This application claims the benefit of the filing of German Application No. 103 42 455.5, filed Sep. 15, 2003, for “Floor Cleaning Machine”.
This invention relates to a floor-cleaning machine that can be driven over the floor to be cleaned, with a driven, rotating cleaning brush that can be brought into contact with the floor for sweeping dirt and debris into a rear-mounted dirt container which is carried by a boom or retracting arm.
Typically, in sweeping machines of this type, the dirt container may be placed under operator control, either in an operating position, where the edge of its inlet opening is in sealed engagement with the edge of the discharge opening of the dirt delivery conduit, or in a raised position, from which the dirt container may be rotated under operator control into a dumping position to empty its contents.
Such floor-cleaning machines are known in various forms. For example, in some cases, a driven rotating brush, usually in the form of a cylinder sweeping brush is extended transverse to the central longitudinal (i.e. extending along the direction of travel) axis of the sweeping machine. The brush is driven to throw dirt picked up from the floor along a dirt-conducting channel and through a dirt delivery or discharge opening into the dirt container, usually in the form of a tub or large bucket. In the operating or sweeping position, the dirt container is located at the outer side of the dirt discharge opening with its opening edge tightly engaged (i.e. sealed) so that all of the dirt picked up from the floor is delivered into the container. The dirt container is arranged on at least one retracting arm (typically, on a pair of side arms) which, together with a parallel arm, forms a parallelogram lift assembly. In order to empty the dirt container, the lift arms are swiveled upwards by means of an hydraulic cylinder unit (or an electric linear actuator) so that the dirt container is moved into a raised position for dumping. During this lift motion the dirt container is maintained in a generally upright alignment by the parallelogram rod assembly to avoid spilling. With the dirt container in the raised position, the operator can drive the floor-cleaning machine to a place where the dirt container is moved above a large garbage container, into which the contents of the dirt container may be emptied by dumping.
In order to empty the contents of the dirt container in these existing designs, the operator manually loosens a holding device that rigidly connects the dirt container with the parallelogram rod assembly to prevent unintended rotation of the dirt container. When the holding device is loosened, the dirt container rotates, usually under gravity, around its mounting pivots at the distal end of the retracting arm so that the contents of the container are emptied into a larger refuse container for disposing.
After emptying the dirt container, it is necessary in these earlier machines, to manually return the dirt container to its initial use position in relation to the parallelogram rod assembly and manually to re-engage a holding device which secures the dirt container. However, it is also known to arrange (on the side of the dirt container) a hydraulic cylinder unit or an electric linear drive which, upon actuation, returns the dirt container from its emptying position into the usual alignment in relation to the parallelogram rod assembly so that the holding device can then be re-engaged.
Thus, in the known technical solutions one has had to perform manually the operation of returning the dirt container from its raised emptying position to the lowered use position, for which purpose the operator had to climb down from the floor-cleaning machine and manually rotate the dirt container, requiring considerable force or by using a supplemental power drive for rotating the dirt container from the emptying position to the normal collection or use position.
An object of the instant invention is to provide an improved floor-cleaning machines in such a manner that the return of the dirt container from its emptying position to the sealed use position occurs automatically from the operator's position and without the need for a separate power drive or manual unlocking of the dirt container.
In order to accomplish this, the invention is designed as a floor-cleaning machine of the sweeping type, but in such a manner that a releasable retaining connection (i.e. a latch) is provided at the connection of the parallel arm of an articulated linkage to an auxiliary arm of the articulated linkage. While the dirt container is raised from the use position to the dumping position the latch is engaged so that the parallel arm of the articulated linkage and the retracting arm of the machine act as a parallelogram to maintain the desired disposition of the dirt container. After reaching the high dump position, the latch is disengaged by the operator from the operator's position; and the dirt container rotates to dump the contents. After the contents are dumped, the container may be lowered. During this phase, the dirt container is limited in rotation in relation to the retracting arm in order to re-establish the retaining connection of the latch. After the retaining connection is re-established so that the distal end of the articulated link is fixed relative to the machine, yet able to pivot, the dirt container is secured in the desired position for normal, sealed use.
Thus, in the floor-cleaning machine according to the invention, the dirt container—when it is in the raised emptying position—during the lowering of the retracting arm, is supported by the retracting arm and is placed in the emptying or discharge position. As a result, the mounting point of the parallel arm on the dirt container is moved along a path in which the proximal end of the parallel arm is displaced in the direction towards the fixed attachment point on the machine. This movement continues until the retaining connection is re-established. When this occurs, the dirt container is in an alignment that corresponds to its normal operating position, and is now held in this position by the reinstated parallelogram linkage, while the lowering of the retracting arm continues. In order to enable the pivoting movement of the container to the use position, the support of the dirt container is automatically established so that the parallelogram linkage can once again swing the dirt container into the operating position, in which the mouth of the dirt container seals against the opening edge of the dirt discharge conduit.
