Not Applicable
1. Field of Disclosure
This invention relates to barriers for protecting shorelines from floodwaters and to systems for elevating the barriers into position for protective duty.
2. Background
Floodwaters are a major source of property damage. Floodwaters may come from a surface flooding caused heavy rains, or from a rising body of water, such as storm surge of sea waters driven by hurricane or tropical storm or from swollen rivers rising above flood stage from snow melt or heavy rains. Flooding in coastal areas resulting from tropical storms, hurricanes, cyclones or typhoons produces death and destruction. Storm surge is the major cause of flooding. This was all too painfully shown when on Oct. 29, 2012 tropical storm Sandy struck New York City, its suburbs, and Long Island. Supplemented by a high tide, the storm surge was approximately 14 feet above mean low tide, overtopping seawalls and bulkheads lining Manhattan and other waterfront boroughs, flooding many tunnels, damaging electrical equipment, costing at least 48 lives and in effect shutting down the City. Damages and economic losses across New York were estimated to be at least $33 billion and in neighboring New Jersey, $36.8 billion.
The inventor of embodiments of the invention described herein has disclosed in U.S. Pat. No. 6,623,209 a flood guard barrier employing water buoyant rigid flood barrier panels that are self-actuating. Although this barrier is self actuating, if there is sufficient warning of a flooding event, a system for raising a flood guard panel in advance of the arrival of the flooding event is an additional benefit. In addition a system for raising the flood guard panel independently of a flooding event allows the flood guard panel to be conveniently raised for servicing and repairs.
In the following detailed description of exemplary embodiments, reference is made to the accompanying drawings, which form a part hereof and in which are shown by way of illustration examples of exemplary embodiments with which the invention may be practiced. In the drawings and descriptions, like or corresponding parts are marked throughout the specification and drawings with the same reference numerals. The drawings are not necessarily to scale. Certain features of the invention may be shown exaggerated in scale or in somewhat symbolic or schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. Referring to the drawings:
Specific details described herein, including what is stated in the Abstract, are in every case a non-limiting description and exemplification of embodiments representing concrete ways in which the concepts of the invention may be practiced. This serves to teach one skilled in the art to employ the present invention in virtually any appropriately detailed system, structure or manner consistent with those concepts. Any examples or illustrations given herein are not to be regarded in any way as restrictions on, limits to, or express definitions of, any term or terms with which they are utilized. Instead, these examples or illustrations are to be regarded as being described with respect to one particular embodiment and as illustrative only. Those of ordinary skill in the art will appreciate that any term or terms with which these examples or illustrations are utilized will encompass other embodiments that may or may not be given therewith or elsewhere in the specification and all such embodiments are intended to be included within the scope of that term or terms. Language designating such nonlimiting examples and illustrations includes, but is not limited to: “for example,” “for instance,” “e.g.,” “in an embodiment,” “in an exemplary embodiment.”
Reference throughout this specification to “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one exemplary embodiment of the present invention. Thus, the appearances of the phrase “in an exemplary embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It will be seen that various changes and alternatives to the specific described embodiments and the details of those embodiments may be made within the scope of the invention. It will be appreciated that one or more of the elements depicted in the drawings can also be implemented in a more separated or integrated manner, or even removed or rendered as inoperable in certain cases, as is useful in accordance with a particular application. Because many varying and different embodiments may be made within the scope of the inventive concepts herein described and in the exemplary embodiments herein detailed, it is to be understood that the details herein are to be interpreted as illustrative and not as limiting the invention to that which is illustrated and described herein.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. That is, unless otherwise indicated, the term “or” is generally intended to mean “and/or”. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
As used herein, a term preceded by “a” or “an” (and “the” when antecedent basis is “a” or “an”) includes both singular and plural of such term (unless in context the reference “a” or “an” clearly indicates only the singular or only the plural). Thus the use of the word “a” or “an” may mean “one,” but it is also consistent with the meaning of “at least one” and “one or more than one.”
As used in the description herein, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
In addition, as used herein, the phrase “connected” means joined to or placed into communication with, either directly or through intermediate components.
The various directions such as “upper,” “top”, “lower,” “bottom”, “back,” “front,” “transverse,” “vertical”, “horizontal,” “length,” “Longitudinal,” “width,” “laterally,” “forward,” “rearward” and so forth used in the detailed description of exemplary embodiments are made only for easier explanation in conjunction with the drawings. The components may be oriented differently while performing the same function and accomplishing the same result as the exemplary embodiments herein detailed embody the concepts of the invention, and such terminologies are not to be understood as limiting the concepts which the embodiments exemplify.
