The present invention relates generally to flood control, more specifically but not by way of limitation a flood control system configured to assist municipalities and the like to quickly deploy flood control in desired areas wherein the flood control system includes modular receptacles configured for rapid deployment.
As the population density increase in various area, the flood plains in these are now being built on in greater density. In years past, municipalities had identified flood plains and the availability of land was such that development in the flood plain areas was minimal. As commercial and residential development has expanded over the last several decades, the once undeveloped floodplains now have commercial and residential development thereon. Further desirable properties such as those near rivers and lakes are prone to rapid flooding in the event of either a natural disaster or a catastrophic failure of structures such as but not limited to a dam.
One issue with existing flood control is the capacity limitation of structures such as but not limited to canals and the inability to rapidly deploy a temporary structure that is operable to inhibit water egress into a certain area. In the event of natural disasters such as but not limited to hurricanes, those municipalities that have canal systems configured to control excess water and the direction thereof often struggle with water control ensuing the capacity of the canals being reached. Examples such as the failure of the dams and canal systems in New Orleans during hurricane Katrina are an example of such deficiencies. Additionally, temporary structures utilized for controlling floodwaters can not quickly be deployed and require significant manpower to install. Conventional technology such as sand bags have proven to provide some relief but sandbags require significant manpower to fill and deploy. Further, sandbags are small and as such they are unable to protect larger areas and typically are utilized to circumferentially surround a structure such as but not limited to a house.
Accordingly, there is a need for a floodwater control system that is configured so as to be rapidly deployed and can be installed so as to cover a significant amount of linear distance in order to provide improved containment of floodwaters.
It is the object of the present invention to provide a floodwater control system that is configured so as to be rapidly deployed wherein the floodwater control system includes a plurality of modular receptacles.
Another object of the present invention is to provide a floodwater control system operable to inhibit floodwaters from entering a desired area wherein the modular receptacles are constructed of four walls wherein the four walls are manufactured from a metal mesh material.
A further object of the present invention is to provide a floodwater control system that is configured so as to be rapidly deployed wherein the walls of the modular receptacles are constructed so as to provide a first position and a second position of the modular receptacles wherein in the first position the modular receptacles are folded for easy transportation thereof.
Yet a further object of the present invention is to provide a floodwater control system operable to inhibit floodwaters from entering a desired area wherein in the second position the modular receptacle is in an erect position.
Still another object of the present invention is to provide a floodwater control system that is configured so as to be rapidly deployed wherein each modular receptacle has an interior volume and is configured to receive a liner therein.
An additional object of the present invention is to provide a floodwater control system operable to inhibit floodwaters from entering a desired area wherein the modular receptacles include helical coil construction on the corners thereof so as to facilitate the folding thereof.
Yet a further object of the present invention is to provide a floodwater control system that is configured so as to be rapidly deployed wherein the liner includes alternative embodiments such as but not limited to a closed embodiment and an open embodiment.
Another object of the present invention is to provide a floodwater control system operable to inhibit floodwaters from entering a desired area wherein the modular receptacles are placed adjacent to each other and wherein locking pins are utilized to secure adjacent modular receptacles.
An alternate object of the present invention is to provide a floodwater control system that is configured so as to be rapidly deployed wherein the modular receptacles are provided in grouped sets wherein each set includes a quantity of modular receptacles such as but not limited to two or five.
To the accomplishment of the above and related objects the present invention may be embodied in the form illustrated in the accompanying drawings. Attention is called to the fact that the drawings are illustrative only. Variations are contemplated as being a part of the present invention, limited only by the scope of the claims.
A more complete understanding of the present invention may be had by reference to the following Detailed Description and appended claims when taken in conjunction with the accompanying Drawings wherein:
Referring now to the drawings submitted herewith, wherein various elements depicted therein are not necessarily drawn to scale and wherein through the views and figures like elements are referenced with identical reference numerals, there is illustrated an flood control system 100 constructed according to the principles of the present invention.
An embodiment of the present invention is discussed herein with reference to the figures submitted herewith. Those skilled in the art will understand that the detailed description herein with respect to these figures is for explanatory purposes and that it is contemplated within the scope of the present invention that alternative embodiments are plausible. By way of example but not by way of limitation, those having skill in the art in light of the present teachings of the present invention will recognize a plurality of alternate and suitable approaches dependent upon the needs of the particular application to implement the functionality of any given detail described herein, beyond that of the particular implementation choices in the embodiment described herein. Various modifications and embodiments are within the scope of the present invention.
It is to be further understood that the present invention is not limited to the particular methodology, materials, uses and applications described herein, as these may vary. Furthermore, it is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the claims, the singular forms “a”, “an” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements and includes equivalents thereof known to those skilled in the art. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.
References to “one embodiment”, “an embodiment”, “exemplary embodiments”, and the like may indicate that the embodiment(s) of the invention so described may include a particular feature, structure or characteristic, but not every embodiment necessarily includes the particular feature, structure or characteristic.
Referring in particular to the Figures submitted herewith, the flood control system 100 includes at least one modular receptacle 10 that is constructed utilizing a plurality of wall panels 15 wherein the wall panels 15 are formed to create an interior volume 20. The modular receptacle 10 includes an upper end 30 and lower end 35 wherein the modular receptacle 10 is constructed so as to have a first opening 36 proximate the upper end 30 and a second opening 37 proximate the lower end 35. The wall panels 15 are manufactured from a durable rigid material having a plurality of apertures 40. While it is contemplated within the scope of the present invention that the wall panels 15 could be constructed of various materials, in a preferred embodiment of the flood control system 100 the walls are constructed from materials such as but not limited to galfan mesh panels. The design and construction of the wall panels 15 provide a lighter weight for the modular receptacle and the apertures 40 further allow the liner 60 to slightly propagate therethrough, which is further discussed herein.
