The invention relates to methods for manufacturing and packaging of floor panels, to devices used thereby, as well as to floor panels and packed sets of floor panels.
In general, the invention relates to hard floor panels, which, at two or more sides, are provided with coupling parts and which can be provided on an existing subfloor, either floatingly or glued, or in any other manner, in order to form a floor covering. Hereby, the invention is intended in particular for laminate panels, for example, with a printed decor and a top structure on the basis of synthetic material, prefabricated parquet, with panels mostly consisting of several layers of material with, at the upper side, a top layer of solid wood with a thickness of several millimeters, veneer parquet consisting of panels having a layer of veneer at their upper side, or solid parquet. This does not exclude that the invention is also applied for other hard floor panels, whether or not composed of several parts, for example, with top layers of other materials, such as, amongst others, cork, stone or stone-like materials, linoleum, carpet, and so on.
According to a first aspect, the invention relates to a method for manufacturing floor panels, which, as aforementioned, are provided with coupling parts at least at two opposite sides.
It is known that such coupling parts can be formed by means of a classical tongue and groove connection, wherein these, when installing the floor panels, possibly are glued into each other, or by means of mechanical coupling parts providing for a mutual locking of the floor panels in horizontal as well as in vertical directions, for example, as described in the international patent application WO 97/47834. This document describes how the respective coupling parts at two opposite sides can be formed in a continuous machine, in other words, while moving the floor panel over rotating mechanical cutting tools. This method is also called “continuous milling”.
It is also known, for example, from the patent document WO 2004/037502, when using a continuous machine, to provide a guiding groove approximately in the middle of the lower side of flat panels by means of a saw treatment and to move the panels with this guiding groove over a guiding portion, while providing two opposite sides of the panels with profiled edge regions that comprise coupling parts. Applying this technique guarantees the parallelism of the two respective opposite sides, however, the presence of the guiding groove in the center of the panels may lead to undesired effects, such as, for example, the local weakening of the panels, the heightened risk of moisture penetration and/or warping and the like. The described continuous machine relates to a machine in which the panels are transported by means of an air bed and belts. Hereby, the air bed presses the panels upward against two belts, which, by means of friction, carry the panels along and convey them through the machine.
With such transport, considerably higher passage speeds can be achieved than with traditional chain conveyance systems.
According to a first aspect, the present invention now relates to a method for manufacturing floor panels that allows to obtain a better and/or cheaper and/or more flexible and/or more reliable finishing of the floor panels. The invention also aims at a floor panel obtained by such method.
To this aim, the invention according to a first aspect relates to a method for manufacturing floor panels, wherein is started from panels, these panels, at their lower side, are provided with at least one guiding groove and these panels, at least at two opposite sides, are provided with profiled edge regions that comprise coupling parts, with the characteristic that at least one of the aforementioned two profiled edge regions is formed such that this region, seen in a cross-section of the panel, transverse to the guiding groove, extends at the lower side of the panel at least up to the guiding groove.
By “profiled edge region”, any treated region is understood that is situated at the respective edge or in the direct proximity of the respective edge of the floor panel. Such profiled edge regions may comprise regions having a specific function, such as, for example, the function of coupling parts, as well as regions without function.
By the present invention is achieved that the guiding groove is no longer conspicuously present on the lower side of such panels. Also, the absence of these guiding groove outside of the profiled edge regions of a floor panel means the absence of a local weakening, which weakening might lead to a variety of undesired effects, such as, for example, enlarging the risk of warping of floor panels under the influence of heat and/or humidity. It is clear that these effects are of huge importance with thin floor panels, for example, floor panels with dimensions between 5 and 15 mm.
In consideration of the above, it is clear that at the lower side of the floor panels, apart from one or more guiding grooves situated in the edge profile or adjacent thereto, preferably no other guiding grooves are formed, are present, respectively, in the lower side of the floor panels.
The panels from which is started, may be obtained from a larger board, for example, by means of a saw treatment. Such board consists, for example, of a board-shaped laminate material, in the case of the production of laminate floor panels, or of another material, which then is chosen in function of the floor panels to be manufactured.
Such board-shaped laminate material comprises at least a core, whether or not composed of several parts, a decor, as well as a top layer on the basis of synthetic material. The top layer mostly consists of a number of carrier sheets, for example, of paper, which are soaked in resin, for example, a melamine resin. In such case, it is common to perform the laminate as so-called “DPL” (Direct Pressure Laminate), wherein the top layer is pressed directly upon the core, or so-called “HPL” (High Pressure Laminate), wherein the top layer as such is obtained by a press treatment, before the top layer as a whole is provided on the core. Also, other possibilities for forming such top layer are possible, for example, by making use of films, applying a substance to be hardened, such as a varnish or the like, or in any other manner. The decor is mostly printed, either directly on the core, with the possible intermediary of a primer, or on one or more of said carrier sheets or on the aforementioned film.
The core of such laminate material mostly consists of a wood-based material, such as, for example, MDF (Medium Density Fiberboard) or HDF (High density Fiberboard).
Laminate material, as described herein above, is mostly provided with a backing layer at the lower side in order to counteract possible deformations under the influence of humidity and/or crimping effects as a result of the press treatment performed in manufacturing. Herein, this backing layer then mostly also consists of a carrier sheet soaked in resin, which is provided against the lower side by means of a press treatment. Such backing layer offers a balance against possible tensile forces that are present in the material, and in this manner can counteract a possible warping of the material.
Also other materials than laminate material, which can be applied for the present invention, can be provided with a backing layer, which does not necessarily have to consist of a carrier sheet soaked in resin. So, such backing layer may also consist, for example, of wood, for example, when manufacturing the aforesaid prefabricated parquet.
Providing, according to the first aspect of the invention, a guiding groove at the lower side of a panel, leads to a repeatable positioning during several processing steps of the manufacture of a floor panel. The same guiding groove can in fact be applied during different processing steps; amongst others, it may, however, not necessarily, be applied for guiding the panels during the forming of at least a portion of the profiled edge regions, wherein the panels to this aim are moved with the guiding groove over one or more guiding portions. In this latter case, the parallelism of the profiled edge regions is guaranteed in an optimum manner. Preferably, the guiding groove is at least applied for guiding the panels while providing the aforementioned coupling parts, as a consequence of which a production of uniform coupling parts within narrow tolerance limits can be guaranteed.
It is noted that providing a guiding groove at the lower side of the panels does not necessarily have to take place after the panels have been brought approximately to their finished dimensions, however, according to the invention, may also take place beforehand, for example, by providing such guiding groove in the lower side of a board, from which several of such panels are formed.
Further, it is noted that, when performing the aforementioned profiled edge regions, preferably elements, such as pressure shoes, are applied, which press the panels, in the immediate proximity of both opposite edge regions to be profiled, with at least one of their flat panel sides onto elements, such as sliding shoes.
In a preferred form of embodiment, the aforementioned pressure-exerting elements or pressure shoes are movable independently from the aforementioned guiding portion, whereby preferably the guiding portion is fixedly installed, more particularly, is rigidly connected to a frame of the processing machine. This installation allows a very stable transport of the panels and a correspondingly high quality of the processing in the machine. Moreover, the accuracy of the guiding of the panels is independent of the wear, the positioning and/or the accuracy of the pressing shoes.
Also in the case that no pressure-exerting elements, as aforementioned, were applied and that the floor panels thus are supported in another suitable manner, the use of a fixedly arranged guiding portion, more particularly a guiding portion that is rigidly connected to the frame of the processing machine, combined with the first aspect of the invention, offers important advantages. By such arrangement of the guiding portion thus a fixed positioning thereof in respect to the applied tools, such as cutting tools, is obtained, which may contribute to narrow production tolerances.
It is clear that the invention preferably is performed on continuous machines, wherein the panels are transported in a continuous or almost continuous movement along one or more processing stations, for example, processing stations with rotating mechanical cutting tools. Hereby, preferably use is made of continuous machines, wherein the transport, as aforementioned, takes place by means of belts and an air bed, whereby high passage speeds can be achieved, even up to more than 300 m/min. As will become clear from the further introduction and from the description, it is not excluded that the invention is performed on continuous machines, whereby the panels are transported in another manner. Other possibilities are described hereafter by means of embodiments according to the sixth, seventh, twelfth and thirteenth aspect of the present invention.
In a preferred form of embodiment, the panels are moved over at least two guiding portions, between which, at least at the height of the guiding groove, a gap is present, wherein one or more processing tools and/or auxiliary tools for forming at least a portion of the respective profiled edge region are active in said gap.
In a preferred form of embodiment, the guiding groove and the profiled edge regions are performed such that the guiding groove, in a coupled condition of two of such floor panels, is covered at least partially, for example, at least halfway, is covered by a material portion. Still better, the guiding groove is covered at least up to three quarters or even entirely, or almost entirely, as a result of which influences from below can be restricted.
It is noted that according to the first aspect of the invention, it is not excluded that also other guiding grooves are provided at the lower side of the panels, for example, guiding grooves external to the profiled edge regions, although this, as aforementioned, preferably will not be the case.
When in the method according to the first aspect, it is started from a panel that is provided with a backing layer, the method has particular advantages, in particular in the case that the guiding groove is performed completely through the thickness of such backing layer. In that the profiled edge region extends at the lower side at least up to the guiding groove, the backing layer, at least for forming this guiding groove, is not interrupted locally, which provides for that the balance between the tensile forces in the backing layer and the tensile forces in the remaining material at least is not interrupted by forming the respective guiding groove, such that the risk of warping is minimized.
The aforementioned coupling parts are preferably performed with locking parts, such that, in a coupled condition of at least two of said floor panels, a mutual locking is obtained in a horizontal as well as a vertical direction. Herein, it is preferred that the coupling parts are substantially performed in the form of a tongue and a groove that is bordered by means of a lower and an upper lip, wherein then preferably the profiled edge region extending at the lower side of the panel at least up to the guiding groove is performed at that side of the panel at which the aforementioned tongue is formed. In a particular preferred form of embodiment, the guiding groove is situated at the tongue side at such a distance from the vertical plane in which the coupled floor panels adjoin with their upper side against each other, that one or both of the following criteria are met:
This form of embodiment results in a compact profiled edge portion, whereas still a good and/or sturdy connection of two floor panels is guaranteed. Herein, the aforementioned material portion that at least partially covers the guiding groove, can be formed by a portion of the lower lip. Preferably, the lower lip has a portion that extends beyond the upper lip, and the aforementioned locking parts comprise portions that engage behind each other and in this manner effect a locking in horizontal direction, wherein one of these locking parts is situated in the portion of the lower lip that extends beyond the upper lip, and the aforementioned material portion also is situated in the portion of the lower lip that extends beyond the upper lip.
Herein, the aforementioned locking part that is situated at the lower lip, in the coupled condition of two of such floor panels, preferably is situated at least partially in the guiding groove, or at least in a space originally forming part of the guiding groove. Such configuration minimizes the risk of dust and moisture penetrating into the connection system.
In general, it is preferred that, after forming the profiled edge regions, at least a remainder of the aforementioned guiding groove remains present, in other words, at least two lateral flank portions of this guiding groove are maintained, such that the remainder of the guiding groove still can be applied, for example, for other treatments, or for further conveyance of the floor panels.
It is clear that according to the invention, the guiding groove is particularly useful when manufacturing the floor panels, and that such guiding groove does not necessarily have to remain present at floor panels that are obtained by the application of a method according to the invention. Thus, the fact that such profiled edge region according to the first aspect of the invention is performed at least up to the guiding groove, does not exclude that such edge region is performed up to entirely beyond the guiding groove and, as a result hereof, the guiding groove is completely removed from the final floor panel.
It is also clear that it is not excluded that such locking system can also be performed in other forms than in a tongue and groove connection.
In general, it is noted that in applications where the floor panels have a backing layer, it is preferred that this backing layer is uninterrupted over the entire lower side of the floor panels, in other words, outside of the profiled edge regions.
