1. Field of the Invention
The present invention relates to a process for the production of a floor strip such as a dilatation profile, a transition profile or a finishing profile. The present invention also relates to the features of the floor strip.
2. Description of the Related Art
It is previously known to produce floor strips such as metal strips, wood veneer coated strips and strips of homogeneous wood. However, such floor strips generally do not adequately match the pattern of the other portions of the floor. Thus, there is a strong desire to bring about a floor strip with the same pattern as on a floor of thermosetting laminate. During the last few years these floors have become very usual. For instance they are made with a wood pattern, marble pattern and fancy pattern. Possibly you can use a homogeneous wood strip or a wood veneer-coated strip for a few of the wood patterned floors. Previously known strips do not go well together with all the other floor patterns.
These floor strips are provided in a floor system in order to provide a transition or edge to the floor, such as at the corner of the wall or between rooms. They may also be provided between rooms having different types of flooring, such as carpet and tile, or different heights or textures of tiles. However, conventional floor strips do not adequately provide a transition between differing floor types because they cannot adequately cover the gap between the differing floor coverings or the differing heights of the tiles.
However, it also a problem for sellers of floor strips to inventory differing types of transition profiles, especially in a pattern or color to match a single floor. Thus, there exists a need to provide a single floor strip which can satisfy a number of differing requirements, such a being useful as a finishing profile, a dilatation profile, and a transition profile.
The purpose of the present invention is to provide a floor strip with improved abrasion resistance and features to overcome the problems in the art.
According to the present invention it has quite surprisingly been possible to meet the above needs and bring about a process for the production of floor strips such as a dilatation profile, a transition profile or a finishing profile. The process comprises glueing, preferably under heat and pressure a thin decorative thermosetting laminate of post-forming quality having an abrasion resistance measured as IP-value >3000 revolutions, preferably >6000 revolutions, on a longitudinal carrier, which carrier preferably consists of a fibre board or a particle board with a rectangular cross-section and at least two opposite rounded-off edges.
The post-forming laminate is glued in one piece on the upper side and two long sides of the carrier via the rounded-off edges, whereupon one or more floor profiles having the same or different cross-section is machined from the laminate coated carrier. According to another embodiment the carrier can be provided with a rectangular cross-section with three rounded-off edges.
From the same body, the laminate clad carrier, several profiles with varying shape can be machined. Usually a milling machine is used for machining the different kinds of profiles from the laminate coated carrier. The carrier may also be molded to achieve various profiles which may be required. Additionally, the carrier is preferably water resistant or even waterproof. In a preferred embodiment the carrier consists of a high density fibre board made of fine fibres, such as known in the industry as medium density fiberboard (MDF) or high density Fiberboard (HDF).
Advantageously, a heat and moisture resistant glue is used at the glueing. Preferably the glueing is carried out under heat and pressure. For instance, the pressure car be regulated by means of rollers which press the laminate against the carrier. The temperature can, for instance, be regulated with heating nozzles which can drive an even current of warm air.
Suitably the post-forming laminate consists of at least one monochromatic or patterned paper sheet impregnated with a thermosetting resin, preferably melamine-formaldehyde resin and preferably one or more sheets for instance of parchment, vulcanized fibres or glass fibres. The last mentioned sheets are preferably not impregnated with any thermosetting resin, but the thermosetting resin from the sheets situated above will enter these sheets at the laminating step, where all sheets are bonded together. Alternatively, the sheet can be a metallic foil or a layer of paint.
Generally the term post-forming laminate means a laminate which is so flexible that it can be formed at least to a certain extent after the production thereof. Ordinary qualities of thermosetting decorative laminates are rather brittle and cannot be regarded as post-forming laminates.
Usually the post-forming laminate includes at least one uppermost transparent paper sheet made of α-cellulose and impregnated with a thermosetting resin, preferably melamine-formaldehyde resin. This so-called overlay is intended to protect an underlying decor sheet from abrasion.
