1993 | A |
5306567 | Kuo et al. | Apr 1994 | A |
5338603 | Mahn et al. | Aug 1994 | A |
5346746 | Abrams | Sep 1994 | A |
5350474 | Yamane | Sep 1994 | A |
5350830 | Kuo et al. | Sep 1994 | A |
5358789 | Kuo et al. | Oct 1994 | A |
5383996 | Dressler | Jan 1995 | A |
D365342 | Evenson et al. | Dec 1995 | S |
D366654 | Lovegrove et al. | Jan 1996 | S |
5489359 | Yamane | Feb 1996 | A |
5529650 | Bowers et al. | Jun 1996 | A |
5534099 | Yamamoto | Jul 1996 | A |
5564249 | Borys et al. | Oct 1996 | A |
5597637 | Abrams et al. | Jan 1997 | A |
5622587 | Barthelman | Apr 1997 | A |
5693400 | Hamilton et al. | Dec 1997 | A |
D391572 | Lee | Mar 1998 | S |
5762379 | Salmon et al. | Jun 1998 | A |
5766397 | Jones | Jun 1998 | A |
5771796 | Morrison et al. | Jun 1998 | A |
5804007 | Asano | Sep 1998 | A |
5858156 | Abrams et al. | Jan 1999 | A |
5900096 | Zemel | May 1999 | A |
5912065 | Kukoff | Jun 1999 | A |
5922436 | Banfield et al. | Jul 1999 | A |
5981009 | Iacono et al. | Nov 1999 | A |
6010764 | Abrams | Jan 2000 | A |
6083332 | Abrams | Jul 2000 | A |
6102686 | Eschenfelder | Aug 2000 | A |
6110560 | Abrams | Aug 2000 | A |
6113149 | Dukatz | Sep 2000 | A |
6146485 | Iacono et al. | Nov 2000 | A |
6170881 | Salmon et al. | Jan 2001 | B1 |
6171678 | Holeschovsky et al. | Jan 2001 | B1 |
6202549 | Mitsam et al. | Mar 2001 | B1 |
6224707 | Lion | May 2001 | B1 |
6247215 | Van Alboom et al. | Jun 2001 | B1 |
6249297 | Lion | Jun 2001 | B1 |
6257866 | Fritz et al. | Jul 2001 | B1 |
6264775 | Holeschovsky et al. | Jul 2001 | B1 |
6277312 | Hansen et al. | Aug 2001 | B1 |
6296908 | Reihs et al. | Oct 2001 | B1 |
6299715 | Langsdorf et al. | Oct 2001 | B1 |
6350504 | Alboom et al. | Feb 2002 | B1 |
6376041 | Morrison et al. | Apr 2002 | B1 |
6387472 | Reck et al. | May 2002 | B1 |
6428877 | Suss et al. | Aug 2002 | B1 |
6436506 | Pinter et al. | Aug 2002 | B1 |
6451148 | Jenner | Sep 2002 | B1 |
6569538 | Kaschel | May 2003 | B1 |
6660352 | Hsu et al. | Dec 2003 | B2 |
6676796 | Pinter et al. | Jan 2004 | B2 |
6887737 | Woods et al. | May 2005 | B1 |
6929771 | Abrams | Aug 2005 | B1 |
6977023 | Abrams | Dec 2005 | B2 |
7229680 | Crompton | Jun 2007 | B1 |
20010008039 | Alboom et al. | Jul 2001 | A1 |
20010008672 | Norvell et al. | Jul 2001 | A1 |
20020009571 | Abrams | Jan 2002 | A1 |
20020098329 | Abrams | Jul 2002 | A1 |
20030129353 | Abrams | Jul 2003 | A1 |
20030186019 | Abrams | Oct 2003 | A1 |
20030207072 | Abrams | Nov 2003 | A1 |
20030211279 | Abrams | Nov 2003 | A1 |
20040050482 | Abrams | Mar 2004 | A1 |
20040053001 | Abrams | Mar 2004 | A1 |
20040055692 | Abrams | Mar 2004 | A1 |
20040058120 | Abrams | Mar 2004 | A1 |
20040081791 | Abrams | Apr 2004 | A1 |
20040170799 | Carr et al. | Sep 2004 | A1 |
20050081985 | Abrams | Apr 2005 | A1 |
20050158508 | Abrams | Jul 2005 | A1 |