Now referring to
Illustrated herein in
Subsequent being disposed within the interior volume 20 of the modular receptacle 10 the liner 60 is secured in position utilizing grommets 65 wherein the grommets 65 are engage with silicone ties so as to secure the upper edge 67 of the liner 60 proximate the upper end 30 of the modular receptacle 10. While silicone ties are utilized in a preferred embodiment, it is contemplated within the scope of the present invention that alternate techniques and/or materials could be utilized to secure the liner 60. Furthermore, it should be understood within the scope of the present invention that metal reinforced silicone ties are preferred due to volume/weight of the water that is disposed within the liner 60. While the spacing and quantity for the grommets 65 illustrated herein shows a specific quantity and spacing for the location of the grommets 65 in the liner 60, it is contemplated within the scope of the present invention that the liner 60 could have alternate quantities and spacing's of the grommets 65. It is also contemplated within the scope of the present invention that the grommets 65 could be positioned in various places on the liner 60. Ensuing installation of the liner 60, the interior volume 63 thereof is filled with water wherein the water level is filled so as to be proximate the upper edge 67 of the liner 60. The weight of the water causes the walls 61 of the liner 60 to slightly propagate through apertures 40 as previously mentioned herein. As illustrated herein in
The liner 60 includes a drain weight 90 operably secured to one of the grommets 65, preferably a grommet 65 located in the corner of the modular receptacle. The drain weight 90 is secured to the grommet 65 utilizing tie member 91. The tie member 91 is secured to the drain weight 90 and is journaled through the grommet 65 and secured to the sidewall 15 ensuing installation of the liner 60. The drain weight 90 is positioned within the interior volume 63 of the liner 60 so as to inhibit engagement with the sidewall 15. The drain weight 90 is operable to lower the upper edge 67 of the liner 60 ensuing release of the tie member 91. Subsequent release of the tie member 91, the drain weight 90 will fall towards the bottom 62 and as such the water disposed within the interior volume 63 will egress from the liner 60. Utilizing the drain weight 90, provides an efficient technique of draining the interior volume 63 of the liner 60 as opposed to alternate techniques such as but not limited to hose transfer. It is contemplated within the scope of the present invention that the drain weight 90 could be formed in alternate sizes and shapes and achieve the desired objective as described herein.
As shown herein in a preferred embodiment of the flood control system 100 a configuration of multiple integrated modular receptacles 10 is desirable. While no particular quantity is required, in the preferred embodiment of the present invention a configuration of a two-cell or a five-cell system is desirable. As is illustrated in
The flood control system 100 incorporates a first style and a second style of lid member 110 that is configured to superpose the top of the flood control system 100. Illustrated herein in
While not particularly illustrated herein, the flood control system 100 incorporates a second style of lid member. The second style of lid member is a plastic membrane formed of a suitable size so as to cover the first opening 36 and partially extend downwards along the sidewalls 15. The second style of lid member is provided so as to offer a lid style that will reduce the amount of water evaporation from the liner 60 ensuing being filled with water. A second style lid member manufactured from a plastic membrane could be secured to the sidewalls 15 with conventional fasteners such as but not limited to clips. The second style lid member provides an alternative when the flood control system 100 is deployed in an area where securing the first opening 36 is not as critical for safety but more desirable for inhibiting water loss through evaporation.
In the preceding detailed description, reference has been made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments, and certain variants thereof, have been described in sufficient detail to enable those skilled in the art to practice the invention. It is to be understood that other suitable embodiments may be utilized and that logical changes may be made without departing from the spirit or scope of the invention. The description may omit certain information known to those skilled in the art. The preceding detailed description is, therefore, not intended to be limited to the specific forms set forth herein, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents, as can be reasonably included within the spirit and scope of the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 15/821,232 filed, Nov. 22, 2017, entitled, Flood Control System, now abandoned, which is hereby incorporated for reference.
Number | Name | Date | Kind |
---|---|---|---|
4394924 | Zaccheroni | Jul 1983 | A |
4594206 | Grafton | Jun 1986 | A |
4921373 | Coffey | May 1990 | A |
5333970 | Heselden | Aug 1994 | A |
6012872 | Perry | Jan 2000 | A |
6200067 | Pena | Mar 2001 | B1 |
7249912 | Reese | Jul 2007 | B2 |
9057168 | Dugan, Jr. | Jun 2015 | B1 |
9481970 | Scott | Nov 2016 | B2 |
20020110424 | Page | Aug 2002 | A1 |
20030035689 | Metz | Feb 2003 | A1 |
20050169712 | Young | Aug 2005 | A1 |
20070154264 | Baruh | Jul 2007 | A1 |
20080264546 | Olsta | Oct 2008 | A1 |
20090169301 | Kim | Jul 2009 | A1 |
20090202308 | Heselden | Aug 2009 | A1 |
20090230373 | Helseden | Sep 2009 | A1 |
20100111611 | Olsta | May 2010 | A1 |
20100143049 | Heselden | Jun 2010 | A1 |
20100172701 | Tucker | Jul 2010 | A1 |
20100186642 | Christman | Jul 2010 | A1 |
20110305511 | Heselden | Dec 2011 | A1 |
20120134756 | Heselden | May 2012 | A1 |
20130022404 | Stinson | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1508643 | Feb 2005 | EP |
2508148 | May 2014 | GB |
WO-2017220987 | Dec 2017 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 15821232 | Nov 2017 | US |
Child | 16680564 | US |