A particularly advantageous solution of effecting the control and support of the dirt container resides in a design that provides a spring and a limit-stop surface, whose support effect is negated by its deformation due to the growing force of the lowering parallelogram assembly. This spring, which can be, for example, a leaf spring attached to the dirt container, and which exerts its action together with a stopping surface provided on the retracting arm, holds the dirt container in its emptying position until the latch connection of the articulated linkage is re-established, i.e., the spring exerts a support action necessary to overcome the resistance that acts against the return of the parallelogram rod assembly and the re-establishment of the latch connection. Once the latch connection is re-established and the parallelogram rod assembly (that has thus become effective) exerts a force sufficient to rotate the dirt container, the spring is deformed and no longer prevents the dirt container from returning to its operation position.
For the support of the dirt container, it is also possible to provide, for example, a solid stop limit that engages in a supporting position with a first guide surface and, during the lowering of the retracting arm, displaces itself along this surface so that, in this way, the parallelogram rod assembly is displaced accordingly and the holding or latch connection is re-established. When this occurs, the limit stop is released from the first guide surface, thus enabling the return pivoting of the dirt container to its sealed operating position effected by the parallelogram assembly.
Thus, the first guide surface is preferably provided on the dirt container and the solid limit stop is built on a fixed point of the machine frame. Furthermore, so that the dirt container does not overshoot, the first guide surface can be followed by a second guide surface that limits the swiveling of the dirt container at the release of the solid limit stop from the first guide surface.
The release of the holding connection can be effected in that the internal end of the parallel arm is released from the fixed point on the machine. In order to hold this internal end in a defined position when the holding position is released, and especially in order to return it during the lowering of the retracting arm to a position that enables the holding connection to be re-established, the internal end of the parallel arm may be conducted in a guide slot. However, in an advantageous design, the inner end of the parallel arm is connected, in a pivoting fashion, with the upper end of an auxiliary arm whose lower end is connected, again in a pivoting manner, with the floor-cleaning machine. When the retaining connection (i.e. latch) is established, the auxiliary arm is held firmly so that its connection with the parallel arm forms the fixed point on the machine, while the auxiliary arm can be released from this fixed position in order to allow for the release for example, by a latch, which the operator can move into a release position in order to release the retaining connection and thus effect the rotation of the dirt container into its emptying position.
If, due to the lowering of the retracting arm, the proximal end of the parallel arm is displaced and thus the auxiliary arm is swiveled back in the direction toward its fixed position, the retaining position can be automatically established by engaging the latch. For this purpose, during an existing retaining connection, the latch can be in a positive connection with a surface provided on the auxiliary arm.
Other features and advantages of the present invention will be apparent to persons skilled in the art from the following detailed description, accompanied by the attached drawings, wherein identical reference numerals will refer to like parts in the various views.
The floor-cleaning machine shown in
By way of further background, as persons skilled in the art know, the dirt conduit (not illustrated in the drawing) ends at a bottom entrance aperture of an air-conduit housing that contains a filter device, above which is provided a removable cover. This superstructure, including a suction fan provided in the side wall of the air-conduit housing, is described in the German patent application 103 24 825.4.
On the chassis 1 is mounted a housing 7, which provides space for an internal-combustion engine which drives, among other elements, the fan, the suction sweeping brush 3, and a hydraulic motor used to power the machine.
The illustrated floor-cleaning machine differs from the former floor-cleaning machines in the operation and control of the dirt container.
The illustrated floor-cleaning machine comprises a tub-shaped dirt container 10, as is common in this type of floor-cleaning machine, which is held on one side by a parallelogram rod assembly attached to the outer left (i.e. relative to the forward direction of travel) side wall of the dirt container. On the far side of the dirt container 10 is engaged a retracting arm as it is described subsequently as a part of the parallelogram rod assembly.
The parallelogram rod assembly includes a retracting arm or boom 12 that is pivotally mounted at its forward or proximal end at 13 to the upper end of a supporting column 11 mounted to the chassis or frame 1. This supporting column 11 is shown in a fragmentary fashion in order to fully illustrate the functioning of the parallelogram rod assembly. The upper end of the supporting column 11 of the retracting arm may be located on the right side of the machine, behind the driver.
