Floor-to-ceiling partition wall assembly

Information

  • Patent Grant
  • 10329759
  • Patent Number
    10,329,759
  • Date Filed
    Monday, October 3, 2016
    8 years ago
  • Date Issued
    Tuesday, June 25, 2019
    5 years ago
Abstract
A method of installing a panel member on a frame assembly includes the steps of providing a panel member having inner and outer surfaces and providing one or more positioning assemblies on the inner surface of the panel. The positioning assemblies each having an adjustable positioning member adapted to engage a portion of the frame assembly. The method further includes setting the positioning members to determine a registration point for the panel member along the frame assembly. One or more driving assemblies are then provided on the inner surface of the panel, each having a biasing member adapted to engage a portion of the frame assembly to drive the panel member towards the registration point on the frame assembly.
Description
FIELD OF THE INVENTION

The present invention generally relates to partition arrangements for open office spaces and the like, and in particular to a floor-to-ceiling panel wall assembly that is adaptable to suit a wide variety of open offices spaces and user preferences.


BACKGROUND OF THE INVENTION

Partition systems for open office spaces, and other similar settings, are well known in the art. Individual partition panels are interconnected in different configurations to form separate offices, workstations, or work settings. The partition panels are extremely durable and can be readily disassembled and reassembled into alternative configurations to meet the ever-changing needs of the user.


Partition systems can be adapted to provide privacy is some areas, generally using a floor-to-ceiling partition system, while also allowing for open communication in other areas, which is better provided by low height, see-over partition systems.


The finishing, fitting-out or build-out of open building spaces for offices and other similar environments has become a very important aspect of effective space planning and layout. Work patterns, technology, and business organizations are constantly evolving and changing and so too are the needs of each individual user. The building space users require products which facilitate change at lower costs while also having the adaptability necessary to provide a clean and uniform aesthetic appearance in assembly. Changing technology and changing work processes demand that a design and installation be able to support and anticipate change. At the same time, appearance of the building space has become increasingly important to customers and occupants, particularly as companies have realized the importance and positive (or negative) effect on worker's attitudes and their ability to do a job efficiently. Accordingly, one very important requirement of this integrated furnishing system is to provide a floor-to-ceiling partition wall assembly that is adaptable to suit a wide variety of open offices spaces and user preferences while also providing a novel attractive appearance even after reconfiguration.


BRIEF SUMMARY OF THE INVENTION

One aspect of the present invention includes a method of installing a panel member on a frame assembly. The method includes providing a panel member having inner and outer surfaces and providing one or more positioning assemblies on the inner surface of the panel. The positioning assemblies each having an adjustable positioning member adapted to engage a portion of the frame assembly. The method further includes setting the positioning members to determine a registration point for the panel member along the frame assembly. One or more driving assemblies are then provided on the inner surface of the panel, each having a biasing member adapted to engage a portion of the frame assembly to drive the panel member towards the registration point on the frame assembly.


Another aspect of the present invention includes a method of installing a panel member on a frame assembly. The method includes providing a panel member having an inner surface, a top edge, a bottom edge, and first and second side edges. The first and second side edges of the panel member are more than twice as long as either of the top and bottom edges. The method further includes setting mounting a first positioning assembly on the inner surface of the panel and setting an adjustable positioning member on the first positioning assembly to engage the frame assembly. Setting the positioning member defines a first registration point for the panel member. The method further includes mounting a first driving assembly on the inner surface of the panel, the first driving assembly having a biasing member adapted to engage the frame assembly to drive the panel member towards the first registration point on the frame assembly


These and other features and advantages of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF DRAWINGS

In the drawings:



FIG. 1 is a perspective view of a panel wall system according to embodiments of the present invention;



FIG. 2 is a perspective view of a frame assembly;



FIG. 3 is a perspective view of a vertical frame member;



FIG. 4 is a cross-sectional view of a vertical frame member;



FIG. 5 is a perspective view of a horizontal frame member;



FIG. 6 is a perspective view of a frame assembly;



FIG. 7 is a perspective view of a panel wall system according to another embodiment of the present invention;



FIG. 8 is a perspective view of a latch mechanism;



FIG. 9 is an exploded view of the latch mechanism of FIG. 8;



FIG. 10 is a perspective view of a panel assembly mounted to a vertical frame member having a latch mechanism mounted thereto;



FIG. 11 is a perspective view of an actuator lever;



FIG. 12 is a perspective view of a latch member and a base plate;



FIG. 13 is a perspective view of an actuator lever partially disposed within a base plate which is coupled to a panel assembly;



FIG. 14 is a perspective view of a latch mechanism as coupled to a vertical frame member;



FIG. 15 is a perspective view of a support member mounted to a panel assembly;



FIG. 16 is a perspective view of the support member of FIG. 15 as mounted to a horizontal frame member;



FIG. 17 is a perspective view of a panel positioning assembly as mounted to a frame assembly;



FIG. 18 is a perspective view of another panel positioning assembly as mounted to a frame assembly;



FIG. 19A is a bottom perspective view of the positioning assembly of FIG. 18;



FIG. 19B is a perspective view of another embodiment of a positioning assembly;



FIG. 19C is a perspective view of another embodiment of a positioning assembly;



FIGS. 20 and 21 are perspective views of a spring-loaded top support member mounted to a skin assembly;



FIG. 22 is a perspective view of a spring-loaded hook engagement member;