It is noted that, when forming the aforementioned profiled edge regions and the guiding groove adjoining thereto and, thus, pertaining thereto, preferably mechanical cutting tools are applied, such as milling cutters, saws, planes or the like. Further, it is noted that the guiding groove is not necessarily provided in the same machine where also the actual profiled edge regions are formed, but can also be provided separately.
It is noted that according to the first aspect of the invention, the guiding groove can be applied before, during as well as after forming the actual profiled edge regions, thus, the portion of the edge regions exclusive of the guiding groove.
In a preferred form of embodiment, when forming the coupling parts, and in particular when forming a locking part providing for a locking in horizontal direction, with the same tool a portion of the actual coupling parts is formed, as well as simultaneously a material portion, which extends up to at least the location where the guiding groove is formed or shall be formed, is removed. In this form of embodiment, it is not necessary to remove additional material portions and/or to apply additional cutting tools in order to obtain that the respective edge region extends up to the guiding groove.
A method according to the first aspect of the invention can also be applied for manufacturing floor panels, where the aforementioned profiled edge regions at the upper edge of the floor panels are provided with a surface that is obtained by removing a material portion, for example, in the form of a bevelled edge. Examples of such floor panels with a bevelled edge are known, amongst others, from the WO 01/96688. According to the present invention, the floor panel, during forming, for example, milling, such bevelled edge, preferably will be guided by means of the guiding groove.
According to a deviating variant of the method according to the first aspect of the invention, the panels are provided with a guiding groove at their upper side instead of at their lower side, wherein at least one of the aforementioned two profiled edge regions is formed such that this region, seen in a cross-section of the panel, transverse to the guiding groove, extends at the upper side of the panel at least up to the guiding groove. In such case, it is preferred that the guiding groove is performed at the groove side of the panel, wherein a longer lower lip is formed at the groove, and the guiding groove is performed in the projecting longer portion of the lower lip and/or is performed in the material portion that originally is situated above the projecting longer portion of the lower lip.
It is noted that, according to the first aspect, the guiding groove can be provided in any manner. So, for example, it may be formed by the application of a machining operation, such as sawing, milling, planing or the like. According to an alternative embodiment, the guiding groove consists of an impression that is applied, for example, by means of a press treatment. This alternative form of embodiment entrains a broad range of advantages. So, for example, it becomes possible to obtain a guiding groove in the lower side of the panels without interrupting a possible backing layer, such that the above-mentioned disadvantages of interrupting the backing layer do not occur.
The possibility of providing a guiding groove by means of a press treatment is also advantageous when the first aspect is not applied. Therefore, the present invention, according to a second independent aspect, the latter being applied or not applied in combination with the first aspect, relates to a method for manufacturing floor panels, wherein boards of laminate material are formed by means of a press treatment and wherein these plates are divided into several panels, from which finally the actual floor panels are formed, with the characteristic that by means of a press treatment, and preferably the aforementioned press treatment, at least one impression is applied in the board, which is applied at least as a guiding groove for guiding said board or the subsequently obtained panels in further treatments, such as, for example, during forming said panels from said board of laminate material, or during the realization of profiled edge regions, which comprise coupling parts, at least at two opposite sides of the aforementioned panels.
Composing a board of laminate material with a press treatment and forming, by means of a press treatment, impressions having a substantially decorative purpose, is known as such, for example, from WO 01/96689. However, according to its second aspect, the present invention applies a press treatment for forming impressions that have a function in the manufacture of the floor panels, namely, in this case, the function of guiding groove.
There are various possibilities for providing the aforementioned impressions, which are utilized at least as a guiding groove. They can be formed either in the lower side or in the upper side, or in both.
When, according to a first possibility, the aforementioned impressions are provided at least in the lower side of the aforementioned board, they can be used as a guiding groove, as described in respect to the first aspect of the invention, or as known from the aforementioned WO 2004/037502. Here, the undesired effects, herein above mentioned in respect to said WO 2004/037502, can be avoided, in view of the fact that a press treatment offers the possibility of keeping the backing layer intact. It is noted that keeping the backing layer intact is desired, however, not necessary when performing a method according to the second aspect. For example, possible cracks in the backing layer are not excluded.
When, according to a second possibility, the aforementioned impressions are provided at least in the upper side of the aforementioned board, a series of new or improved possibilities is created in respect to the manufacture of floor panels.
In a preferred form of embodiment of these two possibilities, by means of the aforementioned press treatment at the upper side, more particularly, the decorative side of the aforementioned board, also impressions are performed that are determining for the appearance of the decorative side, as, for example, for realizing deepened regions, more particularly edge regions, and imitating structured surfaces, such as wood nerves and pores, whereby these impressions preferably are in register with a printed decor that possibly is present at the decorative side. The aforementioned press treatment preferably takes place between two heated press plates, which, with high pressure, are coming into contact with the upper side, the lower side, respectively, of the aforementioned board. The aforementioned structured surfaces and other deepened regions are realized in the decorative side by means of an upper press plate having a correspondingly structured surface. As the guiding groove and the impressions, which are determining the appearance of the decorative side, are realized by means of the same press treatment, their mutual position is easy to repeat.
In the case that the guiding groove, according to the aforementioned first possibility, is provided at least in the lower side of the board, or, in other words, is provided by means of the lower press plate, preferably a mutual positioning between the lower and the upper press plate is performed, such that the guiding groove, after the press treatment, is situated in a predetermined position in respect to the impressions provided at the decorative side.
In the case that the guiding groove, according to the aforementioned second possibility, is provided at least in the upper side of the board, it is not necessary to perform said mutual positioning between the lower and the upper press plate. According to this second possibility, the repeatability of the mutual position of the guiding groove and the impressions that are determining the appearance of the decorative side thus will be higher, as both are obtained by means of the same, namely, the upper, press plate.
Said repeatability is of particular importance in panels with impressions that are intended to be situated on the edge of the floor panels, such as deepened edge regions. This is the case, for example, when impressions are provided that are intended to form a beveled edge or another deepened edge region at the edge of the floor panels.
A method wherein a mechanical portion, such as an impressed guiding groove, is formed at a board for guiding this board or the panels subsequently obtained from this board, as such has various advantages in respect to an accurate manufacture of floor panels. Therefore, the invention, according to its third aspect, also relates to a method for manufacturing floor panels, starting from a board, wherein the method at least comprises the steps of dividing said board into several panels and, from the obtained panels, forming floor panels, with the characteristic that the method also comprises the steps of forming a mechanical portion at the board, preliminary to dividing it into said panels, and applying this mechanical portion for guiding the board or the panels, into which the board has been divided, in further treatments.
According to an important preferred form of embodiment of the third aspect of the invention, the aforementioned board forming the starting basis comprises a decorative side having a pattern, more particularly formed by a print and/or by impressions. In that case, the aforementioned mechanical portion preferably is applied in function of this pattern, more particularly in function of the location of this pattern. Applying this mechanical element for guiding the board or the panels, into which the board is divided, in one or more further treatments, provides for a precise performance of the respective treatments in respect to the aforementioned pattern.
The aforementioned decorative side can be formed in various manners.
According to a first possibility, the board from which is started is provided at least with a resin-impregnated printed carrier sheet, more particularly printed paper that acts as so-called decor layer. With such decorative side, the method according to the third aspect of the invention in general, and according to said preferred embodiment of this aspect in particular, has particular advantages. Herein, the print of the carrier sheet preferably represents a pattern, such as, for example, a wood motif.
According to a second possibility, the board from which is started is at least provided with a decorative side that is formed by printing a pattern on the board, whether or not by the intermediary of a primer or other layer.
In particular when applying printed patterns, such as in both aforementioned possibilities, a method according to the third aspect is advantageous. Such patterns can have a large variation in their dimensions, in the case of the first possibility, for example, because the printed carrier sheet is subjected to variable strain. Thus, it is of importance that said mechanical portion is applied in function of this pattern, such that further treatments still can obtain a high precision, independently of the fact whether the dimensions of the pattern have been altered.
Independently of the fact whether the aforementioned first or second possibility is applied, the pattern may also comprise one or more impressions. According to the aforementioned important preferred form of embodiment of the third aspect, the board can be divided in function of these impressions. This is of high importance in the case that said impressions are intended to form a deepened edge region at the panels or floor panels, as then is obtained that the further treatments can be performed such that the risk of removing this sunk edge region in an undesired manner entirely or partially, when forming the floor panels, is minimum. The entirely or partially removing of said edge region in an undesired manner may occur, for example, when, during forming of the possible profiled edge regions, reference is made to a cut applied in an imprecise manner when dividing the board.
It is clear that the respective mechanical portion can have any form. Preferably, a groove or a guiding groove is concerned. It can also be formed at any location, either in the decorative side or upper side, or, and preferably, at the lower side, or at both flat sides of the board. Also, it is not excluded that several of such mechanical portions are formed at the board. The mechanical portion may also be formed in any manner, for example, by means of a machining treatment, such as sawing, or by means of a press treatment, such as in the second aspect of the invention.
In a method according to the third aspect, said mechanical portion is applied for guiding the plate or the panels, into which the board has been divided, during further treatments.
It is noted that the utilization of a mechanical portion provided in the board, such as, for example, a guiding groove, during the dividing thereof strongly reduces the risk of a deviation of the board in the cutting direction, which leads to a more stable and/or more accurate result of the dividing process. So, for example, in a cutting device, where the passage movement of the board is effected by means of belts or the like, the risk of the board leaving its aligned position can be minimized. This advantage is of particular importance in said important preferred form of embodiment of the third aspect. Here, the aforementioned mechanical portion or said guiding groove preferably are applied by means of a tool, wherein the board and the aforementioned tool, in a preliminary step, are subjected to a mutual positioning, more particularly aligning, in order to obtain that the finally obtained mechanical portion or the guiding groove is positioned, more particularly aligned, in respect to the aforementioned pattern and/or the cuts to be realized.
In another preferred form of embodiment, the method also comprises the steps of performing, at least at two opposite sides of the panels, profiled edge regions comprising at least coupling parts, and of applying the mechanical portion for guiding the panels, into which the board has been divided, during the step of performing the profiled edge regions.
In all forms of embodiment of the third aspect, the aforementioned mechanical portion preferably is provided in a material portion of the board that is intended to be removed when dividing the board into panels and/of when forming profiled edge regions at least at two opposite sides of the final floor panels.
It is clear that, according to the third aspect of the invention, in the case that the mechanical portion relates to a groove or a guiding groove, this latter can be formed or applied in longitudinal direction as well as in transverse direction, and that this latter also can be formed or applied in both directions. In this latter case, the board, or the parts thereof into which the board has been divided when dividing it further, is moved with a longitudinal guiding groove, with a transverse guiding groove, respectively, over one or more guiding portions. By “longitudinal direction”, here the feed direction of the cutting device is meant, whereas by “transverse direction”, a direction transverse, and preferably perpendicular, to said “longitudinal direction” is meant.
According to its fourth independent aspect, the invention aims at an improved method for manufacturing floor panels, starting from boards having an upper side, more particularly a decorative side, with a pattern formed at least by printing, and the method moreover comprises the following steps:
A method wherein, by adjustment of the cutting elements, the cuts are performed at locations in function of said pattern, more particularly in function of the location of said pattern, is known, for example, from EP 1 147 867. This EP describes a method wherein the cutting elements, in the present case, the saw blades, can be steadily shifted apart on the basis of a detection of the actual width and/or length of the entire decorative side of the plate, with the purpose of taking into account, when dividing the board, possible deviations in this width or length. The present inventors, however, have found that such method is insufficient, as the possible changing dimensions of the decorative side, more particularly the printed motif of the pattern, do not always manifest themselves in a regular manner over the length and/or the width of the decorative side.
