The disclosure relates to cleaning equipment, and more particularly to a sponge roller of a floor cleaner.
Conventional cleaners for cleaning ground include brooms, mops and floor wipers, all of which are manual tools. With the development of science and technology, people pose high requirements for cleaners, and vacuum cleaner is developed, which operates to adsorb waste and dust on the ground through negative pressure produced by electric power. However, due to the limitation of the working principle, the vacuum cleaner fails to eliminate the waste and stains firmly attached to the ground. As a result, a new generation of cleaners for cleaning ground is provided. The new generation of cleaners includes a motor and a cleaning roller which is driven by the motor to clean the ground. The cleaning roller is often made of sponge. The cleaning capability of the cleaners is proportional to the thickness of the sponge roller, the thicker the sponge roller, the stronger the cleaning capability. The new generation of cleaners is also equipped with a water supply system and a water channel for washing the cleaning roller, thus cleaning the ground completely.
After being washed, water in the sponge roller is required to be squeezed out using a squeezing structure, or the water tends to flow to the ground when the sponge roller is squeezed on the ground. On the one hand, the action force the squeezing structure exerts on the sponge roller is favorable to the removal of the water, on the other hand, the action force is resistant to the rolling of the sponge roller. That is to say, for a thick sponge roller, when the squeezing force is too small, the water cannot be removed, when the squeezing force is too large, the resistance to the sponge roller is large, which causes the waste of the energy.
In view of the above-described problems, it is one objective of the disclosure to provide a sponge roller, a cleaning roller assembly, and a floor cleaner comprising the cleaning roller assembly.
To achieve the above objective, in accordance with one embodiment of the disclosure, there is provided a sponge roller, comprising an outer layer and an inner layer; wherein the outer layer is sleeved on the inner layer; the inner layer is made of non-absorbent sponge, and the outer layer is made of absorbent sponge.
As an improvement of the disclosure, a radial thickness of the outer layer is smaller than that of the inner layer.
As an improvement of the disclosure, at least one end of the outer layer and one end of the inner layer are a tapered surface along an axial direction of the sponge roller.
The disclosure also provides a cleaning roller assembly, comprising
a power unit,
a sleeve barrel, and a sponge roller; wherein the sleeve barrel is sleeved on the power unit;
the sponge roller comprises an outer layer and an inner layer; the inner layer is sleeved on the sleeve barrel; the outer layer is sleeved on the inner layer; the inner layer is made of non-absorbent sponge, and the outer layer is made of absorbent sponge; the sleeve barrel and the sponge roller are driven by the power unit to rotate to clean the ground.
As an improvement of the disclosure, a radial thickness of the outer layer is smaller than that of the inner layer.
As an improvement of the disclosure, at least one end of the outer layer and one end of the inner layer are a tapered surface along an axial direction of the sponge roller.
The disclosure further provides a floor cleaner, comprising
a base shell and
a cleaning roller assembly. The cleaning roller assembly comprises a power unit, a sleeve barrel, and a sponge roller; the sleeve barrel is sleeved on the power unit; the sponge roller comprises an outer layer and an inner layer; the inner layer is sleeved on the sleeve barrel; the outer layer is sleeved on the inner layer; the inner layer is made of non-absorbent sponge, and the outer layer is made of absorbent sponge and is disposed on the base shell; and the sleeve barrel and the sponge roller are driven by the power unit to rotate to clean the ground.
As an improvement of the disclosure, radial thickness of the outer layer is smaller than that of the inner layer.
As an improvement of the disclosure, at least one end of the outer layer and one end of the inner layer are a tapered surface along an axial direction of the sponge roller, and an outer edge of the tapered surface stretch into one side of the base shell facing the ground.
Advantages of the cleaner for cleaning the ground are summarized as follows. The sponge roller comprises an outer layer and an inner layer. The outer layer is sleeved on the inner layer; the inner layer is made of non-absorbent sponge, and the outer layer is made of absorbent sponge. The sponge roller can be made with a large thickness, thus improving the cleaning capacity of the cleaner. The water is mainly stored in the outer layer, so it can be squeezed out without the exertion of much more external force, and thus the resistance against the rotation of the sponge roller is negligible, thus saving the energy consumption.
The disclosure provides a cleaner for cleaning the ground.
The cleaner for cleaning the ground comprises a shell assembly, a cleaning mechanism, a water supply system, a control unit, and an adaptor component.
The shell assembly is a support of the cleaner, and comprises two parts, one is a base, the other is a handle. The base and the handle are connected by the adaptor component. The connection mode is flexible, so that the user can conveniently operate the cleaner with different angles.
