1. Field of the Invention
The present disclosure relates generally to door closer devices, and more particularly, to a floor spring for automatically moving a door from an open position to a closed position and an assembly method thereof.
2. Description of the Related Art
A conventional automatic door closer operates by storing energy in a spring mechanism during opening of a door and releasing the stored energy to close the door. Automatic door closers are provided with means for controlling the movement of the door, usually involving hydraulic resistance within a floor spring. When the door approaches a fully open or the closed position, a fluid medium within the floor spring is caused to flow through restrictive passages which determine the speed of door movement.
A typical floor spring generally includes a damper assembly received in a case. In order to facilitate the assembly, there is a gap spared between damper assembly and the case. However, since the case is usually imbedded in the floor, water or dust may enter and accumulate in the gap after a period of use, thus constituting a safety hazard and a contamination problem of the damper assembly.
Therefore, there is room for improvement within the art.
One of the principal objects of the present disclosure is to provide a waterproof and dust-proof floor spring.
According to one embodiment of the present disclosure, a floor spring includes a case, a damper assembly received in the case, including a spindle extending outwardly from the case; and mixed powder filling a space inside the case covering the damper assembly.
Preferably, the mixed powder is insoluble and non-flammable powder, which consists of about 90 vol. % of a light calcium carbonate, about 4 vol. % of talc powder, about 2 vol. % of hard calcium carbonate, about 1 vol. % of calcium stearoyl, about 1 vol. % of antiseptic, and about 1 vol. % of antioxidant.
These and other features of the present application will become more readily apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the views.
The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
Referring to
Referring also to
The floor spring 100 further includes mixed powder 5 filling a space inside the case covering the damper assembly 1. The mixed powder 5 is insoluble and non-flammable powder, which consists of about 90 vol. % of a light calcium carbonate, about 4 vol. % of talc powder, about 2 vol. % of hard calcium carbonate, about 1 vol. % of calcium stearoyl, about 1% of antiseptic, and about 1 vol. % of antioxidant.
The cover 3 includes a first cover 31 and a second cover 32, The first cover 31 is substantially rectangular and matches with the opening 21 of the box 2. The first cover 31 defines a first hole 311, which is substantially circular, to receive the spindle 11. The first cover 31 further defines a slot 312 extending from the first hole 311 to a side thereof. The second cover 32 is shaped to match the first hole 311 and the slot 312 and defines a second hole 321 aligned to the first hole 311 to receive the spindle 11.
The floor spring 100 further includes a seal member 4 positioned between the first cover 31 and the box 2. Referring to
Referring to
The mixed powder 5 can prevent water, dust, or insects enter the box 2, such that the damper assembly 1 is not tend to rust or fail. Furthermore, the mixed powder 5 can keep warm of the damper assembly 1, thus the hydraulic oil in the damper assembly 1 is not likely to be frozen when the floor spring 100 is used in a low temperature environment.
Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as sample forms of implementing the claimed invention.
Number | Date | Country | Kind |
---|---|---|---|
201010124469.8 | Mar 2010 | CN | national |