Embodiments of the present disclosure relate to sewer system maintenance, and more specifically to managing blockages in sewer lines.
In a multistory building, such as a condominium complex, the sewer system consists of three main components—vertical stacks, branch lines, and horizontal underground lines. All of these different types of plumbing pipes work together to ensure the sewer lines drain. Multistory buildings have one main drain line for multiple units. However, these sewer systems may backup from time-to-time. Apartment and condo sewers can backup for a variety of reasons, including grease and food particle clogs, tenants flushing or dumping drain clogging materials down the drains, like paper towels, facial tissues and sanitary items, and root infiltration or pipe collapses. When this drain becomes clogged, it causes flooding in the first story units from water usage in the units above. The damage from this can be severe and cost tens of thousands of dollars to repair, in addition to the inconvenience to the tenant. Construction companies perform water damage restoration for this type of damage very frequently. Furthermore, because this type of flooding is mostly, if not always, sewage water, anything it touches is automatically contaminated and needs to be completely replaced.
Such blockages damage the sewer line and may even result in water damage to the apartment, and thus maintenance is required. In multiple story buildings, one of the main causes for the sewer line damage and/or the water damage is a blockage in the sewer line that causes the first story of the building to flood when any of the units above the first story in the building use water. This is a very common problem in largescale communities that only have one sewer line for multiple units. In some cases, at a time, up to 35 units share one waste line, which can cause severe flooding in the lower units when there is a blockage.
People currently address this issue by servicing the waste line after it has already caused a flood. It can cost upwards of $200,000 per building to upgrade or replace the waste line. And if they do not upgrade or replace the line, the flooding will continue to happen and they will have to pay to repair the damage.
Accordingly, there is a need for devices, methods, and systems that detect when a blockage has occurred in the sewer line and water starts backing up. Such devices, methods, and systems may automatically or manually shut down the water supply when a blockage is detected in the sewer lines. When the water supply is turned off, the devices, methods, and systems described herein may prevent anyone from using toilets, showers, sinks, etc. and the blockage may no longer cause the sewer lines to back up to the point of flooding.
Provided herein are embodiments of a flood prevention system. In some embodiments, the flood prevention system may include float switches that run parallel to the waste line and may be activated when the water backs up. This may trigger power gate valves that shut the water off to the units connected to the clogged waste line.
The flood prevention system may include a water line, a sewer line, and at least one floating switch sensor. The water line and sewer line may be connected to a plumbing fixture. The floating switch sensor may be installed within the sewer line and be connected to a solenoid valve.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Moreover, it is noted that the disclosure is not limited to the specific embodiments described in the Detailed Description and/or other sections of this document. Such embodiments are presented herein for illustrative purposes only. Additional features and advantages of the disclosure will be set forth in the descriptions that follow, and in part will be apparent from the description, or may be learned by practice of the disclosure. The objectives and other advantages of the disclosure will be realized and attained by the structure particularly pointed out in the written description, claims and the appended drawings.
The present disclosure may be better understood by referring to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure. In the figures, reference numerals designate corresponding parts throughout the different views.
The below described figures illustrate the described disclosure and method of use in at least one of its preferred, best mode embodiments, which is further defined in detail in the following description. Those having ordinary skill in the art may be able to make alterations and modifications to what is described herein without departing from its spirit and scope. While this disclosure is susceptible to different embodiments in different forms, there is shown in the drawings and will herein be described in detail a preferred embodiment of the disclosure with the understanding that the present disclosure is to be considered as an exemplification of the principles of the disclosure and is not intended to limit the broad aspect of the disclosure to the embodiment illustrated. All features, elements, components, functions, and steps described with respect to any embodiment provided herein are intended to be freely combinable and substitutable with those from any other embodiment unless otherwise stated. Therefore, what is illustrated is set forth only for the purposes of example and should not be taken as a limitation on the scope of the present disclosure.
In the following description and in the figures, like elements are identified with like reference numerals. The use of “e.g.,” “etc.,” and “or” indicates non-exclusive alternatives without limitation, unless otherwise noted. The use of “including” or “includes” means “including, but not limited to,” or “includes, but not limited to,” unless otherwise noted.