In accordance with this invention, a flood guard barrier comprising at least one buoyant panel having front, back and lateral ends, a longitudinal dimension between the lateral ends, substantially horizontally disposed relative to earth, is passively responsive to a rise of water higher than the substantially horizontally disposed panel to buoyantly rotationally pivot upwardly to a raised position. Pivotation is provided by pivotation members comprising a stationary member connected to a support and a moveable member moveably joined to the stationary member, the moveable member being connected to the back end of the panel and pivotable about a horizontally longitudinal first axis of rotation. The barrier includes a subframe unattached to the panel and positioned under the panel so as not to interfere with passive rise of the panel. The subframe supports a secondary mechanism for elevating the panel in the absence of water causing passive rise.
The secondary mechanism comprises at least one lift arm positioned under the panel transversely to the first axis of rotation. The lift arm is supported on the subframe for pivotation from a horizontal disposition rotationally upward about a horizontal second axis of rotation that is parallel to and lower than the first axis of rotation. The lift has an aft portion rearward of the second axis and a fore portion forward of the second axis. At least one powered driver is fixed on a support optionally either rearward of the second axis or distally forward of the second axis, and a driven member unit comprising at least one driven member is connected proximately to the powered driver and distally to the aft portion of a lift arm at a connecting distance rearward of the second axis, whereby on activation of the driver the aft portion is rotated forward and the fore portion is rotated upward on the second axis under the panel to lift the panel rotationally upwardly on the first axis to a raised position. In an embodiment, the second axis of rotation is forward of the first axis of rotation. In an embodiment, the position rearward of the second axis to which the driven member is connected is a radial distance measured from the second axis sufficient that on actuation of the driver the driven member at the position of connection need not travel more than twice such radial distance to effect rotation of the lift arm through 90 degrees.
In one embodiment, the aforementioned powered driver comprises a hydraulic actuator and the driven member comprises a rod connected to a piston moveable in a cylinder in said hydraulic actuator. In another embodiment, the aforementioned powered driver comprises at least one winch having a drum rotatable on a third axis of rotation and the driven member comprises a cable proximally connected to and windable on the drum. In both such embodiments the driven member unit is connected distally to the aft portion of a lift arm at a connecting distance rearward of the second axis.
In the embodiment in which the powered driver comprises the hydraulic actuator, the actuator comprises a barrel or cylinder with a bore of constant diameter along the cylinder length. The cylinder is closed on each end, at a cap end and a head end. A piston travels back and forth in the cylinder and divides the inside of the cylinder in two chambers. A rod is connected to one side of the piston. The rod extends through the head end. The actuator may be a single acting actuator with fluid supplied to the head end to cause an extended rod to retract into the cylinder, the rod extending when fluid pressure is removed from the head end; or vice versa, fluid pressure may be supplied to the cap end to extend the rod from the cylinder, the rod retracting into the cylinder when the fluid pressure is removed. Alternatively, the actuator may be a double acting actuator in which fluid is supplied to the cap end to extend the rod and to the head end to retract the rod.
In the embodiment in which the powered driver comprises a hydraulic actuator, the actuator may be rearward of the aforementioned second axis or distally forward of the second axis.
In an embodiment in which the actuator is rearward of the second axis, the driven member unit comprising the actuator rod is connected to the aft portion of said lift arm in such a manner that, on actuation of the actuator, extension of the actuator rod pushes and rotates the aft portion of the lift arm forward and the fore portion upward about the second axis, thus lifting the flood barrier panel rotationally upwardly about the first axis to a raised flood guarding position.
In an embodiment in which the actuator is distally forward of the second axis, a reversing drive linkage interconnects the actuator rod and the drive shaft that is moveably joined distally to the aft portion of said lift arm. The linkage comprises a moveable link pivoted on a shaft, for example the link may be horizontally movable on a vertical shaft. The link is moveable connected proximally to the distal end of the actuator rod and distally to the proximal end of the drive shaft. Extension of the actuator rod drives the proximate end of the pivotation link in the same direction as the rod, pivoting the link on the shaft, which swings the distal end of the link in direction opposite the direction in which the rod is extending, thus reversing the direction of force produced by the actuator rod. Since the distal end of the link is connected to the proximal end of the drive shaft, this pulls the drive shaft in a direction parallel and opposite the direction of extension of the actuator rod. Pulling the drive shaft rotates the connected aft portion of the lift arm forward on the second axis and rotates the fore portion of the lift arm upwardly, lifting the flood barrier panel rotationally upwardly about the first axis to a raised flood guarding position
In the embodiment in which the powered driver comprises at least one winch having a drum rotatable on a third axis of rotation and the driven member comprises a cable proximally connected to and windable on the drum, the third axis may be either parallel or transverse to the first axis of rotation.