The cleaning mechanism is a key part to clean the ground and is disposed on the base. The water supply system comprises a clean water tank and a wastewater tank. The clean water tank is configured to store clean water and communicates with the cleaning mechanism. Clean water is transported to the cleaning mechanism through a power unit to clean the cleaning mechanism. The wastewater tank is configured to store wastewater which is discharged from the cleaning mechanism communicating with the wastewater tank. The wastewater produced by the cleaning mechanism is restored in the wastewater tank via another power unit, thus preventing the wastewater from leaking out of the cleaner.
The control unit comprises a control circuit and a circuit board loading the control circuit. The control unit controls the operation of the cleaner, such as the operation and halt of the cleaning mechanism, the opening and closing of the water supply system, so as to achieve the man-machine interaction.
For better understanding the disclosure, the example defines where the base is located is the front part of the cleaner and the handle is the rear part of the cleaner.
Specifically, as shown in
Also, as shown in
As shown in
The cleaning roller assembly 210 comprises a cleaning roller. The cleaning roller rollers on the ground to clear the trash. Optionally, the cleaning roller is made of flexible material, for example, in this example, the cleaning roller is a sponge roller 211.
The cleaning roller assembly 210 further comprises a sleeve barrel 213 loading the sponge roller 211, and a power unit 212 for driving the sponge roller 211 and the sleeve barrel 213.
The power unit 212 is disposed on the side wall of the base shell 120 and is locked using a bolt. The side wall is vertical to the ground. The sleeve barrel 213 of the sponge roller 211 is sleeved on the power unit 212 and is replaceable. The sponge roller 211 is sleeved on the sleeve barrel 213, and the power unit 212 is disposed in the sleeve barrel 213. The power unit 212 is optionally a motor, and the opening and closing of the power unit 212 is controlled by the control unit.
As shown in
As shown in
The clearing component 220 is disposed at the upper rear of the sponge roller 211, i.e., above the trash bin 230, so that the trash cleared from the sponge roller 211 falls into the trash bin 230.
To more efficiently clear the trash on the sponge roller 211, as shown in
As shown in
Furthermore, as shown in
As shown in
The washing chamber is disposed on the rotation path of the sponge roller 211 and coordinates with the sponge roller 211 in a sealing mode. The washing chamber is filled with water to wash the sponge roller 211.
As shown in
The water channel 351 is pressed on the sponge roller 211 in an overturn mode. The contact regions of the water channel 351 and the sponge roller 211 are sealed. Specifically, a seal element 352 and a water-squeezing element 353 are locked at two sides of the water channel 351 via bolts, respectively. The seal element 352 is behind the water-squeezing element 353, that is to say, the sponge roller first moves to the seal element 352, and then to the water-squeezing element 353. The water-squeezing element 353 and the seal element 352 function as leak proof structures of the water channel 351 and the sponge roller 211, respectively. Additionally, the water-squeezing element 353 operates to squeeze out the water in the sponge roller 211. The wastewater squeezed out from the sponge roller 211 directly flows to the water channel 351, and then collected by the wastewater tank 320.
To improve the water squeezing effect, the water-squeezing element 353 is made of hard material, and the outer wall thereof contacting the sponge roller 211 is arc-shaped. For example, the water-squeezing elements 353 are strips or shaft-shaped structures made of rigid plastic or metal. The seal element 352 only has the sealing properties. As shown in
To prevent large solid waste on the sponge roller 211 from entering the water supply system to block the waterway, as shown in
As shown in
As shown in
Optionally, the clean water supply device is not limited to the water pump 330, it can also be an air pump instead of the water pump 330. The air pump communicates with the water channel 351. Through pumping, the pressure in the water channel 351 is decreased, the water channel sucks up clean water from the clean water tank 310. The working principle of the air pump is the same as the principle of the wastewater tank 320 for wastewater recovery.
Likewise, the wastewater recovery device is not limited to the air pump 340, it can also be a water pump instead of the air pump 340. The working principle of the water pump is the same as the principle of the clean water tank 310 for clean water supply.
As shown in
To solve the problem, the wastewater tank 320 is modified. The wastewater tank 320 comprises a wastewater storage chamber and at least one splash-proof member. The splash-proof member separates the air extraction opening 3212 of the wastewater tank 320 from the storage chamber. The splash-proof member comprises an air vent communicating with the storage chamber. The air extraction opening 3212 of the wastewater tank 320 communicates with the air vent of the splash-proof member. Most of splashed foams are blocked by the splash-proof member, but the work of the air pump 340 is not affected. The more the splash-proof member, the better the splash-proof effect.