Adjusting the cutting elements in a manner independent from each other, in function of the aforementioned pattern, such as according to the fourth aspect of the present invention, allows to create several novel control possibilities, as a result of which the dividing of the board can take place in a more accurate manner. Preferably, all cutting elements that are applied for dividing the boards, by means of parallel cuts, into several panels, are adjusted in a manner independent from each other, however, in function of the pattern.
In general, a method with the characteristics of the fourth aspect allows to obtain more accurate cuts under changed conditions. Such “changed conditions” occur, for example, when the decorative sides of globally identical boards do show mutual differences, more particularly show differences among the patterns, formed by printing, of these decorative sides.
According to a first example, such difference may occur when the pattern of the decorative sides, board after board, is situated at a, whether or not slightly, different position in respect to the edges of the plate, or, according to a second example, when the decorative side of the pattern, board after board, has undergone a, whether or not slight, stretching.
In particular, a method according to the fourth aspect allows that now, amongst others, changing dimensions of the decorative side that manifest themselves irregularly over the length and/or width thereof, now can be accommodated sufficiently by said adjustment of the cutting elements.
The possibility of dividing the board even under said changed conditions is of particular importance when the method is applied when manufacturing laminate floor panels, of the type where the aforementioned board from which is started, is provided at least with a resin-impregnated printed carrier sheet, more particularly printed paper acting as so-called decor layer. Both aforementioned examples of differences may occur in such laminate floor panels. However, it is in particular in boards that are provided with a resin-impregnated carrier sheet, that the risk of a difference as in the second example, namely, the occurrence of mutually differing strain among decorative sides, is particularly large. It is noted that such carrier sheets usually are applied when manufacturing laminate floor panels comprising a top layer of the aforementioned “DPL” or “HPL”.
It is noted that by “adjusting in function of the pattern”, it is generally meant that the pattern is observed, preferably automatically, and that these observations are applied for adjusting the cutting device. The observation may take place in any manner, for example, by cameras, sensors, scanners and the like. Preferably, it takes place in an independent manner, however, in function of the pattern adjustment of the cutting elements in function of observations, which are performed at the upper side of the respective board or of a corresponding reference board, at least at three locations distributed over the width of the board to be divided.
With the intention of having the aforementioned adjustment run more smoothly, the aforementioned observations and adjustment may be performed according to any of the following possibilities, or a combination thereof:
Further, it is noted that in the second through fourth aspects a board as such can be obtained from a larger board, for example, by dividing this larger board, and that according to these aspects, the panels that are obtained by dividing the board as such can be divided further into smaller panels, from which then finally the floor panels are formed.
According to all its aspects, the present invention does not exclude that the panels from which is started may also consist of other than the aforementioned materials, such as synthetic materials. Amongst others according to its first and second aspect, the invention also does not exclude that the panels from which is started are obtained in another manner than from a larger board, for example, by extrusion.
According to a fifth independent aspect, the invention also relates to a floor panel which, at least at two opposite sides, is provided with profiled edge regions, which comprise at least coupling parts, which consist at least of a tongue and a groove, with which, in the coupled condition of two of such panels, a locking in vertical direction is obtained, as well as locking parts, which, in a coupled condition of two of such panels, effect a locking in horizontal direction, wherein these locking parts have contact surfaces effecting at least the aforementioned locking in horizontal direction, with the characteristic that, at the lower side of the floor panel, close to the side of the floor panel that is provided with the aforementioned tongue, a groove with, at opposite sides, two substantially parallel and substantially vertical flanks is present, wherein this groove integrally forms part of the respective profiled edge region and wherein these flanks and said contact surfaces consist of different surfaces. It is clear that by “different surfaces” is meant that said vertical flanks and said contact surfaces are not situated in each other's prolongation. However, it is noted that said contact surfaces do not necessarily have to be flat. They may have any shape, such as, for example, a bent shape.
A floor panel having the characteristics of the fifth aspect of the invention is ideally suited for being manufactured by means of a method, amongst others, according to the first aspect. The aforementioned two flanks at opposite sides of the groove are extremely well suited for receiving a guiding element and, thus, for serving as a guiding groove when transporting such floor panels before, during or after their manufacture.
Moreover, the groove of the floor panels according to the fifth aspect of the invention can be performed such that in respect to positioning in respect to other parts of the floor panel the same properties are obtained as described in respect to the guiding groove of the first aspect of the invention. The particularity herein is that, for example, the groove, in the coupled condition of two floor panels, is at least partially covered by a portion of the aforementioned lower lip.
According to a sixth independent aspect, the invention aims at an improved method for manufacturing floor panels, which, amongst others, offers an enhanced stability when performing profiled edge regions at opposite sides of a panel. The sixth aspect can also be performed advantageously in combination with a method according to the first aspect, in other words, in combination with a guiding groove situated in said profiled edge region, which renders the transport of the panels and/or the processing thereof even more stable.
Herein, the method is of the type that comprises at least the following steps:
It is clear that by “flat panel sides” generally the two largest surfaces of the panels are meant, or, in other words, the surfaces that, in the normal use of the floor panel, form the lower side and the upper side or the decorative side, respectively. In this context, the term “plane” is used only for indicating the upper side and lower side and does not mean that these sides must have a completely flat shape. It is noted that it is also not excluded that the aforementioned flat panel sides have impressions or other unevennesses.
A method of said type is known, for example, from DE 200 20 505 U1. In DE 200 20 505 U1, on the one hand, a belt supported by travel wheels is applied as a first movable carrier element, and, on the other hand, a conveyor chain fixedly installed in a direction of the respective flat panel side is used as a second carrier element. Herein, the travel wheels press the belt in the aforementioned direction against the respective flat panel side, such that the opposite flat panel side comes into contact with the fixedly installed conveyor chain. In other words, the first carrier element adapts in the aforementioned direction to the location of each respective floor panel. Methods, wherein a fixedly installed element is applied as the second mechanical carrier element, however, show reduced grip, when the panels show a certain curvature in length and/or in transverse direction. In those cases, the contact between the second carrier element and the respective panel side is lost, because the first, movable carrier element is no longer capable of pressing the panels onto the fixedly installed second carrier element. For this reason, the panels may be “stuck” in the processing machine, which leads to low quality treatments and a hindrance to production. The loss of contact with one of the carrier elements and/or the temporarily being stuck or slipping of the panels results in an increased risk of scratches and/or reduced gloss of the upper side or decorative side of the panels.
According to this sixth independent aspect, the invention relates to a method of the above-mentioned type, with the characteristic that the second mechanical carrier element also, at least at the height of the respective contact with the flat panel side, is freely movable in a direction transverse to the respective flat panel side, more particularly such that both carrier elements adapt themselves according to the aforementioned direction to the location of each respective floor panel at the height of the aforesaid carrier elements.
The mobility of the mechanical carrier elements at the height of said contact can be obtained in any manner.
So, for example, may one or both of the applied carrier elements, according to a first possibility, have a certain freedom of movement in a direction transverse to the plane of the panels.
According to a second possibility, one or both of the applied carrier elements, at the height of said contact, may consist of a compressible material. It is clear that the invention also relates to a method in which both possibilities are combined.
However the aforementioned mobility may have been obtained, in a preferred form of embodiment mechanical carrier elements are applied, which, at least at the height of the contact with the floor panels, are freely movable in the aforementioned direction over a distance of at least 0.3 millimeters, and still better at least 0.6 millimeters.
It is noted that, for realizing contacts over these distances, in each case when they are in the order of magnitude of 1 mm or larger, other elements must be applied than elements that comprise an air guiding. An air guiding in fact always maintains a constant small gap between its bed and the object to be transported; this is either the panel itself, or a belt, which then is in contact with the panel. Although it is not excluded that an air guiding, such as mentioned above in the introduction, may also have specific advantages, it is generally advantageous to avoid the application of an air guiding, if possible, as the air consumption may form a considerable portion of the cost price of such method.
A method according to the sixth aspect of the invention can preferably be realized with a first and second mechanical carrier element, which both are formed by a belt that, by means of travel wheels, then is pressed against the respective flat panel side. A method, in which only one mechanical carrier element is applied that comprises such positively supported belt, as such is known from the above-mentioned WO 2004/037502, however, the present invention, according to a preferred form of embodiment, relates to a method, where the aforementioned first as well as the aforementioned second mechanical carrier element is performed in such manner.
In comparison with a method in which a conveyor chain is applied as the second mechanical carrier element, the use of belts has the additional advantage that the so-called “polygon effect” will not occur. The polygon effect is occurs at conveyor chains, there, where the chain is reversed over a so-called return wheel. As a result of the length of its links, the chain bends irregularly when reversing. This irregular reversion results in speed variations of the chain and the panels transported thereby. These speed variations in their turn may lead to an inferior processing quality. However, it is not excluded that one or both of the aforementioned mechanical carrier elements, according to the sixth aspect of the invention, may also be performed as a chain that is at least movable at the height of said contact with the flat panel side.
In a preferred form of embodiment, the panels are provided with a guiding groove and does the method also comprise the step of guiding the panels by means of a guiding portion that engages in said guiding groove, while the panels, as aforementioned, are transported through the processing machine.
It is noted that, when performing the aforementioned profiled edge regions, preferably pressure-exerting elements, such as pressure shoes, are applied, which press the panels in the immediate proximity of both opposite edge areas to be profiled with at least one of their flat panel sides onto a counter element, such as a sliding shoe.
In a preferred form of embodiment, the aforementioned pressure-exerting elements are movable independently from said guiding portion, or even better is said guiding portion fixedly installed, or is more particularly rigidly connected to a frame of the processing machine. This arrangement allows a very stable transport of the panels and a correspondingly high quality of the treatments in the machine.
A method, which, as in a preferred embodiment of the sixth aspect, applies a first and a second mechanical carrier element for transporting the panels through a processing machine, wherein both carrier elements are formed by positively supporting belts, as such is of particular importance. Such method is in fact cheaper and more simple than a method, in which the panels are transported between a belt and a conveyor chain, or between a belt and an air bed, whereas such method still allows to obtain an accurate processing. Therefore, the invention, according to its seventh independent aspect, relates to a method for manufacturing floor panels, wherein the method comprises at least the following steps:
Such mechanical support of the belts may be obtained, for example, by applying belts, which are pressed, by means of travel wheels, in the direction of the aforementioned flat panel sides.
In a preferred form of embodiment of the seventh aspect, the panels are provided with a guiding groove, and the method also comprises the step of guiding the panels by means of a guiding portion that engages in said guiding groove, while they, as aforementioned, are transported through the processing machine.
Preferably, the aforementioned panels, in the immediate proximity of both opposite edge regions to be profiled, are pressed by means of a pressure-exerting element, such as a pressure shoe, with at least one of their flat panel sides onto a counter element, such as a sliding shoe.
In a preferred form of embodiment, the aforementioned pressure-exerting elements can be moved independently from the aforesaid guiding portion, or, still better, said guiding portion is fixedly installed and more particularly is rigidly connected to a frame of the processing machine. This arrangement allows a very stable transport of the panels and a correspondingly high quality of the treatments in the machine.
It is clear that a method according to the seventh aspect, or according to the preferred embodiments thereof, can be advantageously employed in combination with a method according to the first aspect of the invention. In other words, it is advantageous with a method according to the seventh aspect to employ a guiding groove situated in the profiled edge region of the panels.
It is also clear that the invention also relates to a device for transporting panels through a processing machine, characterized in that it comprises a first and second mechanical carrier element allowing that the device is employed in a method with the characteristics of the sixth and/or seventh aspect of the invention.
According to an eighth independent aspect, the invention aims at an improved method for packaging floor panels, which allows a particularly smooth and efficient packaging. To this aim, the invention relates to a method for packaging floor panels, of the type, wherein several floor panels, which are provided with coupling parts at least at two opposite sides, are packaged in a box, which is composed of at least one sheet-shaped packaging element by means of a folding process, with the characteristic that at least part of the aforementioned folding process is performed while the packaging element and the floor panels to be packaged have already been brought together.
