The present invention relates generally to the floor care equipment field and, more particularly, to a vacuum cleaner, extractor or the like equipped with a solenoid driven mechanism for vibrating dirt and debris from the filter including, particularly, fine dirt particles from the pores of the filter in order to enhance filter cleaning efficiency and extend filter service life.
A vacuum cleaner is an electromechanical appliance utilized to effect the dry removal of dust, dirt and other small debris from carpets, rugs, fabrics or other surfaces in domestic, commercial and industrial environments. In order to achieve the desired dirt and dust removal, most vacuum cleaners incorporate a rotary agitator. The rotary agitator is provided to beat dirt and debris from the nap of the carpet or rug while a pressure drop or vacuum is used to force air entrained with this dirt and debris into the nozzle of the vacuum cleaner. The particulate laden air is then drawn into a dirt collection vessel. The air is then drawn through a filter before being directed through the motor of the suction generator to provide cooling. Finally, the air is filtered to remove any fine particles of carbon from the brushes of that motor or other dirt that might remain in the airstream before being exhausted back into the environment.
Often the dirt collection vessel is designed to produce cyclonic airflow by providing that vessel with a dirt chamber having a cylindrical sidewall and a tangentially directed air inlet. This arrangement forces the air to swirl around the dirt collection chamber in the manner of a cyclone. The centrifugal force that is produced causes dirt and debris to move toward and against the cylindrical sidewall of the chamber while relatively clean air may be drawn off from the center of the chamber through the filter toward the suction generator.
Under most operating conditions most or all of the dirt and debris is removed from the airstream by the cyclonic airflow. At times, however, some dirt and debris remains entrapped within the airstream. Typically, that dirt and debris is relatively fine dirt particles of light weight which are not as susceptible to the centrifugal separation force produced by the cyclonic airflow. Over time such fine particles may become entrapped and fill the pores of the filter media thereby restricting airflow and reducing the cleaning efficiency of the vacuum cleaner. Eventually the cleaning efficiency of the vacuum cleaner becomes so impaired it is necessary for the operator to either clean or change the filter in order to achieve the desired level of cleaning.
The present invention relates to a vacuum cleaner, extractor or the like equipped with a more efficient and effective filter cleaning mechanism. Advantageously, the present invention allows one to quickly and conveniently clean dirt and debris from a filter including particularly fine particles from the pores of the filter in situ. As a result each filter has a longer service life and the apparatus may be operated at a higher cleaning efficiency over the entire length of that extended service life.
In accordance with the purposes of the present invention as described herein, a floor cleaning apparatus is provided. The floor cleaning apparatus comprises a housing carrying a suction generator and a dirt collection vessel. A filter is carried in the dirt collection vessel and a clicker engages the filter. Further, a solenoid is provided for driving the clicker and cleaning the filter. In one possible embodiment the clicker is a rotary clicker. The rotary clicker includes a pinion, a body and at least one resilient lug. A rack is attached to the solenoid and engages the pinion. Further, the housing includes a nozzle assembly and a canister assembly. In one possible embodiment the nozzle assembly and canister assembly are pivotably connected together.
In the following description there is shown and described several preferred embodiments of this invention, simply by way of illustration of some of the modes best suited to carry out the invention. As it will be realized, the invention is capable of other different embodiments and its several details are capable of modification in various, obvious aspects all without departing from the invention. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
The accompanying drawings incorporated in and forming a part of this specification, illustrate several aspects of the present invention, and together with the description serve to explain certain principles of the invention. In the drawings:
a-8d are schematical illustrations of solenoid driven clicker arrangements for cleaning dirt and debris from a filter.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawing figures.
Reference is now made to
As illustrated, the apparatus 10 includes a housing 12 including both a nozzle assembly 14 and a canister assembly 16. The nozzle assembly 14 includes a suction inlet 18 through which air entrained with dirt and debris is drawn into the vacuum cleaner 10. A rotary agitator 20 is mounted to the nozzle assembly 14 and extends across the suction inlet 18.
The canister assembly 16 includes a handle 22 having a handgrip 24. An actuator switch 26 for turning the vacuum cleaner on and off is provided adjacent the handgrip. In addition the canister assembly 16 includes a cavity or receiver 28 for receiving and holding a dirt collection vessel 30. A suction generator 32 is mounted in a compartment in the canister assembly 16. During normal operation, the rotary agitator 20 beats dirt and debris from the nap of the rug or carpet being cleaned. The suction generator 32 draws air entrained with that dirt and debris through the suction inlet 18 into the dirt collection vessel 30. The dirt and debris is trapped in the dirt collection vessel 30 and the now relatively clean air passes through and over the motor of the suction generator 32 to provide cooling before being exhausted through an exhaust port (not shown) back into the environment.