Often at least one of the paper sheets of the postforming laminate impregnated with thermosetting resin, preferably the uppermost one, is coated with hard particles, e.g., those having a Moh's hardness of at least 6, preferably between 6 and 10, similar to the Moh's hardness of at least silica, aluminium oxide, diamond and/or silicon carbide. The hard particles have an average particle size of about 1–80 μm, preferably about 5–60 μm evenly distributed over the surface of the paper sheet. In a preferred embodiment the hard particles are applied on the resin impregnated paper surface before the resin has been dried. The hard particles improve the abrasion resistance of the laminate. Hard particles are used in the same way at the production of laminates which are subject to a hard wear such as flooring laminates.
The abrasion resistance of the post-forming laminates is tested according to the European standard EN 438-2/6: 1991. According to this standard the abrasion of the decor sheet of the finished laminate to the so-called IP-point (initial point) is measured, where the starting abrasion takes place. The IP-value suitably lies within the interval 3000-20000 preferably 3000-10000 revolutions. Thus, the manufacturing process according to the invention makes it possible to produce laminate clad profiles with the same surface pattern and about the same abrasion resistance as the laminate floorings they are intended to be used together with.
The carriers for the floor strips to which the post-forming laminate is glued can be made of differing profiles to accommodate the specific circumstance, namely whether a dilatation, transition or finishing profile is required. The profile, for example a dilatation profile comprises a general T-shape whereby a first plane extending vertically along the length of the floor strip intersects about in the middle of a second horizontally oriented plane. A profile removes about half of the second plane to form a rotated upside down L-shape, which is used adjacent a wall or on a stepped surface. A dilatation profile is similar to a finishing profile, but the second plane is oriented off of horizontal or it is divided into two planes, one at a different level than the other or one side is removed altogether, which provides a smoother transition between uneven tiles, a carpet and tile, or differing tile textures. The pattern of the profiles can also be adapted to other flooring materials than laminate floorings, such as parquette floorings and soft plastic floorings.
In order to overcome the problems associated with transitioning between carpet and tile, differing textures of tiles or differing heights of tiles, the second plane may have a tab portion on its tile/carpet engaging surface depending orthogonally away from the second plane and displaced away from the first plane. The tab is used to engage a reducer that extends between the floor surface and the engagement surface of the second plane. The reducer is configured to maintain a horizontal orientation of the second plane and provide a smoother transition between the tile surfaces in the finishing, transition or dilatation profile when they are used between uneven tile surfaces, differing tile textures or between carpet and tile. The tab portion fits into a groove on the upper surface of the reducer in mating fashion to create a solid lock between them.
Alternatively, the tab portion may be engaged into the edge of a tile panel on the floor in this situation, the tiles adjacent to the transition area may require a groove cut into them near the transition. Such allows the tab portion to maintain a firm and locked relationship with the tile surface and provide a better transition between the tile surface and the respective profile. Further, a tab portion may be provided on both sides of the second plane respective to the first plane to further smooth the transition area between the first tile surface, the floor strip and the second surface.
The design of the tab may come in varying styles, there may be a straight block type tab, a t-nut type, various interlocking styles and a channel type arrangement. Such types depend on the particular requirements of the tiling circumstance.
This inventive floor strip according to the above may be used as a transition piece between various tongue and groove panels to provide a smooth and aesthetic transition between floor sections having dissimilar surfaces, such as those between a carpeted area and a tiled area, a thin tile area and a hardwood floor, two tile areas having differing textures, etc.
The present invention will be explained further in connection with the embodiment example below and the enclosed figures of which:
In the figures of illustrating a floor strip 100, the thickness of the post-forming, laminate 1 has been magnified as compared to the size of the carrier 2 and the profiles, e.g. 3–5 respectively, to better illustrate that a post-forming laminate 1 is glued to the carrier 2 and the profiles 3–5 respectively.
Of course the
For example in one embodiment, a roll of transparent so-called overlay paper of α-cellulose with a surface weight of 25 g/m 2 is impregnated with an aqueous solution of melamine-formaldehyde resin to a resin content of 70 percent by weight calculated on dry impregnated paper. Immediately after the impregnation, aluminium oxide particles with an average particle size of 50 μm are applied to the upper side of the paper in an amount of 7 g/m2 by means of a doctor-roll placed above the paper web. Thus, the hard aluminium oxide particles are then applied to the still-wet melamine-formaldehyde resin which has not dried.