The outer or distal end of the retracting arm 12 is pivotally connected at 14 to the side wall of the dirt container 10. In this connection on the side wall of the dirt container, a plate 31 is attached, which carries a limit stop 32 (the function of which is described below) made of elastically deformable synthetic material or rubber and a leaf spring 33 (also to be described below).
A hydraulic cylinder unit 25, has its butt end pivotally mounted to the chassis 1, and its rod end is pivotally mounted at 26 to the bottom of the retracting arm or boom 12. When the hydraulic cylinder is extended, the retracting arm 12 is raised from the normal operating position of the dirt container 10 (
As another element of the parallelogram rod actuating assembly, an arm 15, referred to as a parallel arm, is mounted with its distal end pivotally connected to the side wall of dirt container 10 at 17 underneath the pivot mounting 14 of the distal end of the retracting arm 12. The proximal end of the parallel arm 15 is pivotally connected at 16 to the upper end of an auxiliary arm 18. The auxiliary arm 18 is generally upright, with its lower end pivotally mounted in a fixed point 19 (
The auxiliary arm 18 carries, at its upper end, a protrusion or extension 21 (
As will be apparent, with the auxiliary arm 18 in the locked position of
In order to empty the dirt container 10 from the position of
When the auxiliary arm 18 is released, the dirt container 10—due to its inertia—(and especially, when it is full) may overshoot the emptying position shown in
After a second raising of the dirt container (to insure the dumping of all contents), the floor-cleaning machine is driven away from container C so that the dirt container 10 is removed therefrom; and then the retracting arm 12 is lowered by retracting the cylinder unit 25. As is clear from a comparison of
Due to the supporting and limiting effect of the leaf spring 33 on the retracting arm 12, the mounting point 17 of the outer end of the parallel arm 15 can no longer travel counterclockwise around the pivot mounting 14 during the further lowering of the retracting arm 12. Rather, the inner end of the parallel arm 15 is instead displaced further to the left, and thus the upper end of the auxiliary arm 18 moves toward the latch 30 until the protrusion 21 passes the latch 30, overcoming the spring bias force and, by engaging the catch 30, reaches a locked position (see
During the lowering of the effective parallelogram rod assembly with auxiliary arm 18 latched, the mounting pivot 17 of the outer end of the parallel arm 15 performs an arc-like motion around the pivot 14 of the outer end of the retracting arm 12, counter-clockwise as shown in the figures, whereby during the lowering motion of retracting arm 12, the alignment of the dirt container 10 relative to a horizontal plane remains the same. This action was prevented, before the re-establishment of the engagement between the latch 30 and the protrusion 21 of the auxiliary link 18, by the action of the leaf spring 33 that rests on the protrusion 34 of the retracting arm 12. In this manner, the latch 30 and the protrusion 21 are engaged in a secure, rigid but releasable connection and thus the holding connection of the parallel arm 15 is also engaged with a fixed point on the machine. As soon as this holding connection is established and, therefore, the parallelogram rod assembly becomes effective, during further lowering, the pivot 17 of the outer end of the parallel arm 15 (See
As seen in
During this displacement motion, the first guiding surface 133 slides over the protrusion 134 until the locking position of the parallel arm 115 is reached. This is the case, when—as indicated in FIG. 10—the protrusion 134 has reached the rear or the right end of the first guiding surface 133. Since, as has also been previously described, for the parallelogram rod assembly to now be effective, the pivot 117 of the distal end of the parallel arm 115 must be displaced, counterclockwise, around the axis of pivot 114 of the distal end of the retracting arm 112, during the continued lowering motion by the hydraulic cylinder, the protrusion 134 is released from the first guiding surface 133. It engages and rides along a second guiding surface 135 inclined transversely to the rear and slightly upwards in
Thus, the second guiding surface 135 does not prevent the pivot 117 from rotating slightly, counter-clockwise, around the mounting point 114. The continuing lowering motion of the dirt container 110 also releases the protrusion 134 from the second guiding surface 135, and the aligned dirt container 110 is moved into its operation position, i.e., into a sealing connection with the sea 109 on the edge of the dirt penetration opening.
Number | Date | Country | Kind |
---|---|---|---|
103 42 455 | Sep 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4178647 | Wolynec et al. | Dec 1979 | A |
5027464 | Knowlton | Jul 1991 | A |
5377376 | Wood et al. | Jan 1995 | A |
Number | Date | Country | |
---|---|---|---|
20050055786 A1 | Mar 2005 | US |