Preferably, said sheet-shaped packaging element consists of cardboard, in particular corrugated cardboard.
The method according to the eighth aspect of the invention allows to package the floor panels in a smooth manner at a high frequency, as a result of which one packaging machine applying this method has such a high packaging capacity that this latter corresponds to the production capacity of several production lines of floor panels. Hereby, it is noted that such packaging machine may or may not be installed in line with one or more production lines. Also, such packaging machine can be fed with floor panels coming from a magazine in which major amounts of panels are stocked after having been produced on one or more production lines.
A method for packaging floor panels according to the eighth aspect of the present invention also offers the advantage that a buffer magazine for already folded boxes possibly is made redundant.
In a preferred form of embodiment of the eighth aspect of the present invention, the packaging element is folded around the quantity of floor panels to be packaged therein. This is, for example, possible by depositing the quantity of floor panels to be packed on said packaging element, while this, either when it is still unfolded or already partially folded, before, as already mentioned, folding the packaging element around the quantity of floor panels to be packaged. An important advantage of such packaging method is that the box can be assembled very close around the floor panels, such that floor panels in the box can not shift in mutual respect, which might lead to scratches on the decorative layer of the floor panels, to a heightened risk of damage to the coupling parts and/or other parts. In particular, this is of importance with floor panels comprising a core of MDF or HDF and/or wherein the coupling parts substantially consist of MDF of HDF.
In order to obtain a good packaging, preferably, during the folding process, the quantity of floor panels to be packaged and the bottom of the box to be formed first will be positioned against each other, directly or indirectly, and only afterwards the sidewalls will be folded against the quantity of floor panels. This offers the advantage that stacked upon each other floor panels, which are somewhat shifted in mutual respect, automatically will be positioned in mutual respect during folding of the sidewalls.
Preferably, also at least a number of portions of the box are interconnected during the formation thereof by means of glue, more particularly so-called “hot melt” glue. This offers the advantage that a number of complicated steps from traditional folding processes can be excluded.
It is noted that said box further also can be packaged in a plastic film, for example, a shrink film, such that the risk of moisture penetration, for example, during transport or stocking, is restricted. Because a package obtained according to the eighth aspect of the invention can rest very closely against the floor panels, the risk of a floor panel piercing this plastic film is minimized, too, such that an optimum protection against moisture penetration is obtained.
It is also noted that the floor panels in most cases are packaged in a quantity of 5 to 30 panels, and when relatively large panels are concerned, for example, panels that are longer than 1 m, preferably less than 10, such that in all cases the weight of the packaging unit is limited to a weight that is ergonomic for the user of the floor panels and that does not pose too high requirements in respect to the solidity of the packaging material. Within the scope of the invention, it is also possible that panels differing from each other, for example, panels of different length, are packaged together.
A method for packaging floor panels according to the eighth aspect of the present invention can be applied with any form of boxes. So, for example, boxes with inwardly inclined sidewalls can be applied, whereby the sidewalls then are folded against the floor panels. This kind of boxes may, for example, find its application there, where floor panels of differing shape are packed together, such as, for example, when packaging floor panels of different widths together, whereby the floor panels are stacked in layers in such a manner, that preferably the width of the layers decreases from the bottom towards the top in the box. Applying such box also allows for that, when several of such boxes, preferably with their sidewalls towards each other and alternately with the bottom directed upward or downward, are stacked on a pallet, there is almost no lost space or, in other words, that the space taken on the pallet consists almost exclusively of floor panels and of packaging material.
It is noted that according to the eighth aspect of the invention, by a “box” always a packaging element has to be understood that is manufactured from a sheet-shaped element and that, after folding, has at least a bottom and at least two sidewalls. The sheet-shaped element may be manufactured of different materials, however, here it is clear that herein, materials are intended that as such have a certain rigidity, such as, for example, cardboard, corrugated cardboard or the like.
It is clear that the invention also relates to a set of floor panels, with the characteristic that it is packaged by means of a method according to the eighth aspect of the invention.
According to a ninth aspect, the invention also relates to a packed set of floor panels, with as a characteristic that the set of floor panels is packed in a package that consists at least of a folded sheet-shaped element comprising a bottom and a number of upright sidewalls, whereby at least a number of the sidewalls are interconnected by means of glue. Moreover, preferably a shrink film or the like is provided around the whole. According to a variant, it is, however, not excluded to omit the shrink film and to provide the box with a cover lid. Preferably, the box herein is oblong and glue connections are exclusively present at the short sides. This latter allows a smooth production of such boxes, in view of the fact that exclusively glue connections have to be performed at the location of the short sides.
According to a tenth independent aspect, the invention aims at a method for advantageously packaging floor panels of different widths in one and the same package. To this aim, the invention relates to a method for packaging floor panels, more particularly floor panels of the type consisting of rectangular oblong floor panels that are intended for forming a floor covering, whereby these floor panels are industrially manufactured in at least two widths and are provided with coupling parts at least at two opposite sides, wherein floor panels of different widths are provided in the same package, more particularly the same box, with the characteristic that these floor panels are provided in a box in layers, wherein in at least one of these layers at least two floor panels are placed next to each other, with their longitudinal directions substantially parallel to each other.
This method has the advantage that a variety of beneficial packaging possibilities is created for providing and/or presenting such floor panels of different widths in a package, more particularly a box. So, for example, may the floor panels be provided next to each other in successive layers in such a manner that the filling degree of the package is optimized, notwithstanding the fact that different widths are present in one box. This method also allows to provide the floor panels next to each other in such a manner that the presence of different width is immediately, or almost immediately, visible, either immediately through a transparent portion of the package, or rather immediately after such box has been opened and possibly only a number of floor panels has been removed from it.
It is clear that, in order to obtain an efficient packaging, the majority of the layers and preferably all layers take up at least 70% of the internal width of the box, such that the freedom of movement of the floor panels in the package is restricted.
In a preferred form of embodiment, the filling degree of the package, seen in width direction, for each of the aforesaid layers is at least 90%, whereby the filling degree is defined as (A/B)×100, wherein:
By “width of the floor panels”, herein the total width of the floor panels is meant, including the coupling means. In this form of embodiment, the risk of a mutual shifting of the floor panels is minimized, such that, for example, the risk that the decorative layer of the floor panels, as, for example, laminate panels, becomes damaged, is also restricted. With floor panels that are provided with coupling parts of MDF of HDF, the thus limited freedom of movement also results in a restriction of the risk of damage at these coupling parts.
The internal width of the box may, for example, be chosen such that it substantially corresponds to the largest of the aforesaid different widths of the floor panels. In this manner, the shifting of the widest floor panels is optimally restricted or even excluded. Additionally, this choice leads to a sturdy packaging, as the widest panels can contribute to the strength of the package.
It is clear that a method for packaging according to the tenth aspect requires less efforts in the distribution. In order to obtain that the installing person has too little or too much of a certain width, one box moreover preferably has as many floor panels of each width, and still better as many or almost as many meters run of floor panels of each width.
In a preferred form of embodiment, the method is applied for packaging floor panels of three different widths in the same package, wherein the sum of a first width and a second width is a whole, or almost a whole, multiple of the third width. So, for example, does the sum of the widths of the narrowest and of the widest floor panels substantially correspond to two times the width of the floor panels of intermediate width. According to an important form of embodiment of the invention, the present example allows a very compact packaging, whereby according to this form of embodiment, on the one hand, at least layers are formed, which, seen in a cross-section of the package, comprise exactly two floor panels that are of the intermediate width, and, on the other hand, layers are formed, which, also seen in a cross-section of the package, at the same time comprise only two floor panels, of which a first, however, is of the smallest width and a second is of the largest width.
It is noted that in one and the same package, also floor panels of different widths can be combined with floor panels of different lengths, preferably in a manner that does not allow any, or almost any, mutual shifting among the different floor panels, in width direction of the floor panels as well as in the longitudinal direction of the floor panels. Preferably, herein in one box of each width the same amount of meters run shall be provided, and/or of each length the same amount of square meters. For packaging these panels, a combination can be made of the present invention according to the tenth aspect and the packaging method for panels of different lengths that is known from BE 1015299.
The packaging method that is applied according to the tenth aspect of the invention preferably can be a method such as described by means of the eighth aspect of the invention, as such packaging still further restricts the shifting of the panels, however, other packaging methods can be applied as well, for example, packaging in an already assembled cardboard box and/or a shrink film.
It is noted that avoiding scratches by means of applying a method according to the eighth and/or the tenth aspect is of particular importance with laminate panels.
With the intention of better showing the characteristics of the invention, hereafter, as an example without any limitative character, several preferred forms of embodiment are described, with reference to the accompanying drawings, wherein:
It is noted that the term “panels” substantially is applied as long as the floor panels have not entirely been provided with profiled edge regions, whereas the term “floor panels” is applied when these profiled edge regions indeed have been provided. In both cases, however, the reference number 1 is applied thereto.
The represented panels 1 consist of laminate material of the “DPL” type, however, as explained in the introduction, it is clear that the invention is not restricted to the manufacture of panels 1 consisting of such material.
The represented laminate material comprises a core 12, a decor layer 13, as well as a so-called overlay 14, whereby the decor layer 13 and overlay 14 together form the top layer 15 and consist of carrier sheets impregnated with synthetic material, which are pressed upon the core 12 and whereby the decor layer 13 also is provided with a printed decor. The core 12 consists, for example, of a wood-based material, such as MDF or HDF. At their lower side 9, which here, when the profiled edge regions 5A-5B are formed, is oriented upward, the panels 1 are provided with a backing layer 16, which consists of a carrier sheet soaked in resin.
As can be seen in
Preferably, as represented in
In the example of
Preferably, the guiding groove 22, measured in a horizontal direction, is situated at such a distance from the vertical plane V, in which the coupled floor panels 1 adjoin each other with their upper sides 24, that one or both of the following criteria are met:
Further, it is preferred that the guiding groove 22 is realized such that it has a width B between 1 and 4 mm, and still better between 1 and 2 mm, and shows a depth D of 1 to 4 mm, and still better 1.5 to 2.5 mm.
Forming of the aforementioned profiled edge regions 5A-5B and coupling parts 17A-17B in this case takes place by means of mechanical tools 6, such as milling cutters. As represented in
As represented in
The gap 28 allows for that, as represented in
It is noted that, as becomes quite clear from
Generally, it is noted that the aforementioned shoes 10 preferably are moveable independently from the guiding portions 26 and that more preferably the guiding portions 26 are fixedly connected to a frame of the processing machine or continuous machine 2.
The profiled edge regions 5A-5B of the floor panels 1 from the example of
From
In
According to the packaging process represented in
Said transport devices 38 and 41 bring the floor panels 1 and the packaging elements 36 together during the folding process, after which the packaging elements 36 are folded around the quantity of floor panels 1 to be packed therein and subsequently the packed floor panels 1 are transported off, such as schematically represented at the uppermost portion of the transport device 41. When bringing them together, the floor panels 1 are put on the aforementioned packaging element 36, while the packaging element 36 either is still unfolded or is already partially folded, before, as aforementioned, folding the packaging element 36 around the quantity of floor panels 1 to be packaged. Preferably, the panels 1 are automatically deposited at the right place on the packaging element 36. This is possible, for example, by adjusting the supply from both aforementioned transport devices 38 and 41 to each other, for example, by means of sensors that detect the location of the floor panels 1 as well as of the packaging elements 36 and regulate the speed of the respective supplies.