The impregnated paper web is then fed continuously into a heating oven, where the solvent in the resin evaporates. Simultaneously, the resin is partially cured to so-called B-stage. Thereby the aluminium oxide particles are enclosed in the resin layer and accordingly concentrated to the surface of the product obtained which is usually called a prepreg. The prepreg web obtained is then rolled again.
A roll of conventional non-transparent decor paper with a decor pattern printed thereon and having a surface weight of 80 g/m2 is treated in the same way as the overlay paper except for the fact that no aluminium oxide particles are applied and that the resin content was 50 percent by weight calculated on dry impregnated paper.
A roll of unimpregnated parchment with a surface weight of 120 g/m2 is used at the production of the post-forming laminate.
The two prepreg webs impregnated with melamine-formaldehyde resin and the unimpregnated parchment web are then pressed between two press bands of a continuous laminating press to a decorative post-forming laminate. At the pressing, a prepreg web of α-cellulose is placed on top with the side with the hard particles directed upwards. Underneath follows a prepreg web of decor paper and at the bottom a web of parchment. The prepreg webs and the parchment web are pressed together at a pressure of 35 kp/cm2 and at a temperature of 170° C. The decorative post-forming laminate obtained is then cut with roller knives to strips of suitable length and width.
A longitudinal carrier 2 with a rectangular cross-section and two opposite rounded-off edges according to
A strip of post-forming laminate 1 is now glued under heat and pressure to the longitudinal carrier 2 with a heat and moisture resistant glue. The pressure is regulated with rolls which press the laminate against the carrier and the temperature 1 is regulated with heating nozzles which blow an even current of warm air.
Following the above process the abrasion resistance of the post-forming laminate obtained was measured. Then a value for the IP-point amounting to 7000 revolutions was obtained.
The different structures and designs of the profiles for floor strip 100, namely the dilatation, finishing and transition will now be described with respect to
Due to the differing heights of the tiles 70 and 80/81, a reducer 90 will be required to provide a smooth transition. Reducer 90 has a height corresponding to the height difference between the tiles and also has a groove 91 on its upper surface for acceptance, in a locking manner, of tab 180. Upon assembly of-tiles 70, 80 and 81 and floor strip 100, the tab fits into groove 91 and then the reducer is assembled in mating position between an edge 71 of tile 70 and the first side 61 of the second plane. The design of the tab and reducer prevents the reducer from laterally moving in relation to floor strip 100 in an assembled condition. Although a simple tongue and groove design is shown, other engagement means may be used (See
Reducer 90 may have alternate designs, which are illustrated in
Another embodiment of the invention is shown in
Reducer 97 is more or less a rectangular box design having one sloped side 109 which as in the previous embodiment provides a gradual transition between floor heights. Reducer 97 does not have a groove, rather the back side 99 is abutted against tab 180 when floor strip 100 and reducer 97 are in their assembled positions, as shown in
A further embodiment of the invention is shown in
The tab and reducer groove need not be a simple tongue and groove design, as outlined in
In
The designs of the tab portion as shown in
Tabs 1802, 1820 and 1803 shown in
In
Although the present invention has been described and illustrated in detail, such explanation is to be clearly understood that the same is by way of illustration and example only, and is not to be taken by way of limitation. Other modifications of the above examples may be made by those having ordinary skill which remain within the scope of the invention. For instance, the examples are described with reference to a dilatation profile for the carrier of the floor strip. However, such tab and reducer designs work just as well with a finishing profile as well as a transition profile, and whether used on carpet or floor tiles.