As best illustrated in
The lid section 38 comprises a first element 40, a second element 42 and a third element 43. The first element 40 includes the first or dirty air inlet 44 and a filter chamber or cavity 46. The second element 42 includes a clean air outlet 48. The third element 43 receives a pivoting handle 51 for conveniently carrying the dirt collection vessel 30. The first element 40 is connected to the side wall 35 by the screws 160. The third element 43 is connected to the second element 42 by the screws 162.
A filter, generally designated by reference numeral 52, is received in the filter cavity 46 of the first element 40. The filter 52 includes a sidewall 54, a hub 56 and multiple partitions 58 extending between the hub and the sidewall (see also
A prefilter 66 and an inner support 64 extend downwardly in the dirt cup section 36 from the first element 40 to the bottom wall 37. A gasket 164 provides an airtight seal between the support 64 and the bottom wall 37. The prefilter 66 includes a series of intake apertures 68 that allow airflow in a manner that will be described in greater detail below.
In the illustrated embodiment, the dirt collection vessel 30 is designed to produce cyclonic airflow and thereby use centrifugal force to improve the efficiency with which dirt and debris are removed from the airstream. More specifically, as clearly illustrated in
The airstream flows around the annular space or dirt collection chamber in a circular or vortex pattern generating centrifugal force that causes dirt and debris in the airstream to move outwardly toward the sidewall 35 thereby causing the dirt and debris to collect in the dirt cup section 36. Simultaneously, the relatively clean air is drawn through the intake apertures 68 provided in the prefilter 66 along the inner wall of the annular space where it is then directed upwardly through the filter 52. Specifically, the air passes through the filter media 62 where any fine dirt and debris remaining in the airstream is stopped while clean air passes through the media on through the clean air outlet 48 to the suction generator 32. The direction of airflow during normal vacuum cleaner operation when the flow control valve assembly is in the home position is illustrated by action arrows in
The flow control valve assembly of the present invention will now be described in detail. The flow control valve assembly includes an actuator such as a drive motor 70 that is connected to a first drive gear 72. The first drive gear 72 meshes with a second drive gear 74 carried in the lid 38. The second drive gear 74 is connected to a rotary air guide 76 by the screws 75. The air guide 76 has a concavity 78 that holds a clean air inlet valve comprising a valve body 80 and biasing spring 82. When in the home or normal operating position illustrated in
The flow control valve assembly also includes a static air guide 86 that is held in the lid 38 overlying the filter 52. A seal 167 is provided between the air guide and the filter 52. The static air guide 86 includes a central aperture 88 and a series of radially arrayed partitions 90 defining a series of air pathways also having an arc of A°. As noted above, the filter 52 includes partitions 58 that divide the filter into equal sections 60 each having an arc of A°. It should be appreciated that the partitions 90 in the static air guide 86 are aligned with the partitions 58 in the filter 52. Accordingly, the air pathways or air guide sections 92 in the static air guide 86 are each aligned with a single section 60 of the filter 52.
In the illustrated embodiment, the filter 52 includes eight partitions 58 dividing the filter 52 into eight equal sections 60, each spanning a 45° arc. Similarly, the static air guide 86 includes eight partitions 90 dividing the guide into eight air pathways 92 each spanning an arc of 45°. Further the air guide passage 84 in the air guide 76 also spans an arc of 45°. As will be described in greater detail below the air guide 76 is precisely rotated to bring the air guide passage 84 in perfect alignment with a single air pathway 92 of the static air guide 86 and thus a single section 60 of the filter 52 during each movement of the filter cleaning cycle.
As further illustrated, the air guide 76 includes a first cam 94 projecting from the bottom wall thereof. The cam 94 includes eight cam profiles, one for each section 60 of the filter 52. The cam 94 engages a cam follower 96 (also with eight matching profiles) that is connected by means of a telescoping shaft to a flow control valve 100. More specifically, the telescoping shaft 98 comprises a first section 102 connected to the cam follower 96 and a second section 104 having a bore 106 that telescopingly receives the first section 102. A compression spring 108 received in the bore 106 engages the first section 102 of the shaft and biases the telescoping shaft 98 into an extended position. A second compression spring 110 is received in the hub 112 of the element 40. This compression spring 110 engages the bottom of the cam follower 96 and biases the cam follower 96 into engagement with the cam 94. A cap seal 170 and expander 172 seal around the shaft 98 and the element 40 to prevent any passage of air.
The flow control valve 100 comprises a flexible tubular diaphragm 114 supported at a first or upper end by a first open air guide 116 and a second or lower end by a second open air guide 118. The air guide 116 is secured to the element 40 and is static. In contrast, the second open air guide 118 is fastened to the distal end of the second section 104 of the telescoping shaft 98.