It is clear that the box 36 represented in
The floor panels 1 are provided in the box 35 in layers 47, wherein in at least one of these layers 47 at least two floor panels 1 are placed next to each other, with their longitudinal directions substantially parallel to each other. The filling degree of the package, seen in width direction, for each of the layers 47, as represented, preferably is at least 90%. In the example of
With reference to
Such increased flexibility generally results in a better coupling. Due to the flexibility, the coupling parts can adapt better to each other, and it is also possible to produce the coupling parts with somewhat overlapping contours, for example, in order to create a so-called pretension. Also, the flexibility allows a certain mobility in the coupling, as a result of which material stresses are reduced, when, as the floor panels are walked on, certain movements should be induced in the coupling.
Such flexibility is also particularly useful when coupling parts 17A-17B and locking parts 29A-29B are intended, in which the lower lip 20, when coupling two of such floor panels 1, is forced to perform a bending at least during a part of the coupling movement that is made therein, for example, in the case that a well-defined snap-on effect is desired.
According to the invention, the recess 48 allows to obtain a good coupling also in relatively thick floor panels, even by means of compact profiled edge regions 5A-5B.
The coupling means 17A-17B and locking parts 29A-29B that are represented in
As represented in
It is noted that the represented recess 48 of
The recess 48 and the floor panel 1 that are represented in
It is noted that
Such configuration can be employed, for example, as represented, when the core 12 of the floor panel 1 consists of lamellae 50, as can be the case with composed parquet, in other words, panels that are composed of several parts, of which the top layer 15, anyhow, consists of a noble kind of wood. It is noted that also the coupling part 17A, amongst which the tongue 18, can be realized in a, whether or not protruding, insertion piece 49A.
It is clear that the backing layer 16, according to a variant, does not necessarily have to continue up into the distal end of the portion 51. Also, such floor panel 1 can be performed without such backing layer 16, whereby the floor panel 1 then over its entire thickness T, possibly with the exception of the top layer 15, consists of plywood.
In the form of embodiment that is represented in
In
In the forms of embodiment of the eleventh aspect, as represented in
It is noted that according to the invention, it is not excluded that several recesses 48 are provided. Also, it is not excluded that one or several of these recesses 48 are provided with a compressible material, such that the higher flexibility of the lower lip 20 obtained by means of the recess 48 is maintained at least partially.
Further, it is noted that according to the eleventh aspect of the invention, the thickness T also must be larger than 15 mm, and still better larger than 20 mm. It is in particular with such thickness values that the invention shows its advantages.
Although the forms of embodiment of
It is clear that the importance of the invention according to the eleventh aspect increases as the thickness T of the panels 1 increases. Then the distance P preferably also increases. So, for example, this distance then is larger than 0.3 times, and still better larger than 0.4 times the thickness T of the floor panel.
As aforementioned, the floor panels 1 of
It is clear that this eleventh aspect can be employed in floor panels 1 with coupling parts 17A-17B of any shape. As becomes clear from the examples, these coupling parts 17A-17B and locking parts 29A-29B preferably are made such that they allow that two floor panels 1 are laterally interconnected or coupled by one or several of the following possibilities:
In the example of
In the represented example, the impression 54 is formed in the upper side or decorative side 11 of the panel 1 and is not only this impression 54 formed during the pressing of the boards, but also one or more other impressions 55 are performed, which are determining for the appearance of the decorative side 11. In the example, this relates to impressions 55 that are intended for forming a deepened edge region, such as a beveled edge 32, at the upper edge 24 of the floor panel 1.
Various alternatives are possible for further optimizing the guiding of the panel 1, such that a guiding effect still remains after the guiding groove 22 has already been milled away. According to a first alternative, another guiding groove and another guiding portion can be employed to provide for an additional guiding, such as, for example, a guiding groove 22A in the lower side of the panel 1, which in this case is realized by the milling treatment from
It is noted that the provision of a guiding groove in the upper side of a laminate board or laminate panel from which a final floor panel is produced, and employing this guiding groove for guiding the laminate panels or floor panels during the performance of a treatment, as such also forms an independent inventive aspect. Hereby, a novel range of possibilities is obtained for guiding floor panels during processing.
Still another independent inventive aspect consists in that, when realizing the panels, at least two guiding grooves are employed, which preferably are utilized alternate, more particularly successively. Hereby, the advantage is created that a better guiding can be provided, as, when one of the guiding grooves cannot be utilized or is no longer available, then a guiding by means of the other guiding groove can be provided. These guiding grooves may be situated at the same side, for example, upper side or lower side of the panel, the boards, respectively, but may also be present at the upper side, lower side, respectively, of such panel. The embodiment of
In the represented example, the provided mechanical portion 60 consists of a groove, more particularly a guiding groove 22, which is provided in the lower side 9 of the board 57.
The represented board 57 from which is started, has a decorative side 11 showing a pattern 61, more particularly formed by a print and/or impression. The pattern 61 can be observed by means of cameras or other sensors 62, such that the mechanical portion 60 can be applied in the board 57 in function of this pattern, more particularly in function of the location of this pattern, which allows to provide the mechanical portion 60 at a fixed position in respect to this pattern 61. Providing such mechanical portion 60, more particularly such guiding groove 22, at the right location is described further in detail.
As
An application, where the mechanical portion 60, and more particularly the guiding groove 22, remains present in the final floor panel, is represented in the
The laminate material of the example is of the type “DPL”. The board of laminate material, from which is started, is formed by means of a press treatment between a lower press plate 65 and an upper press plate 66. As represented, the upper press plate 66 comprises projections 67 that are intended for forming, in the upper side of the board 57, the impressions, in this case deepened edge regions, which determine the appearance of the decor side 11. The lower press plate 65 also comprises projections 68. These latter, however, are intended for forming impressions 54, or mechanical portions 60, which can be employed for guiding the board 57, or the panels 1 finally obtained from the board 57, in further treatments. It is important to accurately align the lower and upper press plate 65-66 in respect to each other, such that, for example, the distance R of the center line of the impression 54 or mechanical portion 60 to the upper edge 24 of the panel 1 to be formed and/or the distance Z of this center line to the nearby edge of the cut 69 to be formed is precisely known and/or is constant.
As represented in
It is clear that the mechanical portion 60 that is formed by means of the aforementioned press treatment, can also be advantageously applied in combination with a method according to the second aspect of the invention. In particular, it is of importance herein that the distance R is well-known and/or constant, such that the profiled edge regions 5A-5B are realized with narrow tolerances on the locations provided to this aim.
The aforementioned guiding groove 22 in
It is clear that such adjustment can be performed in various manners. As schematically indicated in
After the guiding groove 22 has been provided, the board 57 can be moved to the cutting device 58 for effectively providing the cuts 69, wherein the board 57 is guided in that the guiding portion 25 engages in the guiding groove 22.
As represented in
The adjustability between the non-active and the active position, or, in other words, the width variability, of the guiding portion 26 has been obtained here in that both portions 70A-70B can move away from each other and/or towards each other, more particularly with a shifting movement.
It is noted that according to the third aspect of the present invention, the adjustability of a guiding portion 26 can have been obtained in any manner, so, for example, an element that is variable in width also may be obtained by pivoting the portions 70A-70B relative to each other around a common hinge.
According to a not represented possibility, such guiding groove may also be provided in transverse direction at the board 57, for example, in the case that such board also has to be divided in transverse direction.
The aforementioned transport device may have any form. So, for example, a vacuum table can be employed as a transport element 72, upon which the board 57 is fixed by means of negative pressure. It is noted that “fixing the board” is to be interpreted in the broadest sense. So, the board 57 can be provided upon as well as below the transport element 72, in the last case, for example, by suspending the board or suctioning it on. Further, it is clear that the aforementioned freedom of movement or the reduction thereof also can be obtained in any manner. So, for example, may the transport element 72 be connected to the guide 73 by means of any hinge elements, which in the first condition allow a rotational movement of the transport element 72 in respect to the guide 73, whereas in the second condition, these hinge elements are fixed, such that possible angular rotations performed by the transport element 72 when contacting the board 57 with the guiding portion 26 are maintained when dividing the board 57 in the cutting device 58. When performing a method according to this form of embodiment, it is obtained that the board 57, after providing, in its adjusted position, the guiding groove 22, can be manipulated and possibly stocked, while it is still possible to obtain an accurate dividing.
In the example of
The independent axial displacement of the cutting elements, in this case the saws 59, can be performed in any manner. As schematically represented, to this aim each cutting element 59 can be equipped with its own drive element, such as an electric motor 59B, wherein the whole 59-59B is axially adjustable by means of a drive element 59C. In
In the represented example, per longitudinal cut 69 to be performed, one camera 62 is employed. However, it is not excluded that several cameras 62 per cut 69 are employed, or also less cameras than cuts 69 are present, wherein then at least three cutting elements 59 are axially adjusted independently from each other, whereas the positions of the remaining cutting elements then are determined and adjusted in another manner, for example, by interpolation.
It is noted that, although the employed cameras or sensors 62 in the example are represented on one line, one or more of these cameras 62 can be shifted, for example, to a position in which these cameras 62 fulfill still other functions. So, for example, a camera 62 is represented in dashed line 75, which camera at the same time allows to observe the respective longitudinal as well as the respective transverse cutting line 69. Such arrangement allows an adaptation to a possible stretching in width as well as to a possible stretching in length manifesting itself in the pattern 61. Moreover, it allows to control a possible preceding adjustment of the board 57 by means of several, preferably at least three, of the present cameras 62, such as described by means of
Further, it is noted that in the pattern 61 of the example of
It is also not excluded to perform various of the necessary detections with a common camera or other sensor. So, for example, may a camera be applied that takes an overall image of the pattern of the entire board, from which subsequently the positions of the cutting elements 59 are derived, for example, in function of the observed locations of the reference lines 76 or in function of the recognition of a pattern. Another possibility consists in applying a line scanner, which is active in transverse direction to the reference lines 76 and in this manner can determine the locations of these reference lines.
As becomes clear from
As becomes clear from
In the present case, the aforementioned mobility is obtained in that both mechanical elements 77-78 comprise belts 8, which, by means of travel wheels 80, are pressed into the direction of said flat panel sides 9 and 11. It is clear that such pressing-on can be realized in various manners. So, for example, may the travel wheels 80 be performed as pressing rollers that are borne in elements, wherein a spring system provides for that these elements, with the pressing rollers borne therein, are pressed against the respective side of the elements 77-78.
From
It is noted that the panels 1, as is evident from
With reference to
In combination with the conveyor chain 84, as represented in
According to its twelfth aspect, the invention thus also relates to a method for manufacturing floor panels 1, wherein the method comprises at least the following steps:
In the case that at least one mechanical carrier element 78 is realized as a conveyor chain, the processing machine 2 shall preferably also be provided with additional means that minimize the risk of possible vibrations in the chain and/or enhance the stability of the transport or the treatments. Such vibrations or instabilities, namely, may lead to an inferior processing quality.
According to its thirteenth aspect, the invention also relates to a method for manufacturing floor panels 1, wherein the method comprises at least the following steps:
It is clear that the invention also relates to the three possible combinations of two of the above techniques, as well as the combination of all above techniques.
When employing the first technique, in other words, the technique where the conveyor chain 84 is pressed upon the guiding element 88 by means of an attraction force, the risk of vibrations occurring due to upsetting of the conveyor chain 84 is minimized. It is clear that such attraction force can be realized in any manner by creating magnetic attraction forces or pressing forces between, on the one hand, certain parts of the conveyor chain 84, and, on the other hand, certain parts of the guiding element 88. In view of the fact that such magnetic systems for attracting conveyor chains against their guide are known as such, this will not be further discussed in detail. Preferably, the magnetic attraction takes place at guiding elements 88, or portions thereof that are situated at locations where the conveyor chain 84 runs onto the return wheels 87, leave these, respectively. It is, however, clear that the attraction can also be realized at other locations, for example, at the location of the guide 89 and/or at the location of the circumference of the return wheels 87.