In an embodiment in which the third axis on which the drum is rotatable is parallel to the first axis, the third axis may be either distally forward of the second axis or rearward of the second axis.
In an embodiment in which the third axis is parallel to the first axis and distally forward of the second axis, rotation of the drum on such third axis winds the cable toward the drum, rotating the aft portion of the lift arm forward and the fore portion upward about the second axis, lifting the flood barrier panel rotationally upwardly about the first axis to a raised flood guarding position.
In an embodiment in which the third axis is parallel to the first axis and rearward of the second axis, at least one cable pulley is provided horizontally distally forward of the second axis of rotation to reverse the direction of travel of a cable sheaved through the pulley routing the cable for connection to the aft portion of a lift arm at a connecting distance rearward of the second axis. Rotation of the drum on such third axis winds the cable toward the drum, the pullet reversing the direction of draw to pull the aft portion of the lift arm rotationally forward and the fore portion rotationally upward about the second axis, thus lifting the flood barrier panel rotationally upwardly about the first axis to a raised flood guarding position.
In an embodiment in which the third axis on which the drum is rotatable is transverse to the first axis of rotation, the third axis is distally forward of the second axis, and the embodiment further comprises at least one cable pulley distally forward of the second axis and horizontally spaced from the drum.
An embodiment in which a winch drum is rotatable on a third axis that is transverse to the first axis of rotation and that is distally forward of the second axis further comprises a pair of lift arms, a single winch, a pair of the pulleys each distally spaced from the drum, and a pair of the cables, each sheaved across a the pulley and distally connected to an aft portion of the lift arm. In an embodiment having these elements, a support for the stationary pivotation member may be a topless housing having a floor, a back and a front, sized for receiving and housing the panel horizontally above the floor, the stationary pivotation member being connected to the back of such housing, and the floor may comprise a pair of longitudinally spaced slots transverse to the first axis of rotation. A pair of longitudinally spaced upwardly open channel members each parallel to the slots may be connected under the slots to the housing floor. The lift arms may reside horizontally disposed in the channel members under the panel when not lifted.
In an embodiment in which the powered driver comprises a winch and the driven member comprises a cable, the cable connecting to the aft portion of the lift arm may distally run to the aft portion at a height lower than the lift arm top (the lift arm having a top and bottom). In an embodiment, the lift arm may be vertically deepest top to bottom at an aft location. In an embodiment, the lift arm may taper bottom toward top from the aft portion to the fore portion. In an embodiment, the aft portion where the cable is connected to the lift arm may be rearward of the location where the arm is vertically deepest and may be proximate the top of the lift arm.
In an embodiment the lift arm may comprise a pair of horizontally spaced vertical plates joined in a fore portion by at least one horizontal joining member and in an aft position proximate their tops by a horizontal pin, the cable attaching to the pin. In an embodiment, the pin may be lower than the second axis of rotation.
In an exemplary embodiment in which the powered driver is a winch, a flood guard barrier comprises: a buoyant panel having front, back and lateral ends, a longitudinal dimension between the lateral ends, and is substantially horizontally disposed relative to earth; a topless housing having a floor, a back, a front, and lateral ends, sized for receiving the panel horizontally above the floor; and pivotation members comprising a stationary member connected to the housing back and a moveable member moveably joined to the stationary member, the moveable member being connected to the back of the panel and pivotable about a horizontally longitudinal first axis of rotation, the panel being passively responsive to a rise of water higher than the substantially horizontally disposed panel to buoyantly rotationally pivot upwardly about said first axis to a raised position. The floor of the housing has a pair of longitudinally spaced slots transverse to the first axis of rotation. A pair of longitudinally spaced, upwardly open channel members are parallel to the slots and are connected under the slots to the housing floor. A pair of lift arms is resident in the channel members under the slots. Each arm is supported from the floor for pivotation about a horizontal second axis of rotation that is parallel to, lower than and forward of the first axis of rotation. The arms have an aft portion rearward of the second axis and a fore portion forward of the second axis. A winch at the front of the housing is intermediate the lateral ends of the housing and comprises a drum rotatable on a third axis of rotation transverse to the first axis of rotation. A pair of cable pulleys has each pulley connected adjacent the front of the housing horizontally distally spaced from the drum. A pair of cables has each cable connected on one end to the drum, each sheaved across a pulley, and each connected at an opposite end to an aft portion of a lift arm at a connecting distance rearward of said second axis. Each cable on activation of the drum draws the aft portion of a connected lift arm rotationally forwardly and pivots the fore portion of the lift arm rotationally upwardly on the second axis and out of the channel member through the slot under the panel, raising the panel rotationally on the first axis upwardly out of the housing.