Specifically, as shown in
The splash-proof member 323 comprises a first buffer chamber 3234 comprising first air vents 3231 at the top thereof and second air vents 3232 at the bottom thereof. The first air vents 3231 and the second air vents 3232 are disposed at different directions. Specifically, the first air vents 3231 are disposed vertically, and the second air vents 3232 are disposed transversely. The staggered arrangement of the air vents can prevent the water entering from the second air vents 3232 from entering the first air vents 3231.
As shown in
To prevent the foams splashed in the wastewater tank 320 from entering the air pump 340, other options can also be adopted. For example, the air outlet 342 of the air pump 340 communicates with the sponge roller 211 or the water channel 351, and the water absorbed by the air pump 340 is discharged and collected by the sponge roller 211 or the water channel 351.
The waterways of the water channel 351, the clean water tank 310, the water pump 330, the wastewater tank 320, and the air pump 340 can be independent pipes, or be integrated with other structures for simplifying the cleaner. As shown in
To further improve the cleaning effect, the sponge roller 211 can be made much thicker. As a result, when washing the sponge, much more force must be exerted by the water-squeezing element 353 on the sponge roller 211 so as to squeeze water out of the sponge. However, when the squeezing force is much large, the rotation of the sponge roller 211 may be impeded, and to maintain the normal rotation of the sponge roller 211, much more energy must be imposed, thus causing more energy consumption.
As shown in
Conventionally, the sponge roller 211 is disposed in the base shell 120. Two ends of conventional cylindrical sponge roller are a circular surface vertical to the ground. The left and right side walls of the base shell 120 have a certain thickness, so that the sponge roller 120 cannot stretch into the region below the left and right side walls of the base shell 120 adjacent to the sponge roller 211 due to the circular structure of the sponge roller. As a result, the regions below the left and right side walls of the base shell 120 adjacent to the sponge roller 211 cannot be cleaned.
As shown in
The control unit comprises a circuit board loading a control circuit and a man-machine interaction unit. Because the control unit is not the key point of improvement of the disclosure, no detailed description is provided herein.
While particular embodiments of the disclosure have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the disclosure in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the disclosure.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 15/122,437, titled “FLOOR CLEANER, CLEANING ROLLER ASSEMBLY, AND SPONGE ROLLER” filed on Aug. 30, 2016, which is a national stage entry of international application PCT/CN2015/091683, filed on Oct. 10, 2015. U.S. patent application Ser. No. 15/122,437 and international application PCT/CN2015/091683 are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1770643 | Giambertoni | Jul 1930 | A |
3172138 | Price | Mar 1965 | A |
4959628 | MacGregor | Sep 1990 | A |
6134745 | Worwag | Oct 2000 | A |
7279050 | Van Epps, Jr. et al. | Oct 2007 | B2 |
9682399 | Utterback | Jun 2017 | B2 |
20040078908 | Van Epps, Jr. et al. | Apr 2004 | A1 |
20090276975 | Vines | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
102087501 | Jun 2011 | CN |
203458324 | Mar 2014 | CN |
203506629 | Apr 2014 | CN |
102007052982 | May 2009 | DE |
651101 | Feb 1929 | FR |
S49-5735 | Jan 1974 | JP |
2012228619 | Nov 2012 | JP |
2012254208 | Dec 2012 | JP |
2014137168 | Sep 2014 | WO |
Entry |
---|
Japanese Office Action in Japanese Application No. 2017/563376 dated Jun. 8, 2018, 6 pgs. |
Corresponding European Patent Application No. 19174624.7, Extended European Search Report dated Sep. 23, 2019. |
Korean Office Action in Korean Patent Application No. 2KR10-2018-7013363 dated Apr. 16, 2019. |
Japanese Office Action in Japanese Patent Application No. 2017-563377, dated Jun. 22, 2018. |
International Search Report and Written Opinion in International Patent Application No. PCT/CN2015/091683, dated Jul. 14, 2016. |
International Preliminary Report on Patentability, in International Patent Application No. PCT/CN2015/091683, dated Apr. 10, 2018. |
European Supplementary Search Report, for corresponding European Patent Application No. EP 15905699, completed Aug. 2, 2o18. |
Number | Date | Country | |
---|---|---|---|
20180353046 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15122437 | US | |
Child | 16105339 | US |