When employing the second technique, in other words, the technique where the polygon effect in the conveyor chain 84 is minimized, also the occurrence of vibrations in the conveyor chain 84 is minimized. As aforementioned, the polygon effect occurs there, where the conveyor chain 84 is reversed over the return wheels 87. As a consequence of its link length, the conveyor chain 84 bends irregularly when reversing. This irregular reversion results in speed variations of the conveyor chain 84 and vibrations that can continue into other parts of the processing machine 2.
The aforementioned means for minimizing the polygon effect can consist of one or preferably a combination of at least two of the following precautions:
Compensating polygon effects in a conveyor chain is a technique that is known as such, in which respect reference is made to EP 1 304 302, however, the combination of this technique with the other techniques of the thirteenth aspect as such is novel and inventive.
When employing the third technique, namely, guiding the panels 1 by means of a guiding portion 26 that engages in said guiding groove 22, it is achieved that the panels 1 are positively guided during their transport through the processing machine 2. In a preferred form of embodiment, the guiding portion 26 is fixedly installed, more particularly rigidly connected to a frame 83 of the processing machine. This arrangement allows a very stable transport of the panels 1 and a correspondingly high quality of the treatments in the machine 2.
It is clear that combining the aforementioned stabilizing means can offer various synergetic effects.
It is, for example, clear that the application of the aforementioned second technique, namely, the application of means in order to minimize the polygon effect, preferably is combined with the aforementioned first technique, namely, employing a conveyor chain 84, which, by magnetic attraction, is retained on a guiding element 88. This is quite clear, when the aforementioned guiding element 88, over which the conveyor chain 84 is running, is provided with a portion that subjects the conveyor chain 84 to a gradual transition movement towards and/or from the return wheel 87, such that the mutual bending of the links 85 during reversing of the conveyor chain 84 occurs more gradually.
It becomes also clear from the thirteenth aspect that combining the first technique with the third technique may have many advantages for the stability of the transport and/or the quality of the processing of the panels 1.
When combining the second and the third technique, also an improvement of the stability of the transport and/or the quality of the processing of the panels 1 is obtained. Preferably, however, as aforementioned, all three aforementioned techniques are applied in combination, such that the risk of the occurrence of vibrations of which kind whatsoever is minimized.
It is clear that further all aspects of the present invention that relate to a method can be combined in an unlimited manner, wherein then advantageous synergetic effects may or may not occur.
Further, it is noted that the present invention also relates to floor panels that are realized according to any of the aforementioned manufacturing processes or by means of a combination of the above-described manufacturing processes.
It is also clear that the invention also relates to sets of floor panels that are packaged by the application of methods with the characteristics of the eighth and/or tenth aspect of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005/0169 | Mar 2005 | BE | national |
2006/0024 | Jan 2006 | BE | national |
This application is a continuation of U.S. patent application Ser. No. 13/757,055, filed on Feb. 1, 2013, which is a continuation-in-part application of U.S. patent application Ser. No. 12/494,480, filed on Jun. 30, 2009, now U.S. Pat. No. 8,375,679, the entirety of which is incorporated herein by reference. U.S. patent application Ser. No. 12/494,480 is a divisional application of U.S. patent application Ser. No. 11/887,363 filed on Sep. 28, 2007, now U.S. Pat. No. 8,161,701, which is a national stage application of PCT Application No. PCT/IB2006/000993 filed on Mar. 28, 2006 which claims the benefit of priority from U.S. Provisional Application No. 60/672,538, filed on Apr. 19, 2005, Belgian application BE 2005/0169 filed on Mar. 31, 2005, and Belgian application BE 2006/0024 filed on Jan. 12, 2006. The entirety of these applications is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
124228 | Stuart | Mar 1872 | A |
753791 | Fulghum | Mar 1904 | A |
1194636 | Joy | Aug 1916 | A |
1331018 | Luthy | Feb 1920 | A |
1723306 | Sipe | Aug 1929 | A |
1743492 | Sipe | Jan 1930 | A |
1809393 | Rockwell | Jun 1931 | A |
1902716 | Newton | Mar 1933 | A |
2026511 | Storm | Dec 1935 | A |
2184113 | Calafati | Dec 1939 | A |
2204675 | Grunert | Jun 1940 | A |
2517939 | Stewart | Aug 1950 | A |
2559261 | Schwartz | Jul 1951 | A |
2596280 | Nystrom | May 1952 | A |
2666233 | Klemm | Jan 1954 | A |
2732706 | Friedman | Jan 1956 | A |
2740167 | Rowley | Apr 1956 | A |
2863185 | Riedi | Dec 1958 | A |
2865058 | Andersson et al. | Dec 1958 | A |
3023681 | Worson | Mar 1962 | A |
3077703 | Bergstrom | Feb 1963 | A |
3177279 | Bilodeau | Apr 1965 | A |
3271787 | Clary | Sep 1966 | A |
3325585 | Brenneman | Jun 1967 | A |
3350827 | Sugar | Nov 1967 | A |
3378958 | Parks et al. | Apr 1968 | A |
3387422 | Wanzer | Jun 1968 | A |
3396640 | Fujihara | Aug 1968 | A |
3512324 | Reed | May 1970 | A |
3517927 | Kennel | Jun 1970 | A |
3526071 | Watanabe | Sep 1970 | A |
3535844 | Glaros | Oct 1970 | A |
3572224 | Perry | Mar 1971 | A |
3579941 | Tibbals | May 1971 | A |
3594579 | Branson | Jul 1971 | A |
3641730 | Meckstroth | Feb 1972 | A |
3720027 | Christensen | Mar 1973 | A |
3731445 | Hoffmann et al. | May 1973 | A |
3742669 | Mansfeld | Jul 1973 | A |
3760547 | Brenneman | Sep 1973 | A |
3778954 | Meserole | Dec 1973 | A |
3786608 | Boettcher | Jan 1974 | A |
3835620 | Boltz et al. | Sep 1974 | A |
3849235 | Gwynne | Nov 1974 | A |
3919820 | Green | Nov 1975 | A |
3950915 | Cole | Apr 1976 | A |
3980173 | Riggs | Sep 1976 | A |
4030852 | Hein | Jun 1977 | A |
4064571 | Phipps | Dec 1977 | A |
4080086 | Watson | Mar 1978 | A |
4082129 | Morelock | Apr 1978 | A |
4100710 | Kowallik | Jul 1978 | A |
4107892 | Bellem | Aug 1978 | A |
4113399 | Hansen, Sr. | Sep 1978 | A |
4169688 | Toshio | Oct 1979 | A |
4196554 | Anderson et al. | Apr 1980 | A |
4227430 | Jansson et al. | Oct 1980 | A |
4299070 | Oltmanns et al. | Nov 1981 | A |
4304083 | Anderson | Dec 1981 | A |
4426820 | Terbrack et al. | Jan 1984 | A |
4471012 | Maxwell | Sep 1984 | A |
4479333 | Hendrich | Oct 1984 | A |
4512131 | Laramore | Apr 1985 | A |
4538392 | Hamar et al. | Sep 1985 | A |
4599841 | Haid | Jul 1986 | A |
4648165 | Whitehorne | Mar 1987 | A |
4819932 | Trotter, Jr. | Apr 1989 | A |
5007222 | Raymond | Apr 1991 | A |
5024045 | Fluent et al. | Jun 1991 | A |
5071282 | Brown | Dec 1991 | A |
5109898 | Schacht | May 1992 | A |
5113632 | Hanson | May 1992 | A |
5135597 | Barker | Aug 1992 | A |
5148850 | Urbanick | Sep 1992 | A |
5173012 | Ortwein et al. | Dec 1992 | A |
5182892 | Chase | Feb 1993 | A |
5247773 | Weir | Sep 1993 | A |
5295341 | Kajiwara | Mar 1994 | A |
5344700 | McGath et al. | Sep 1994 | A |
5348778 | Knipp et al. | Sep 1994 | A |
5454212 | Tanaka | Oct 1995 | A |
5465546 | Buse | Nov 1995 | A |
5542537 | Ford | Aug 1996 | A |
5548937 | Shimonohara | Aug 1996 | A |
5598682 | Haughian | Feb 1997 | A |
5618602 | Nelson | Apr 1997 | A |
5634309 | Polen | Jun 1997 | A |
5694730 | Del Rincon et al. | Dec 1997 | A |
5706621 | Pervan | Jan 1998 | A |
5755068 | Ormiston | May 1998 | A |
5860267 | Pervan | Jan 1999 | A |
5862912 | Schelhorn | Jan 1999 | A |
5899038 | Stroppiana | May 1999 | A |
5950389 | Porter | Sep 1999 | A |
6006486 | Moriau | Dec 1999 | A |
6023907 | Pervan | Feb 2000 | A |
6052960 | Yonemura | Apr 2000 | A |
6065262 | Motta | May 2000 | A |
6101778 | Martensson | Aug 2000 | A |
6173548 | Hamar et al. | Jan 2001 | B1 |
6182410 | Pervan | Feb 2001 | B1 |
6203653 | Seidner | Mar 2001 | B1 |
6216409 | Roy | Apr 2001 | B1 |
6231961 | Sperber | May 2001 | B1 |
6254301 | Hatch | Jul 2001 | B1 |
6256952 | Fahy, Jr. et al. | Jul 2001 | B1 |
6272437 | Woods et al. | Aug 2001 | B1 |
6295779 | Canfield | Oct 2001 | B1 |
6314701 | Meyerson | Nov 2001 | B1 |
6324803 | Pervan | Dec 2001 | B1 |
6330980 | Fiedrich | Dec 2001 | B1 |
6358352 | Schmidt | Mar 2002 | B1 |
6363677 | Chen et al. | Apr 2002 | B1 |
6385936 | Schneider | May 2002 | B1 |
6397547 | Martensson | Jun 2002 | B1 |
6418683 | Martensson et al. | Jul 2002 | B1 |