During normal vacuum cleaner operation when the flow control valve assembly is in the home position, the rotary agitator 20 functions to beat dirt and debris from the nap of an underlying carpet being cleaned. That dirt and debris is then drawn by the suction generator 32 through the inlet 44 into the dirt collection vessel 30. As the airstream flows in cyclonic fashion around the side wall 35, dirt and debris are collected in the dirt collection vessel 30. The relatively clean air is then drawn through the apertures 68 in the prefilter 66 (see action arrow A in
As the vacuum cleaner 10 operates, the fine dirt particles not removed from the airstream by the cyclonic action in the dirt cup section 36 are stripped from the airstream and trapped by the filter media 62 of the filter 52. Over time, these fine particles begin to close off the pores in the filter media 62 thereby restricting airflow. This not only causes the motor of the suction generator 32 to run hotter and at a lower efficiency, it also reduces airflow thereby adversely affecting the cleaning efficiency of the vacuum cleaner 10. Consequently, the airflow may become so restricted as to prevent the vacuum cleaner from cleaning properly. Before this occurs it is then necessary to either clean or replace the filter 52.
The present invention allows the filter 52 to be cleaned in situ in a very convenient and efficient manner before any substantial loss of cleaning power or efficiency occurs. Specifically, the motor 70 is activated to rotate the air guide 76 through an arc of 45° by means of the meshing gears 72, 74. Precise rotation may be provided by a stepper motor or a permanent magnet direct current motor in combination with a sensor and sensor target such as a magnet 120 fastened to or held in a cavity on the drive gear 74. An annular bearing 122 and cooperating bearing plate 124 ensure free rotation of the drive gear 74. As the rotation is completed, the air guide passage 84 in the air guide 76 is aligned with one of the air pathways 92 in the static air guide 86 and, accordingly, one of the sections 60 of the filter 52. The rotation of the drive gear 74 simultaneously causes the cam 94 on the bottom of the air guide 76 to rotate from the position shown in the
As this occurs, the cam follower 96 follows the cam 94 causing the telescoping shaft 98 to be displaced downwardly. This in turn causes the second open air guide 118 of the flow control valve 100 to engage the top of the support 64. As this occurs the diaphragm 114 is expanded and the air pathway for normal operation illustrated by action arrow A in
When the valve 100 closes the normal airflow pathway, no air may be drawn by the suction generator through the prefilter 66 or the suction inlet 18. As the negative pressure builds, the biasing force of the spring 82 is overcome and the valve body 80 is displaced to open the clean air inlet 50 in the element 42 and the drive gear 74. As a consequence, clean air is drawn through the inlet 50 past the valve body 80. That clean air then passes through the air guide passage 84 in the air guide 76 and the aligned air pathway 92 in the static air guide 86 (see action arrow C in
During a cleaning cycle, the sections 60 of the filter 52 are sequentially cleaned in the manner described above as the air guide 76 is rotated into alignment with each air pathway 92 and each filter section 60. The cleaning cycle may last, for example, from about one to about 30 seconds and more typically from about 3 to about 15 seconds. After rotating the air guide 76 precisely through 360°, the drive motor 70 stops and the flow control valve 100 is opened as illustrated in
The motor 70 is activated by means of an activator 300 as schematically illustrated in
In another possible embodiment, the activator 300 is a position sensor. In this embodiment, the position sensor 300 detects the position of the handle 22. Upon detecting the return of the handle 22 into the upright, storage position from the lowered, use position, the position sensor activates the motor 70 to initiate the filter cleaning cycle.
In yet another embodiment, a timer is added to the position sensor so that the activator 300 only functions to initiate the cleaning cycle when the handle 22 is returned to the upright position after a predetermined time of operation has lapsed since the last filter cleaning.
In still another embodiment the activator 300 is a performance sensor. The performance sensor 300 may, for example, be an air pressure sensor for sensing air pressure between the dirt collection vessel 30 and the suction generator 32 or a dirt volume sensor for detecting the level of dirt in the dirt cup. Upon reaching a predetermined pressure or level of dirt, such an activator 300 functions to activate the motor 70 and initiate the cleaning cycle.
In yet another alternative embodiment, the activator 300 is a switch. The switch 300 may function to initiate the filter cleaning cycle when the vacuum cleaner 10 is first switched on or when the vacuum cleaner is switched off.
Still further, the vacuum cleaner 10 may include a manual activator switch 300. The manual switch 300 may be engaged by the user at any desired time in order to initiate the cleaning cycle. Obviously, a manual switch of this nature may be provided on the vacuum cleaner in addition to any of the other activators previously discussed if desired to allow the user to override the automatic system to initiate the cleaning cycle.