In an exemplary embodiment in which the powered driver is a hydraulic actuator, a buoyant flood guard barrier comprises a panel having front, back and lateral ends, a longitudinal dimension between the lateral ends and is substantially horizontally disposed relative to earth. A subframe assembly includes front and back members. Pivotation members comprise a stationary member connected to the back frame member and a moveable member moveably joined to the stationary member. The moveable member is connected to the back end of the panel and is pivotable about a horizontally longitudinal first axis of rotation, the panel being passively responsive to a rise of water higher than the horizontally disposed panel to buoyantly rotationally pivot upwardly about said first axis to a raised position. A secondary mechanism for elevating said horizontally disposed panel comprises a plurality of lift arms. Each arm is mounted on an axle supported on the frame assembly for pivotation about a horizontal second axis of rotation that is parallel to, lower than and forward of the first axis of rotation. The arms have an aft portion rearward of the second axis and a fore portion forward of the second axis. A hydraulic actuator is connected to a front member of the frame assembly. The actuator has a rod connected to a piston moveable in a cylinder, a distal end of said rod extendable from a head end of the actuator in a direction transverse to said first axis. A reversing link is proximately pivotingly joined to the distal end of the actuator rod and is pivotal for reversing movement on a pivot shaft. A drive shaft is proximally pivotingly joined to a distal end of the intermediate link and is rotatably connected distally to the aft portion of a lift arm at a radial distance measured from and rearward of the second axis. The rearward radial distance is selected such that on actuation of the actuator the drive shaft linked by the reversing link to the actuator rod need not travel a distance more than twice the radial distance to effect rotation of the lift arm on the second axis through 90 degrees to lift the panel rotationally upwardly on the first axis to a raised position
Referring now to the drawings,
Referring to
Referring to
Referring particularly to
In an exemplary embodiment, arms 62, 64 each comprise horizontally spaced parallel vertical plates 70, 72 horizontally joined by horizontal joinder plates 71 and a horizontal pin 73. Pin 73 joins vertical plates 70, 71 at an upper part of aft portion 61 of vertical plates 70, 72 proximal top 67, i.e., rearward of and lower than the second axis of rotation of axle 66. As illustrated, the arms 62, 64 are vertically deepest at said aft portion 61. In an exemplary embodiment, lift arms 62, 64 vertically taper bottom toward top narrowing from aft portion 61 to fore portion 59. This lessens the weight of the arms past the pivotation fulcrum of axle 66 and lessens the force needed to pivot lift arms 62, 64 upwardly past the pivotation fulcrum 66. In an exemplary embodiment, as shown in
Referring particularly to
Referring now to
Referring to
A plurality of lift arms 162 are positioned under panel 112 transversely to first axis of rotation 130. Each arm 162 is mounted by arm stands 168 on an axle 166 carried in bearing supports 163 fixed to a cross member 152 of frame assembly. Axle 166 provides pivotation of arms 162 about a horizontal second axis of rotation at 166 that is parallel to, lower than and forward of the first axis of rotation 130. Arms 162 have an aft portion 161 rearward of second axis 166 and a fore portion 159 forward of second axis 166.
In an exemplary embodiment, arms 162 comprise horizontally spaced parallel vertical plates 170, 172 horizontally joined by horizontal joinder plates 171 and vertical joinder plates 165 arced inferiorly to clear drive shaft 192. As illustrated, arms 162 are vertically deepest at said aft portion 161. In an exemplary embodiment, lift arms 162 vertically taper from bottom 169 toward top 167 narrowing from aft portion 161 to fore portion 159. This lessens the weight of the arms past the pivotation fulcrum of axle 166 and lessens the force needed to pivot lift arms 162 upwardly past the pivotation fulcrum 166. Although not shown in the depictions in
A plurality of hydraulic actuators 176 each is connected at its base 179 to front frame member 136. Each actuator 176 has a rod 184 connected to a piston moveable in a cylinder as explained above. Each such rod 184 is extendable transversely to first axis 130 from a head end 185 of each actuator 176 and is distally rotatably joined at a vertically journaled pin 187 to the proximal end 191 of an intermediate pivotation link 189. Pivotation link 189 pivots on vertical shaft 196. A plurality of drive shafts 192 each is pivotingly moveably joined proximally to a distal end 193 of an intermediate pivotation link 189 by a pin 194 vertically journaled in a U-joint connector 195 hinged to the proximate end 197 of shaft 192 by trunnion 200 laterally projecting from shaft 192. At the other (distal) end of shaft 192, shaft 192 is rotatably joined to an aft portion 161 of a lift arm 162, for example, at a hub 198 of shaft 192 riding on a trunnion 199 of lift arm 192, such that linear movement of a shaft 192 rotates an arm 162 on an axle 166.