6440538 | Ungar | Aug 2002 | B1 |
6446405 | Pervan | Sep 2002 | B1 |
6446413 | Gruber | Sep 2002 | B1 |
6450235 | Lee | Sep 2002 | B1 |
6465046 | Hansson et al. | Oct 2002 | B1 |
6490836 | Moriau et al. | Dec 2002 | B1 |
6505452 | Hannig et al. | Jan 2003 | B1 |
6510665 | Pervan | Jan 2003 | B2 |
6516579 | Pervan | Feb 2003 | B1 |
6532709 | Pervan | Mar 2003 | B2 |
6536178 | Palsson et al. | Mar 2003 | B1 |
6550206 | Lee | Apr 2003 | B2 |
6553724 | Bigler | Apr 2003 | B1 |
6569272 | Tychsen | May 2003 | B2 |
6576079 | Kai | Jun 2003 | B1 |
6591568 | Palsson | Jul 2003 | B1 |
6601359 | Olofsson | Aug 2003 | B2 |
6617009 | Chen et al. | Sep 2003 | B1 |
6647689 | Pletzer et al. | Nov 2003 | B2 |
6647690 | Martensson | Nov 2003 | B1 |
6651400 | Murphy | Nov 2003 | B1 |
6681820 | Olofsson | Jan 2004 | B2 |
6691480 | Garcia | Feb 2004 | B2 |
6729091 | Martensson | May 2004 | B1 |
6763643 | Martensson | Jul 2004 | B1 |
6766622 | Thiers | Jul 2004 | B1 |
6769219 | Schwitte et al. | Aug 2004 | B2 |
6769835 | Stridsman | Aug 2004 | B2 |
6772568 | Thiers et al. | Aug 2004 | B2 |
6786019 | Thiers | Sep 2004 | B2 |
6802164 | Newbrough et al. | Oct 2004 | B1 |
6802166 | Gerhard | Oct 2004 | B1 |
6804926 | Eisermann | Oct 2004 | B1 |
6854235 | Martensson | Feb 2005 | B2 |
6862857 | Tychsen | Mar 2005 | B2 |
6863768 | Haffner et al. | Mar 2005 | B2 |
6865855 | Knauseder | Mar 2005 | B2 |
6874291 | Weber | Apr 2005 | B1 |
6874292 | Moriau et al. | Apr 2005 | B2 |
6880307 | Schwitte et al. | Apr 2005 | B2 |
6898913 | Pervan | May 2005 | B2 |
6920732 | Martensson | Jul 2005 | B2 |
6922964 | Pervan | Aug 2005 | B2 |
6922965 | Rosenthal et al. | Aug 2005 | B2 |
6928779 | Moriau et al. | Aug 2005 | B2 |
6931811 | Thiers | Aug 2005 | B2 |
6955020 | Moriau et al. | Oct 2005 | B2 |
6966161 | Palsson et al. | Nov 2005 | B2 |
6968663 | Thiers | Nov 2005 | B2 |
6993877 | Moriau et al. | Feb 2006 | B2 |
7021019 | Knauseder | Apr 2006 | B2 |
7040068 | Moriau et al. | May 2006 | B2 |
7051486 | Pervan | May 2006 | B2 |
7055290 | Thiers | Jun 2006 | B2 |
7121058 | Palsson et al. | Oct 2006 | B2 |
RE39439 | Pervan | Dec 2006 | E |
7149633 | Woods et al. | Dec 2006 | B2 |
7152383 | Wilkinson, Jr. et al. | Dec 2006 | B1 |
7188456 | Knauseder | Mar 2007 | B2 |
7219392 | Mullet et al. | May 2007 | B2 |
7249445 | Thiers | Jul 2007 | B2 |
7251916 | Konzelmann et al. | Aug 2007 | B2 |
7328536 | Moriau et al. | Feb 2008 | B2 |
7332053 | Palsson et al. | Feb 2008 | B2 |
7337588 | Moebus | Mar 2008 | B1 |
7377081 | Ruhdorfer | May 2008 | B2 |
7441385 | Palsson et al. | Oct 2008 | B2 |
7444791 | Pervan | Nov 2008 | B1 |
7451578 | Hannig | Nov 2008 | B2 |
7454875 | Pervan et al. | Nov 2008 | B2 |
7467499 | Moriau et al. | Dec 2008 | B2 |
7484337 | Hecht | Feb 2009 | B2 |
7497058 | Martensson | Mar 2009 | B2 |
7516588 | Pervan | Apr 2009 | B2 |
7533500 | Morton et al. | May 2009 | B2 |
7552568 | Palsson et al. | Jun 2009 | B2 |
7556849 | Thompson et al. | Jul 2009 | B2 |
7568322 | Pervan | Aug 2009 | B2 |
7584583 | Bergelin et al. | Sep 2009 | B2 |
7591116 | Thiers et al. | Sep 2009 | B2 |
7614197 | Nelson | Nov 2009 | B2 |
7617645 | Moriau et al. | Nov 2009 | B2 |
7617651 | Grafenauer | Nov 2009 | B2 |
7621092 | Groeke et al. | Nov 2009 | B2 |
7621093 | Thiers et al. | Nov 2009 | B2 |
7621094 | Moriau et al. | Nov 2009 | B2 |
7632561 | Thiers | Dec 2009 | B2 |
7634884 | Pervan et al. | Dec 2009 | B2 |
7634886 | Moriau et al. | Dec 2009 | B2 |
7634887 | Moriau et al. | Dec 2009 | B2 |
7637066 | Moriau et al. | Dec 2009 | B2 |
7637067 | Moriau et al. | Dec 2009 | B2 |
7637068 | Pervan | Dec 2009 | B2 |
7640708 | Moriau et al. | Jan 2010 | B2 |
7644554 | Moriau et al. | Jan 2010 | B2 |
7644555 | Moriau et al. | Jan 2010 | B2 |
7644557 | Moriau et al. | Jan 2010 | B2 |
7647741 | Moriau et al. | Jan 2010 | B2 |
7647743 | Moriau et al. | Jan 2010 | B2 |
7650727 | Moriau et al. | Jan 2010 | B2 |
7650728 | Moriau et al. | Jan 2010 | B2 |
7654054 | Moriau et al. | Feb 2010 | B2 |
7658048 | Moriau et al. | Feb 2010 | B2 |
7661238 | Moriau et al. | Feb 2010 | B2 |
7665265 | Moriau et al. | Feb 2010 | B2 |
7665266 | Moriau et al. | Feb 2010 | B2 |
7665267 | Moriau et al. | Feb 2010 | B2 |
7665268 | Moriau et al. | Feb 2010 | B2 |
7669376 | Moriau et al. | Mar 2010 | B2 |
7669377 | Moriau et al. | Mar 2010 | B2 |
7673431 | Moriau et al. | Mar 2010 | B2 |
7677005 | Pervan | Mar 2010 | B2 |
7677008 | Moriau et al. | Mar 2010 | B2 |
7681371 | Moriau et al. | Mar 2010 | B2 |
7698868 | Moriau et al. | Apr 2010 | B2 |
7698869 | Moriau et al. | Apr 2010 | B2 |
7707793 | Moriau et al. | May 2010 | B2 |
7712280 | Moriau et al. | May 2010 | B2 |
7721503 | Pervan et al. | May 2010 | B2 |
7726089 | Moriau et al. | Jun 2010 | B2 |
7735288 | Moriau et al. | Jun 2010 | B2 |
7757452 | Pervan | Jul 2010 | B2 |
7757453 | Moriau et al. | Jul 2010 | B2 |
7770350 | Moriau et al. | Aug 2010 | B2 |
7779596 | Pervan | Aug 2010 | B2 |
7802415 | Pervan et al. | Sep 2010 | B2 |
7806624 | McLean et al. | Oct 2010 | B2 |
7810297 | Moriau et al. | Oct 2010 | B2 |
7827754 | Moriau et al. | Nov 2010 | B2 |
7827755 | Moriau et al. | Nov 2010 | B2 |
7841144 | Pervan | Nov 2010 | B2 |
7841145 | Pervan et al. | Nov 2010 | B2 |
7841150 | Pervan | Nov 2010 | B2 |
7842212 | Thiers | Nov 2010 | B2 |
7856784 | Martensson | Dec 2010 | B2 |
7856785 | Pervan | Dec 2010 | B2 |
7866110 | Pervan | Jan 2011 | B2 |
7896571 | Hannig et al. | Mar 2011 | B1 |
7908816 | Grafenauer et al. | Mar 2011 | B2 |
7913471 | Pervan | Mar 2011 | B2 |
7918062 | Chen | Apr 2011 | B2 |
7954295 | Pervan | Jun 2011 | B2 |
8006458 | Olofsson et al. | Aug 2011 | B1 |
8011155 | Pervan | Sep 2011 | B2 |
8024904 | Hannig | Sep 2011 | B2 |
8042311 | Pervan et al. | Oct 2011 | B2 |
8079196 | Pervan | Dec 2011 | B2 |
8132384 | Hannig | Mar 2012 | B2 |
8146318 | Palsson et al. | Apr 2012 | B2 |
8161701 | Cappelle et al. | Apr 2012 | B2 |
8166723 | Moriau et al. | May 2012 | B2 |
8234831 | Pervan | Aug 2012 | B2 |
8245477 | Pervan | Aug 2012 | B2 |
8276342 | Martensson | Oct 2012 | B2 |
8293058 | Pervan et al. | Oct 2012 | B2 |
8365494 | Moriau et al. | Feb 2013 | B2 |
8387327 | Pervan | Mar 2013 | B2 |
8429869 | Pervan | Apr 2013 | B2 |
8535589 | Thiers | Sep 2013 | B2 |
8544233 | Palsson et al. | Oct 2013 | B2 |
8578675 | Palsson et al. | Nov 2013 | B2 |
8631621 | Hannig | Jan 2014 | B2 |
8661762 | Martensson et al. | Mar 2014 | B2 |
8677714 | Pervan | Mar 2014 | B2 |
8707650 | Pervan et al. | Apr 2014 | B2 |
20010047702 | Tychsen | Dec 2001 | A1 |
20010054565 | McCown et al. | Dec 2001 | A1 |
20020007609 | Pervan | Jan 2002 | A1 |
20020014047 | Thiers | Feb 2002 | A1 |
20020031646 | Chen et al. | Mar 2002 | A1 |
20020056245 | Thiers | May 2002 | A1 |
20020095894 | Pervan | Jul 2002 | A1 |
20020152707 | Martensson | Oct 2002 | A1 |
20020170258 | Schwitte et al. | Nov 2002 | A1 |
20020170259 | Ferris | Nov 2002 | A1 |
20020178674 | Pervan | Dec 2002 | A1 |
20020178680 | Martensson et al. | Dec 2002 | A1 |
20030009971 | Palmberg | Jan 2003 | A1 |
20030024199 | Pervan et al. | Feb 2003 | A1 |
20030024200 | Moriau et al. | Feb 2003 | A1 |
20030024201 | Moriau et al. | Feb 2003 | A1 |
20030029115 | Moriau et al. | Feb 2003 | A1 |
20030029116 | Moriau et al. | Feb 2003 | A1 |
20030029117 | Moriau et al. | Feb 2003 | A1 |
20030033784 | Pervan | Feb 2003 | A1 |
20030037504 | Schwitte et al. | Feb 2003 | A1 |
20030066588 | Palsson et al. | Apr 2003 | A1 |
20030079820 | Palsson et al. | May 2003 | A1 |
20030094230 | Sjoberg | May 2003 | A1 |
20030101681 | Tychsen | Jun 2003 | A1 |
20030115812 | Pervan | Jun 2003 | A1 |
20030136494 | Windmoller et al. | Jul 2003 | A1 |
20030145549 | Palsson et al. | Aug 2003 | A1 |
20030159385 | Thiers | Aug 2003 | A1 |
20030180091 | Stridsman | Sep 2003 | A1 |
20030188504 | Ralf | Oct 2003 | A1 |
20030196405 | Pervan | Oct 2003 | A1 |
20040031227 | Knauseder | Feb 2004 | A1 |
20040049999 | Krieger | Mar 2004 | A1 |
20040060255 | Knauseder | Apr 2004 | A1 |
20040068954 | Martensson | Apr 2004 | A1 |
20040107659 | Glockl | Jun 2004 | A1 |
20040123548 | Gimpel et al. | Jul 2004 | A1 |
20040128934 | Hecht | Jul 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040159066 | Thiers et al. | Aug 2004 | A1 |
20040172904 | Martensson | Sep 2004 | A1 |
20040182033 | Wernersson | Sep 2004 | A1 |
20040182036 | Sjoberg et al. | Sep 2004 | A1 |
20040200175 | Weber | Oct 2004 | A1 |
20040211143 | Hanning | Oct 2004 | A1 |
20040211144 | Stanchfield | Oct 2004 | A1 |
20040237447 | Thiers | Dec 2004 | A1 |
20040250493 | Thiers et al. | Dec 2004 | A1 |
20040255538 | Ruhdorfer | Dec 2004 | A1 |
20040261348 | Vulin | Dec 2004 | A1 |
20050016099 | Thiers | Jan 2005 | A1 |