Reference is now made to
In an alternative arrangement also illustrated in
a-8d schematically illustrate four possible alternative embodiments of a solenoid driven clicker arrangement for cleaning dirt and debris from a filter. In
In
c shows yet another possible embodiment wherein the clicker 170 is fixed to the wall of the dirt cup. The clicker 170 includes multiple resilient lugs 172 that engage the filter media 62 that extends between the hub 56 and outer side wall 54 of the filter 52. As illustrated, the filter 52 also carries a pinion 174 fixed to the hub 56. A solenoid 176 is connected to a rack 178 that meshes with the pinion 174. The solenoid 176 functions to displace the rack 178 back and forth in the direction of action arrow I thereby causing the pinion 174 and the filter 52 affixed thereto to rotate back and forth. As this occurs the lugs 172 engage the media 62 of the filter 52 thereby vibrating the filter material and effectively loosening dirt and debris from the pores thereof.
d discloses yet another embodiment. In this embodiment a rotary clicker 180 is provided. The rotary clicker 180 includes two depending, resilient lugs 182 and a pinion 184. The lugs 182 engage the filter media 62 that is stretched between the hub 56 and outer side wall 54 of the filter 52. A solenoid 186 is connected to a displaceable rack 188 that meshes with the pinion 184. The solenoid 186 functions to displace the rack 188 back and forth as illustrated by action arrow J. Since the rack 188 meshes with the pinion 184 this causes the clicker 180 to rotate back and forth with respect to the filter 52. As the clicker 180 is rotated, the lugs 182 engage the peaks of the ribbed filter material 62 thereby vibrating the filter material and effectively loosening dirt and debris from the pores thereof.
The foregoing description of preferred embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings.
The embodiments were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled. The drawings and preferred embodiments do not and are not intended to limit the ordinary meaning of the claims and their fair and broad interpretation in any way.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/780,211 filed on 8 Mar. 2006.
Number | Name | Date | Kind |
---|---|---|---|
2210950 | Replogle | Aug 1940 | A |
2507042 | Osborn | May 1950 | A |
3276066 | Chiba | Oct 1966 | A |
4124916 | Fromknecht | Nov 1978 | A |
4329161 | Osborn | May 1982 | A |
4533371 | Nakamura | Aug 1985 | A |
5657508 | Herbreteau et al. | Aug 1997 | A |
6003196 | Wright et al. | Dec 1999 | A |
6026540 | Wright et al. | Feb 2000 | A |
6070291 | Bair et al. | Jun 2000 | A |
6260234 | Wright et al. | Jul 2001 | B1 |
6341404 | Salo et al. | Jan 2002 | B1 |
6353963 | Bair et al. | Mar 2002 | B1 |
6401295 | Bair et al. | Jun 2002 | B2 |
6428589 | Bair et al. | Aug 2002 | B1 |
6436160 | Stephens et al. | Aug 2002 | B1 |
6463622 | Wright et al. | Oct 2002 | B2 |
6588054 | Bair et al. | Jul 2003 | B2 |
6588055 | Bair et al. | Jul 2003 | B2 |
6591446 | Bair et al. | Jul 2003 | B2 |
6735815 | Bair et al. | May 2004 | B2 |
6735817 | Bair et al. | May 2004 | B2 |
6745432 | Wright et al. | Jun 2004 | B2 |
6818036 | Seaman | Nov 2004 | B1 |
6830599 | McCutchen | Dec 2004 | B1 |
6848146 | Wright et al. | Feb 2005 | B2 |
6989039 | Vujik | Jan 2006 | B2 |
6994740 | Gammack et al. | Feb 2006 | B2 |
7047593 | Kitamura | May 2006 | B2 |
7222392 | McCormick et al. | May 2007 | B2 |
7287301 | Marshall | Oct 2007 | B2 |
7351269 | Yau | Apr 2008 | B2 |
7673369 | Gogel et al. | Mar 2010 | B2 |
20040163202 | Yoshimi et al. | Aug 2004 | A1 |
20041632002 | Yoshima et al. | Aug 2004 | |
20050011036 | McCutchen | Jan 2005 | A1 |
20060010641 | Nam et al. | Jan 2006 | A1 |
20070017064 | Gogel et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
1118303(A2) | Jul 2001 | EP |
1 504 710 | Feb 2005 | EP |
2 280 388 | Feb 1995 | GB |
2 428 559 | Feb 2007 | GB |
48-44735 | Dec 1973 | JP |
49-110964 | Sep 1974 | JP |
354084365 | Jul 1979 | JP |
354084365(A) | Jul 1979 | JP |
54116778(A) | Sep 1979 | JP |
2159233(A) | Jun 1990 | JP |
2004358031(A) | Dec 2004 | JP |
2004358135(A) | Dec 2004 | JP |
WO 0228260 | Apr 2002 | WO |
WO 2005053497 | Jun 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070209151 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60780211 | Mar 2006 | US |