Intermediate pivotation link 189 serves as a reversing drive linkage coupling actuator rod 184 to drive shaft 192 that connects to the aft portion 161 of lift arm 162. Extension of rod 184 drives the proximate end 191 of intermediate pivotation link 189 in the same direction, pivoting link 189 on shaft 196, which causes the distal end 193 of link 180 to move in the opposite direction, reversing the direction of force produced by actuator rod 184. Further extension of actuator rod 184 acts through the reversing link 189 to pull drive shaft 192 in a direction parallel and opposite the direction of extension movement of actuator rod 184. This rotates the aft portion 161 of the lift arm forward on axle 166 and rotates the fore portion 159 upward about the second axis of axle 166, lifting the flood barrier panel 112 rotationally upwardly about the first axis 130 to a raised flood guarding position.
In the exemplary embodiment of
The above disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all modifications, enhancements, and other embodiments that fall within the true scope of the present invention, which to the maximum extent allowed by law, is to be determined by the broadest permissible interpretation of the following claims and their equivalents, unrestricted or limited by the foregoing detailed descriptions of exemplary embodiments of the invention.
This application claims under 35 U.S.C. §119(e) the benefit of U.S. Provisional Application 61/786,785 filed on Mar. 15, 2013, the content of which is incorporated in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/030057 | 3/15/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/145318 | 9/18/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2701953 | Travilla | Feb 1955 | A |
3775983 | Aubert | Dec 1973 | A |
4146346 | Salo | Mar 1979 | A |
4377352 | Goodstein | Mar 1983 | A |
4576509 | Beaty, Sr. | Mar 1986 | A |
5310284 | Snowberger | May 1994 | A |
5483913 | Ohkawa | Jan 1996 | A |
5758989 | Snowberger | Jun 1998 | A |
6216399 | Belarbi | Apr 2001 | B1 |
6623209 | Waters, Jr. | Sep 2003 | B1 |
7033112 | Rijlaarsdam | Apr 2006 | B2 |
7435036 | Cullen | Oct 2008 | B2 |
7658572 | Miyao | Feb 2010 | B2 |
9279224 | Waters, Jr. | Mar 2016 | B2 |
20090185864 | Waters, Jr. | Jul 2009 | A1 |
20120148346 | Eftekharzadeh | Jun 2012 | A1 |
20120163916 | Waters, Jr. | Jun 2012 | A1 |
20140369754 | Waters, Jr. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
10162568 | Jul 2003 | DE |
202005012770 | Jul 2006 | DE |
102011085963 | May 2013 | DE |
2926095 | Jul 2009 | FR |
2304770 | Mar 1997 | GB |
2399375 | Sep 2004 | GB |
2425559 | Nov 2006 | GB |
WO 2006120410 | Nov 2006 | GB |
2457463 | Aug 2009 | GB |
10-152827 | Sep 1998 | JP |
2001-214425 | Jul 2001 | JP |
2003-221822 | Aug 2008 | JP |
GB 2323621 | Sep 1998 | SG |
2006120410 | Nov 2006 | WO |
Entry |
---|
Search History Application PCT/US2014/59224. |
Search Report and Written Opinion PCT/US2014/59224. |
Notification of Transmittal of International Preliminary Report on Patentability, International Preliminary Report on Patentability with Annexes: Amended Sheets 17-23 (amended claims), Amendments Under Rule 34 and Letter Accompanying Amendments Under Rule 34. |
Presray. FB55 Bottom Hinged Flood Gate with Inflatable Seal [online] Mar. 24, 2004 [retrieved Aug. 25, 2014 by ISA/US from Internet; ISR mail dated Sep. 22, 2014 by ISA/US. |
Number | Date | Country | |
---|---|---|---|
20160010298 A1 | Jan 2016 | US | |
20160244928 A2 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
61786785 | Mar 2013 | US |