20050025934 | Thiers | Feb 2005 | A1 |
20050034404 | Pervan | Feb 2005 | A1 |
20050066605 | Thiers et al. | Mar 2005 | A9 |
20050144881 | Tate et al. | Jul 2005 | A1 |
20050160694 | Pervan | Jul 2005 | A1 |
20050166514 | Pervan | Aug 2005 | A1 |
20050166515 | Boucke | Aug 2005 | A1 |
20050208255 | Pervan | Sep 2005 | A1 |
20050210810 | Pervan | Sep 2005 | A1 |
20050235593 | Hecht | Oct 2005 | A1 |
20050252130 | Martensson | Nov 2005 | A1 |
20050284075 | Moriau et al. | Dec 2005 | A1 |
20050284076 | Moriau et al. | Dec 2005 | A1 |
20060005499 | Moriau et al. | Jan 2006 | A1 |
20060032168 | Thiers et al. | Feb 2006 | A1 |
20060032177 | Moriau et al. | Feb 2006 | A1 |
20060070332 | Palsson et al. | Apr 2006 | A1 |
20060070333 | Pervan | Apr 2006 | A1 |
20060101769 | Pervan et al. | May 2006 | A1 |
20060179772 | Thiers | Aug 2006 | A1 |
20060179773 | Pervan | Aug 2006 | A1 |
20060179774 | Thiers | Aug 2006 | A1 |
20060179775 | Thiers | Aug 2006 | A1 |
20060179776 | Thiers | Aug 2006 | A1 |
20060196138 | Moriau et al. | Sep 2006 | A1 |
20060201095 | Moriau et al. | Sep 2006 | A1 |
20060225370 | Moriau et al. | Oct 2006 | A1 |
20060225377 | Moriau et al. | Oct 2006 | A1 |
20060236630 | Moriau et al. | Oct 2006 | A1 |
20060236631 | Moriau et al. | Oct 2006 | A1 |
20060236632 | Moriau et al. | Oct 2006 | A1 |
20060236633 | Moriau et al. | Oct 2006 | A1 |
20060236634 | Moriau et al. | Oct 2006 | A1 |
20060236635 | Moriau et al. | Oct 2006 | A1 |
20060236636 | Moriau et al. | Oct 2006 | A1 |
20060236637 | Moriau et al. | Oct 2006 | A1 |
20060236638 | Moriau et al. | Oct 2006 | A1 |
20060236642 | Pervan | Oct 2006 | A1 |
20060236643 | Moriau et al. | Oct 2006 | A1 |
20060248829 | Moriau et al. | Nov 2006 | A1 |
20060248830 | Moriau et al. | Nov 2006 | A1 |
20060248831 | Moriau et al. | Nov 2006 | A1 |
20060254183 | Moriau et al. | Nov 2006 | A1 |
20060254184 | Moriau et al. | Nov 2006 | A1 |
20060254185 | Moriau et al. | Nov 2006 | A1 |
20060260249 | Moriau et al. | Nov 2006 | A1 |
20060260254 | Pervan | Nov 2006 | A1 |
20060272263 | Moriau et al. | Dec 2006 | A1 |
20070006543 | Engstrom | Jan 2007 | A1 |
20070028547 | Grafenauer et al. | Feb 2007 | A1 |
20070039664 | Quick | Feb 2007 | A1 |
20070051064 | Thiers | Mar 2007 | A1 |
20070094986 | Moriau et al. | May 2007 | A1 |
20070094987 | Moriau et al. | May 2007 | A1 |
20070094988 | Palsson et al. | May 2007 | A1 |
20070107360 | Moriau et al. | May 2007 | A1 |
20070107363 | Moriau et al. | May 2007 | A1 |
20070151189 | Yang | Jul 2007 | A1 |
20070175156 | Pervan et al. | Aug 2007 | A1 |
20070193178 | Groeke et al. | Aug 2007 | A1 |
20070251188 | Moriau et al. | Nov 2007 | A1 |
20080000182 | Pervan | Jan 2008 | A1 |
20080000186 | Pervan et al. | Jan 2008 | A1 |
20080005992 | Pervan | Jan 2008 | A1 |
20080010928 | Moriau et al. | Jan 2008 | A1 |
20080010929 | Moriau et al. | Jan 2008 | A1 |
20080010931 | Pervan et al. | Jan 2008 | A1 |
20080010937 | Pervan et al. | Jan 2008 | A1 |
20080010938 | Hannig | Jan 2008 | A1 |
20080028707 | Pervan | Feb 2008 | A1 |
20080034701 | Pervan | Feb 2008 | A1 |
20080034708 | Pervan | Feb 2008 | A1 |
20080041008 | Pervan | Feb 2008 | A1 |
20080053027 | Moriau et al. | Mar 2008 | A1 |
20080053028 | Moriau et al. | Mar 2008 | A1 |
20080060309 | Moriau et al. | Mar 2008 | A1 |
20080060310 | Moriau et al. | Mar 2008 | A1 |
20080060311 | Moriau et al. | Mar 2008 | A1 |
20080066415 | Pervan et al. | Mar 2008 | A1 |
20080066416 | Moriau et al. | Mar 2008 | A1 |
20080104921 | Pervan et al. | May 2008 | A1 |
20080110125 | Pervan | May 2008 | A1 |
20080134607 | Pervan et al. | Jun 2008 | A1 |
20080134613 | Pervan | Jun 2008 | A1 |
20080134614 | Pervan et al. | Jun 2008 | A1 |
20080155930 | Pervan et al. | Jul 2008 | A1 |
20080168736 | Pervan | Jul 2008 | A1 |
20080216434 | Pervan | Sep 2008 | A1 |
20080216920 | Pervan | Sep 2008 | A1 |
20080271403 | Palsson et al. | Nov 2008 | A1 |
20080295432 | Pervan et al. | Dec 2008 | A1 |
20080301945 | Gibson et al. | Dec 2008 | A1 |
20090019808 | Palsson et al. | Jan 2009 | A1 |
20090038253 | Martensson | Feb 2009 | A1 |
20090038256 | Thiers | Feb 2009 | A1 |
20090078129 | Cappelle et al. | Mar 2009 | A1 |
20090133358 | Hecht | May 2009 | A1 |
20090151291 | Pervan | Jun 2009 | A1 |
20090193748 | Boo et al. | Aug 2009 | A1 |
20100170189 | Schulte | Jul 2010 | A1 |
20100275546 | Pervan | Nov 2010 | A1 |
20100300031 | Pervan et al. | Dec 2010 | A1 |
20100313511 | Thiers | Dec 2010 | A1 |
20100319290 | Pervan et al. | Dec 2010 | A1 |
20100319291 | Pervan et al. | Dec 2010 | A1 |
20100319292 | Moriau et al. | Dec 2010 | A1 |
20110011524 | Thiers | Jan 2011 | A1 |
20110023405 | Moriau et al. | Feb 2011 | A1 |
20110030303 | Pervan et al. | Feb 2011 | A1 |
20110042252 | Balmer et al. | Feb 2011 | A1 |
20110088344 | Pervan et al. | Apr 2011 | A1 |
20110088345 | Pervan | Apr 2011 | A1 |
20110088346 | Hannig | Apr 2011 | A1 |
20110154665 | Pervan et al. | Jun 2011 | A1 |
20110167750 | Pervan | Jul 2011 | A1 |
20110185663 | Martensson | Aug 2011 | A1 |
20110203214 | Pervan | Aug 2011 | A1 |
20110209430 | Pervan | Sep 2011 | A1 |
20110225922 | Pervan et al. | Sep 2011 | A1 |
20110252733 | Pervan et al. | Oct 2011 | A1 |
20110283650 | Pervan et al. | Nov 2011 | A1 |
20120011796 | Hannig | Jan 2012 | A1 |
20120017533 | Pervan et al. | Jan 2012 | A1 |
20120031029 | Pervan et al. | Feb 2012 | A1 |
20120036804 | Pervan | Feb 2012 | A1 |
20120151865 | Pervan et al. | Jun 2012 | A1 |
20120174515 | Pervan et al. | Jul 2012 | A1 |
20120233948 | Palsson et al. | Sep 2012 | A1 |
20130042555 | Martensson | Feb 2013 | A1 |
20130067840 | Martensson et al. | Mar 2013 | A1 |
20130104487 | Moriau et al. | May 2013 | A1 |
20130133281 | Cappelle et al. | May 2013 | A1 |
20130145708 | Pervan | Jun 2013 | A1 |
20130219820 | Pervan | Aug 2013 | A1 |
20130247492 | Segaert | Sep 2013 | A1 |
20130291467 | Palsson et al. | Nov 2013 | A1 |
20140109501 | Darko | Apr 2014 | A1 |
20140137506 | Palsson | May 2014 | A1 |
20140262888 | Wahrmund | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1015299 | Jan 2005 | BE |
991373 | Jun 1976 | CA |
2 456 513 | Feb 2003 | CA |
2 159 042 | Jun 1973 | DE |
33 43 601 | Jun 1985 | DE |
39 32 980 | Nov 1991 | DE |
42 15 273 | Nov 1993 | DE |
42 42 530 | Jun 1994 | DE |
196 01 322 | May 1997 | DE |
199 40 837 | Nov 2000 | DE |
199 58 225 | Jun 2001 | DE |
200 20 505 | Apr 2002 | DE |
202 05 774 | Aug 2002 | DE |
202 03 782 | Jul 2003 | DE |
103 16 695 | Oct 2004 | DE |
20 2004 018 661 | Feb 2005 | DE |
203 20 799 | Apr 2005 | DE |
10 2004 055 951 | Jul 2005 | DE |
0 013 852 | Aug 1980 | EP |
0 974 713 | Jan 2000 | EP |
1 024 234 | Aug 2000 | EP |
1 120 515 | Aug 2001 | EP |
1 146 182 | Oct 2001 | EP |
1147867 | Oct 2001 | EP |
1304302 | Apr 2003 | EP |
1 308 577 | May 2003 | EP |
1 033 201 | Jul 2003 | EP |
1 420 125 | May 2004 | EP |
1 138 595 | Jun 1957 | FR |
2 256 807 | Aug 1975 | FR |
2 630 149 | Oct 1989 | FR |
2 810 060 | Dec 2001 | FR |
240 629 | Oct 1925 | GB |
1 171 337 | Nov 1969 | GB |
2 051 916 | Jan 1981 | GB |
H3-110258 | May 1991 | JP |
H5-18028 | Jan 1993 | JP |
H5-131594 | May 1993 | JP |
H6-146553 | May 1994 | JP |
H6-288017 | Oct 1994 | JP |
H6-306961 | Nov 1994 | JP |
H6-322848 | Nov 1994 | JP |
9426999 | Nov 1994 | WO |
9627721 | Sep 1996 | WO |
9747834 | Dec 1997 | WO |
9966151 | Dec 1999 | WO |
9966152 | Dec 1999 | WO |
0020705 | Apr 2000 | WO |
0020706 | Apr 2000 | WO |
0047841 | Aug 2000 | WO |
0102669 | Jan 2001 | WO |
0102672 | Jan 2001 | WO |
0107729 | Feb 2001 | WO |
0151732 | Jul 2001 | WO |
0153628 | Jul 2001 | WO |
0166877 | Sep 2001 | WO |
0175247 | Oct 2001 | WO |
0196688 | Dec 2001 | WO |
0198604 | Dec 2001 | WO |
0196689 | Dec 2001 | WO |
0225004 | Mar 2002 | WO |
02055809 | Jul 2002 | WO |
02055810 | Jul 2002 | WO |
02092342 | Nov 2002 | WO |
03012224 | Feb 2003 | WO |
03016654 | Feb 2003 | WO |
03083234 | Oct 2003 | WO |
03087497 | Oct 2003 | WO |
03089736 | Oct 2003 | WO |
WO -03087498 | Oct 2003 | WO |
2004020764 | Mar 2004 | WO |
2004037502 | May 2004 | WO |
2004079130 | Sep 2004 | WO |
2004083557 | Sep 2004 | WO |
2004085765 | Oct 2004 | WO |
2005054597 | Jun 2005 | WO |
2005054599 | Jun 2005 | WO |
2005068747 | Jul 2005 | WO |
2006043893 | Apr 2006 | WO |
2006056172 | Jun 2006 | WO |
2006104436 | Oct 2006 | WO |
2009015492 | Feb 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20160177577 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
60672538 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11887363 | US | |
Child | 12494480 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13757055 | Feb 2013 | US |
Child | 15054530 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12494480 | Jun 2009 | US |
Child | 13757055 | US |