In certain areas, homes, offices and commercial and factory buildings occasionally are inundated by flood waters. To minimize damage from rising flood waters, such structures can utilize temporary flood barriers that are installed in low level door and window openings, to seal those openings against inflow of water into the structure. Various barrier systems are available for this purpose, with a wide variety of design features dictated to some extent by the size of the opening to be protected.
For the protection of a relatively wide doorway, for example, against flood waters that may rise to a considerable level above the bottom of the door opening, the barrier system must have considerable structural soundness in order to effectively resist the pressure of water across a wide area and at a relatively high level. One such system that is effective for the purpose has been marketed by Presray Corporation, of Wassaic, N.Y. and consists of a series of horizontally elongated barrier elements (sometimes referred to as “stop logs”) which are assembled one atop the other, extending laterally across the full width of the door opening. The individual barrier elements are arranged so that one element is tightly sealed to each vertically adjacent element, and the individual barrier elements are clamped against the front face of the door opening, providing a full perimeter seal and a strong structure to hold back the rising waters.
As can be appreciated, for many locations, flooding is an infrequent event, perhaps an annual experience, or more likely, a situation that occurs only once every few years. Thus, it is typical and customary that the barrier systems are stored away during normal times, and installed only when there is an immediate threat of inundation. However, when flooding circumstances arise, there is much work to do in order to seal all of the openings available in a typical structure, and speed and efficiency of installation can be extremely important because all of the low level openings must be sealed before the structure can be considered protected from inundation. In this respect, water flowing in through a single unprotected opening, even though others are protected, can inundate the entire structure and cause great damage.
The above referenced co-pending application of Jason W. Smith represents a substantial improvement in the ability to install stop log type flood barriers efficiently and quickly. The present invention seeks to provide still further improvements in such stop log barriers, to further facilitate rapid installation thereof. The barrier of the present invention also provides an advantageous interlocking feature to add strength to the structure and also to simplify and expedite installation and assembly.
In the flood barrier of the invention, a plurality of individual stop log barrier elements are stacked one on top of the other, to a predetermined height suitable for the expected flood conditions. The individual barrier elements are clamped against a vertical sealing strip located at opposite sides of the opening to be protected, and each of the barrier elements is provided with a resilient sealing element along its bottom to form a seal with the underlying barrier element or, in the case of the bottom most element, with the threshold of the opening. The entire stack of barrier elements is subjected to downward pressure by vertically acting clamping elements at each side.
In accordance with one aspect of the invention, the individual barrier elements, which may be formed of extruded aluminum sections, are shaped such that each barrier element forms a novel mechanical interlock with the barrier element below. The arrangement allows an upper barrier element to be initially engaged with the element below and then pivoted into an installed position in a simple and highly expeditious manner. This both facilitates the installation process and makes the assembly more stable and secure while the installation is under way.
Pursuant to another aspect of the invention, the new barrier structure incorporates an advantageous form of vertical rail member at each side of the opening to be protected. These rail members are formed with a pair of vertically extending channels, one to receive a vertically extending sealing element, and the other to receive a plurality of slideably positioned clamping assemblies. For each barrier element, a clamping assembly can be slid into a properly aligned position, engaged with a newly installed barrier element, and tightened against the barrier element to maintain it in sealing contact with the vertically extending sealing element. When a flood threat is over, the individual barrier elements are unclamped and removed to a storage location. In addition, the individual clamping assemblies can be removed by sliding them upward and out of the top of the channel that receives them, for storage along with the barrier elements. Thus, during periods when there is no flood threat, the only permanent installation remaining at the protected opening is the presence of the two vertical rail members which are rather unobtrusive and can be decorated or covered to blend with the basic building structure.
The barrier structure of the invention also advantageously incorporates a vertically acting clamping arrangement that is mounted above the uppermost barrier element, at each side thereof, arranged to bear downwardly on the entire stack of barrier elements to assure good sealing pressure between vertically adjacent elements. In the structure of the present invention, such vertically acting clamping mechanisms are slideably installed and removed from the same vertical channels that receive the clamping assemblies. This enables the clamping arrangements to be quickly installed after the last barrier element is in place, and just as quickly removed and remotely stored when the flood threat has terminated.
For a more complete understanding of the above and other features and advantages of the invention, reference should be made to the following detailed description of a preferred embodiment, and to the accompanying drawings.
Referring now to the drawings, the reference numeral 10 designates generally a building structure having a large door opening 11 therein which extends upward from a floor or threshold 12. A flood barrier assembly 13 (
In the illustrated form of the invention, vertical rails 15, 16 are mounted on the front face of the building structure 10, at each side of the door opening 11. Typically, the rails 15 are permanently attached to the building structure and are bedded with suitable calking or other material to provide a watertight seal between the backs of the rails and the front surface of the building structure.