As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.
As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
In general, terms such as “coupled to,” and “configured for coupling to,” and “secure to,” and “configured for securing to” and “in communication with” (for example, a first component is “coupled to” or “is configured for coupling to” or is “configured for securing to” or is “in communication with” a second component) are used herein to indicate a structural, functional, mechanical, electrical, signal, optical, magnetic, electromagnetic, ionic or fluidic relationship between two or more components or elements. As such, the fact that one component is said to be in communication with a second component is not intended to exclude the possibility that additional components may be present between, and/or operatively associated or engaged with, the first and second components.
Before further detailed descriptions are disclosed, some terminology and components as used in the present disclosure may first be described.
Float Switch: A float switch may open or close a circuit as the level of a liquid rises or falls. Most float switches are normally “closed,” meaning the two wires coming from the top of the float switch complete a circuit when the float is at its buoyant high point (for example, when a sewer line is full).
In some embodiments, to complete a circuit, the float switch may utilize a magnetic reed switch, which may include two contacts sealed in a glass tube. When a magnet comes close to the two contacts, they become attracted to each other and touch, allowing current to pass through. When the magnet moves away, the contacts demagnetize and separate, thus breaking the circuit.
In the float switch, the magnetic reed switch may be hermetically sealed in a stem, most often made from plastic or stainless steel. The float switch may encase a sealed magnet, which moves up and down the length of the stem as a fluid level rises and falls. As the magnet passes by the contacts in the encased reed switch, they touch and complete a circuit between the two lead wires. Properly used, float switches can deliver millions of on/off cycles, for years of dependable operation. Failures are normally due to overloading, frequently caused by spiking voltage. In some embodiments, the float switch may be connected to an alarm. The alarm may provide audio/visual warning of potential threatening conditions in the sewer lines.
Relay: The magnetic reeds enclosed in the liquid level sensors are extremely reliable and long-lasting when utilized properly. Failures may be nearly always a result of current overloading. Solenoids and many other devices that require control by a liquid level sensor carry “steady state” current ratings. These devices can draw ten times (or more) their steady state power ratings on start-up or shutdown. When the reeds inside the float switch is exposed to this kind of “spiking voltage” they can overheat and become deformed. In some cases, they may even weld together or break off, causing the switch circuit to remain closed (or open) regardless of the level of the float. Deformed reeds can also function intermittently, causing problems with troubleshooting. A 50-watt float switch can be destroyed by a solenoid valve rated at 6 watts and, unfortunately, it may take many cycles before the failure occurs. Because they can destroy an otherwise very reliable float switch, care needs to be taken to completely isolate the switch from the current drawn by solenoids or other devices subject to spiking voltage. Resistors or diodes may be used, but the most common solution is to utilize a circuit board or a relay. A relay may act as a switch for a solenoid, thereby isolating the float switch from any spikes that the solenoid valve may draw. The float switch turns the relay coil on and off. In this way, the only current handled by the float switch is that small amount required by the relay coil.
Timer Relay: A timer relay is a combination of an electromechanical output relay and a control circuit. The contacts will open or close before or after a pre-selected, timed interval.
Power Solenoid Valve: A solenoid valve is an electromechanical device used for controlling liquid or gas flow. The solenoid valve is controlled by electrical current, which is run through a coil. When the coil is energized, a magnetic field is created, causing a plunger inside the coil to move.
Normally Closed Solenoid Valve: Normally closed solenoid valves may include a plunger that remains in a closed position when the system is running smoothly, like pressure relief valves. Normally closed solenoid valves may also include a coil that, when powered, will cause the plunger to open and allow liquid or gas to pass through the valve.
As used in the present disclosure, the term normally closed valve means the valve is normally closed until energized, once it receives power it opens, this is what the system uses to drain the water from the pipes.
Normally open Solenoid Valve: is the opposite of the normally closed solenoid valve, it is always open when off, letting water pass though, once it receives power it closes, this is what the system uses to shut off the water.