20050266204 | Abrams | Dec 2005 | A1 |
20050268407 | Abrams | Dec 2005 | A1 |
20060026778 | Lion | Feb 2006 | A1 |
20060029767 | Lion | Feb 2006 | A1 |
20060251852 | Abrams | Nov 2006 | A1 |
20070003761 | Miyazono et al. | Jan 2007 | A1 |
20070022548 | Abrams | Feb 2007 | A1 |
20070026189 | Abrams | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
E 93 557 | Aug 1988 | AT |
E 135 427 | Aug 1996 | AT |
606651 | Feb 1991 | AU |
653994 | Oct 1994 | AU |
0506601 | Mar 1996 | BE |
757595 | Apr 1967 | CA |
2010076 | Aug 1990 | CA |
1306411 | Aug 1992 | CA |
2064300 | Sep 1992 | CA |
3883517 | May 1994 | DE |
69208910 | Aug 1996 | DE |
019734316A 1 | Feb 1999 | DE |
0122656 | Oct 1984 | EP |
351079 | Jun 1986 | EP |
0 210304 | Feb 1987 | EP |
0 280 296 | Feb 1988 | EP |
0506601 | Sep 1992 | EP |
0685014 | Dec 1995 | EP |
0506601 | May 1996 | EP |
0913271 | Oct 1998 | EP |
0 989 227 | Mar 2000 | EP |
1 480 860 | May 1967 | FR |
2210149 | Jul 1974 | FR |
2543984 | Oct 1984 | FR |
2 659 094 | Mar 1990 | FR |
9002623 | Mar 1990 | FR |
2784619 | Oct 1998 | FR |
2846202 | Apr 2004 | FR |
1171296 | Nov 1969 | GB |
1466271 | Dec 1973 | GB |
1 447 049 | Aug 1976 | GB |
2065031 | Dec 1979 | GB |
2126951 | Sep 1983 | GB |
2214869 | Sep 1989 | GB |
0506601 | Sep 1992 | GB |
55104 | Apr 1984 | IE |
0329767 | Aug 1993 | IT |
24637BE96 | Jun 1996 | IT |
52-155270 | Dec 1977 | JP |
54-163934 | Dec 1979 | JP |
55079143 | Jun 1980 | JP |
55-147171 | Nov 1980 | JP |
356058824 | May 1981 | JP |
56107080 | Aug 1981 | JP |
56108565 | Aug 1981 | JP |
56141877 | Nov 1981 | JP |
58062027 | Apr 1983 | JP |
359115885 | Jul 1984 | JP |
60-171138 | Sep 1985 | JP |
60-236738 | Nov 1985 | JP |
63118544 | May 1988 | JP |
64-61299 | Mar 1989 | JP |
2-25667 | Jun 1990 | JP |
5-201196 | Aug 1993 | JP |
05255021 | Oct 1993 | JP |
08-267625 | Oct 1996 | JP |
10059790 | Mar 1998 | JP |
11277662 | Oct 1999 | JP |
11348159 | Dec 1999 | JP |
020000084977 | Mar 2000 | JP |
2001270019 | Oct 2001 | JP |
220373 | Sep 1999 | KR |
2003063833 | Jul 2003 | KR |
306099 | Jun 1989 | NO |
62640 | Jul 1993 | TW |
WO 7901146 | Dec 1979 | WO |
WO 8901829 | Mar 1989 | WO |
WO 9009289 | Aug 1990 | WO |
WO 9419530 | Sep 1994 | WO |
PCTUS0123195 | Jan 2002 | WO |
WO 02107959 | Jan 2002 | WO |
WO 0209925 | Feb 2002 | WO |
WO 02058854 | Aug 2002 | WO |
WO 03031083 | Apr 2003 | WO |
WO 2004005023 | Jan 2004 | WO |
WO 2004005413 | Jan 2004 | WO |
WO 2004005600 | Jan 2004 | WO |
WO 2005035235 | Apr 2005 | WO |
WO 2005118948 | Dec 2005 | WO |
886259 | Apr 1990 | ZA |
922154 | Feb 1993 | ZA |
Number | Date | Country | |
---|---|---|---|
20030186019 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09735721 | Dec 2000 | US |
Child | 10455575 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09621830 | Jul 2000 | US |
Child | 09735721 | US |