Number | Date | Country | Kind |
---|---|---|---|
9403620 | Oct 1994 | SE | national |
This application is a divisional of U.S. Ser. No. 10/902,062, filed Jul. 30, 2004, which, in turn, is a divisional of U.S. Ser. No. 10/319,820, filed Dec. 16, 2002, which, in turn, is a continuation-in-part of U.S. Ser. No. 08/817,391, filed Apr. 25, 1997, which is a 35 U.S.C. §371national phase application of International Application PCT/SE95/01206, filed Oct. 17, 1995, claiming benefit of Swedish priority application 9403620, filed Oct. 24, 1994, and a continuation-in-part of U.S. Ser. No. 09/986,414, filed Nov. 8, 2001, the entire disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1357713 | Lane | Nov 1920 | A |
2100238 | Burgess | Nov 1937 | A |
2194086 | Horn | Mar 1940 | A |
2363429 | Lowry | Nov 1944 | A |
3162906 | Dudley | Dec 1964 | A |
3199258 | Jentoft et al. | Aug 1965 | A |
3286425 | Brown | Nov 1966 | A |
3331171 | Hallock | Jul 1967 | A |
3339329 | Berg | Sep 1967 | A |
3363381 | Forrest | Jan 1968 | A |
3488828 | Gallagher | Jan 1970 | A |
3665666 | Delcroix | May 1972 | A |
3671369 | Kvalheim et al. | Jun 1972 | A |
3696575 | Armstrong | Oct 1972 | A |
3745726 | Thom | Jul 1973 | A |
3758650 | Hurst | Sep 1973 | A |
3760544 | Hawes et al. | Sep 1973 | A |
3810707 | Tungseth et al. | May 1974 | A |
4067155 | Ruff et al. | Jan 1978 | A |
4198455 | Spiro et al. | Apr 1980 | A |
4292774 | Mairle | Oct 1981 | A |
4455803 | Kornberger | Jun 1984 | A |
4461131 | Pressell | Jul 1984 | A |
4504347 | Munk et al. | Mar 1985 | A |
4520062 | Ungar et al. | May 1985 | A |
4643237 | Rosa | Feb 1987 | A |
5034272 | Lindgren et al. | Jul 1991 | A |
5074089 | Kemmer et al. | Dec 1991 | A |
5155952 | Herwegh et al. | Oct 1992 | A |
5288540 | Albrinck et al. | Feb 1994 | A |
5365713 | Nicholas et al. | Nov 1994 | A |
5581967 | Glatz | Dec 1996 | A |
5888017 | Corrie | Mar 1999 | A |
6141920 | Kemper | Nov 2000 | A |
6158915 | Kise | Dec 2000 | A |
6219982 | Eyring | Apr 2001 | B1 |
6230385 | Nelson | May 2001 | B1 |
6253514 | Jobe et al. | Jul 2001 | B1 |
6345480 | Kemper | Feb 2002 | B1 |
6421970 | Martensson et al. | Jul 2002 | B1 |
6517935 | Kornfalt et al. | Feb 2003 | B1 |
6588165 | Wright | Jul 2003 | B1 |
20020148551 | Knauseder | Oct 2002 | A1 |
20020189747 | Steinwender | Dec 2002 | A1 |
20030118812 | Kornfalt et al. | Jun 2003 | A1 |
20030154678 | Stanchfield | Aug 2003 | A1 |
20030159389 | Kornfalt et al. | Aug 2003 | A1 |
20040031226 | Miller et al. | Feb 2004 | A1 |
20040031227 | Knauseder | Feb 2004 | A1 |
20040041225 | Nemoto | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
3640822 | Jun 1988 | DE |
467150 | Jun 1992 | DE |
29703962 | Apr 1997 | DE |
19821938 | Nov 1999 | DE |
10131248 | Jan 2003 | DE |
467150 | Jun 1992 | SE |
9612857 | May 1996 | WO |
9901628 | Jan 1999 | WO |
0120101 | Mar 2001 | WO |
03093686 | Nov 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050217193 A1 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10902062 | Jul 2004 | US |
Child | 11140075 | US | |
Parent | 10319820 | Dec 2002 | US |
Child | 10902062 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08817391 | US | |
Child | 10319820 | US | |
Parent | 09986414 | Nov 2001 | US |
Child | 10319820 | US |