AC-to-DC Power Supply: Such power supplies will employ a transformer to convert the input voltage to a higher or lower AC voltage. A rectifier is used to convert the transformer output voltage to a varying DC voltage, which in turn is passed through an electronic filter to convert it to an unregulated DC voltage.
Volt Meter: An instrument for measuring electric potential in volts.
Transmitter: A devise used to transmit signal from one place to the other is known as a transmitter. The signal may consist of information. It may use an antenna to transmit the signal in the air.
Receiver: A device which decodes the transmitted information from the received signal is known as a receiver. The receiver may also use an antenna to receive the signal from the air similar to the transmitter.
Siren: A siren is a loud noise-making device.
Wi-Fi Switch: A smart Wi-Fi switch can control power with a smartphone app or a button on the wall. The switch is wired to the electrical system to control the flow of an electrical power, and has a built-in Wi-Fi adapter to connect to the local network for communication with its smartphone app.
Wi-Fi Alarm: A Wi-Fi alarm is capable of connecting to a existing network wirelessly. Once triggered, it can send preset email and text message notifications making people aware it has been triggered.
Embodiments of methods, devices, and systems for flood prevention system are described in
In some embodiments, the system may also include a Wi-Fi smart switch which allows community managers, property owners and emergency plumbers to shut off the water via a smartphone app from anywhere in case an emergency plumbing call comes in requiring immediate shut off to prevent further damage. An example would be a broken pipe water supply or waste line.
In some embodiments, the flood prevention system 100 may include some exemplary components: a float switch sensor 140, a solenoid valve 130, and a purge solenoid valve 150. The float switch sensor 140 may be triggered using a triggering device when the water level in the sewer reaches a certain point, indicating that there is a blockage. The system may activate the solenoid valve 130 to turn off the water supply to the building. The purge solenoid valve 150 may open and purge any remaining water out of the pipes. As illustrated in
In some embodiments, the system may also include a remote transmitter 190, a purge solenoid valve 150 and a receiver command center (see
In some embodiments, the remote transmitter 190 may be installed next to the float switch sensors 140. When a float switch sensor 140 becomes buoyant, it completes the circuit for the transmitter 190. The transmitter may send a signal to the receiver command center, which may then activate a Wi-Fi alarm and timer relay that will keep the water supply off for a preset time. The timer relay may energize the normally closed purge valve 150 and normally open solenoid valve 130, for example until the issue has been resolved or the system has been reset.
In some embodiments, the floating switch sensor may be separated from the waste line 220 using filter screens (not shown) that may filter out some of the waste from the waste line 220.
In some embodiments, multiple sensors can be used, and the sensor location may be based on need and architecture.
As shown in
In some embodiments, the flood prevention system of the present disclosure may also include a remote receiver command center.
The remote receiver command center, or receiver command center 800 can be installed anywhere in or near the building, as long as the wires run to the solenoid valves. In practice, it is usually installed in safe places, for example, mechanical rooms. In some embodiments, the receiver command center 800 may receive the signal from the remote transmitter when the float switch is activated, as described above. The receiver command center will then send a signal to the Wi-Fi alarm 820 which may notify the issue, for example via text and/or email to predetermined personnel. The receiver command center 800 may also activate the optional alarm siren 830. In some embodiments, the receiver command center may then send power to a step-up relay 850. The relay uses a low voltage signal from the receiver to step up the power to 12 volt dc, which may be the required power to activate both normally closed and normally opened solenoid valves 870 and 872 (see also valves 150 and 130 in
In some embodiments, the Wi-Fi switch 860, which is powered by the power supply 876, may allow users, for example via cell phone app, to remotely turn the water on and off in the building. This may be needed, for example, when a water supply line breaks. In some embodiments, the power supply 876 may provide power to the Wi-Fi switch 860 and the Wi-Fi switch 860 may send power to the solenoid valves in order to remotely turn them on and off.
As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.
The present application is a continuation of U.S. patent application Ser. No. 16/935,185, filed Jul. 21, 2020, which claims priority to U.S. Provisional Patent Application No. 62/877,148, filed Jul. 22, 2019, the disclosures of which are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62877148 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16935185 | Jul 2020 | US |
Child | 17689691 | US |