In the illustrated embodiment, the inside edges of the rails 15, 16 are provided with dovetailed channels 17 for reception of a resilient sealing element, such as illustrated at 18 in
Pursuant to the invention, the individual barrier elements 14 can be extruded of a lightweight material, such as aluminum, with a uniform cross section throughout. The barrier elements are generally of a C-shaped cross section comprised of generally flat, vertical back wall portions 22 and forwardly extending upper and lower flange portions 23, 24. As a significant feature, the upper and lower flange portions 23, 24 are configured to provide a mutual mechanical interlock between vertically adjacent barrier elements, to both simplify assembly of a plurality of the barrier elements into a complete barrier structure, and to provide for a stronger and more stable structure during and after the assembly process. To this end, the upper flange portion 23 is comprised of a generally flat, forwardly extending back portion 25, a generally vertical riser 26, and a forwardly projecting upper flange portion 27. Preferably, the forward extremity of the upper flange portion 27 is rounded, as indicated at 28.
The bottom flange portion 24 of the barrier element is comprised of a relatively thick, downwardly extending extension 20, which includes the dovetailed slot 21 and mounts the sealing element 18. A forwardly extending base flange 29, extends forwardly from the extension 20 and terminates in a vertically downwardly extending flange 30. As shown in
In the co-pending application of Jason W. Smith, individual barrier elements are clamped at their respective opposite ends by clamping elements mounted on side rails, and the entire vertical stack of barrier elements is compressed downwardly by vertically acting clamping elements engaging the uppermost element. That same general arrangement is followed in the structure of the present invention, with certain significant improvements being provided to facilitate and expedite the installation of a flood barrier structure, which often must be done on an emergency basis, and also to facilitate the subsequent dismantling and removal of the structure after a flood threat subsides. To this end, each of the vertical side rails 15, 16 is provided with a vertical channel 32 partially closed by two front flanges 33, 34 (
After each barrier element is initially positioned in the structure, a clamping assembly, comprising a bolt 36, clamping bar 38 and tightening knob 39 is inserted into the upper end of the rail channel 32 and slid downward to a position opposite the open end of the recently positioned barrier element. The clamping bar 38 is then pivoted from a vertical position to a horizontal position, with its inner end overlying the end of the barrier element 14, as generally shown in
After the uppermost barrier element has been installed and lightly clamped, vertically acting clamping assemblies are installed in each of the side rails 15, 16. The vertically acting clamping assemblies, shown best in
At the inner end of the support bar 41 is a screw clamp 46 which threadedly engages the support bar 41 and has a clamping pad 47 at its lower end engaging the surface 25. When the clamping assembly is positioned as shown in
After tightening of the vertically acting clamping elements 46, the various horizontal clamping bars 38 are tightened -to press the individual barrier elements snugly against the sealing element 18 extending vertically up the front face of each of the rails 15, 16.
To advantage, the sealing elements 18 (
To particular advantage, the lower front flange portion 30 of the barrier element 14 projects downwardly to a level below the bottom surface 52 of the back lower flange portion 20, but above the lower surface 53 (
The flood barrier structure of the present invention has important advantages over known structures. Of particular importance, the interlocking configuration of the individual barrier logs not only expedites the assembly operations required to install a flood barrier, but enables the individual barrier elements to be of a lighter construction. As a result, the individual barrier elements are lighter in weight and easier to handle during installation and removal operations. Additionally, and importantly, the barrier elements are less costly, making the system more attractive in the marketplace.
The barrier structure of the invention significantly facilitates the installation of flood barriers of any desired height, to suit the expected flooding conditions. Moreover, should conditions be expected to worsen, after an initial installation of a partial height barrier, the barrier height may be quickly increased by adding one or more barrier elements to the top of the existing stack. For both installation and removal of the structure, the clamping mechanisms, can be slid into or out of the vertical channels provided. When dismantling the barrier assembly, the clamping facilities are entirely removed from the side rails 15, 16, leaving only relatively plain, low profile side rails, free of projections and the like.
It should be understood, of course, that the specific forms of the invention herein illustrated and described are intended to be representative only, as certain changes may be made therein without departing from the clear teachings of the disclosure. Accordingly, reference should be made to the following appended claims in determining the full scope of the invention.
This application is related to co-pending Jason W. Smith U.S. application Ser. No. 11/391,110, filed Mar. 28, 2006, the disclosure of which is incorporated herein by reference.