FIG. 23A is a side elevational view of a spring-loaded top support member mounted to a skin assembly and coupled to a frame member;



FIG. 23B is a perspective view of a spring-loaded top support member mounted to a skin assembly and coupled to a frame member with a portion of the support members shown in phantom;



FIG. 24 is a perspective view of a frame assembly having acoustical seals;



FIG. 25 is a perspective view of an acoustical seal assembly;



FIG. 26 is a side elevational view of an acoustical seal assembly;



FIG. 27A is a perspective view of an acoustical seal assembly coupled to a horizontal frame member;



FIG. 27B is a perspective view of an acoustical seal assembly coupled to a vertical frame member with a furniture component exploded away;



FIG. 27C is a perspective view of the acoustical seal assembly and vertical frame member of FIG. 27B with furniture component extending through the seal assembly to engage the vertical frame member;



FIG. 28 is a perspective view of an acoustical seal assembly coupled to a vertical frame member with panel assemblies mounted thereto as shown in phantom;



FIG. 29 is a perspective view of a panel wall assembly having an end trim member;



FIG. 30 is a perspective view of an end trim member having an upper acoustical seal;



FIG. 31 is a perspective view of an end trim member having a lower acoustical seal;



FIG. 32 is an exploded view of an angled end trim member and an acoustical seal;



FIG. 33 is an exploded perspective view of an adjustment bracket and gang box;



FIGS. 34A-34D are perspective views of an adjustment bracket and associated gang boxes;



FIG. 35 is a fragmentary perspective view of adjustment brackets positioned to be mounted to a frame assembly;



FIG. 36A is an exploded perspective view of an adjustment bracket and power block;



FIG. 36B is a fragmentary perspective view of the power block of FIG. 36A connected to a junction box disposed on a frame assembly;



FIG. 37 is a perspective view of an adjustment bracket and data receptacle coupled to a frame assembly;



FIG. 38 is an exploded view of a frame assembly having a structural reinforcement member mounting assembly and a panel assembly;



FIG. 39 is a perspective view of a structural reinforcement member having parts of mounting assemblies coupled thereto;



FIG. 40 is a perspective view of a panel assembly having mounting assemblies disposed thereon;



FIG. 41 is an exploded view a mounting assembly;



FIG. 42 is a perspective view of an assembled mounting assembly;



FIG. 43 is a perspective view of a panel system having a cabinet accessory, shown in phantom, coupled to mounting assemblies of upper and lower structural reinforcement members shown in phantom;



FIG. 44 is an exploded perspective view of an upper portion of a panel wall assembly;



FIGS. 45A-45B are perspective views of an acoustical seal strip;



FIG. 46 is a perspective view of an upper portion of a panel wall assembly;



FIG. 47-48 are perspective views of a post extension system;



FIG. 49 is a perspective view of a lower portion of a panel wall assembly;



FIG. 50 is a perspective view of an base track assembly and cover member;



FIG. 51 is a perspective view of a lower portion of a panel wall assembly;



FIG. 52 is a perspective view of a frame assembly and panel assemblies as positioned in a panel wall assembly;



FIG. 53 is a fragmentary perspective view of a panel assembly positioned on a frame assembly;



FIG. 54 is a fragmentary perspective view of the panel assembly of FIG. 53 as mounted on the frame assembly;



FIG. 55 is a rear perspective view of a panel assembly;



FIG. 56 is a fragmentary perspective view of the panel assembly of FIG. 55 positioned on a frame assembly;



FIG. 57 is a fragmentary perspective view of user engaging an actuator lever; and



FIG. 58 is a fragmentary perspective view of a latch mechanism as coupled to a panel assembly.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

For the purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, it is to be understood that the invention may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in following specification, are simply exemplary embodiments. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be construed as limiting, unless expressly stated otherwise.


Referring now to FIG. 1, the reference numeral 1 generally designates a reconfigurable floor-to-ceiling panel wall system embodying the present invention, which is particularly designed for use in office spaces, and other similar work environments. In the illustrated example, the reconfigurable office panel wall system 1 includes a frame assembly 3 supporting a plurality or series of panel assemblies 6 in a floor-to-ceiling arrangement. As shown in FIGS. 1 and 2, the frame assembly 3 includes a plurality of vertical frame members 10 and horizontal frame members 12 with a ceiling track 13 disposed along an upper portion, and cover members or base assemblies 15 disposed along a lower portion. The panel wall system 1 includes various types of skin assemblies shown in FIG. 1 as solid or opaque skin or panel assemblies 6, 6′ and translucent or glass skin assemblies 8. The translucent or glass skin assemblies 8 are adapted to allow light to pass therethrough for illuminating an office space arrangement as dictated by a user's design preferences. The solid panel assemblies 6 generally include an outer facing aesthetic surface 14, shown on panel assemblies 6, and an inwardly facing inner surface 16, as shown on panel assemblies 6′. In assembly, the panel wall system 1 is configured to have a first skin or panel assembly 6 disposed on one side of the frame assembly 3, with a second skin assembly 6′ disposed on an opposite side of the frame assembly 3 in a substantially parallel spaced apart relationship.


As noted above, the frame assembly 3 is comprised of vertical and horizontal frame members 10, 12 which are substantially similar in cross-section. As best illustrated in FIGS. 3 and 4, each vertical frame member 10 includes a generally “I”-shaped cross-section having a first end 18 and a second end 20 with a web portion 22 disposed therebetween defining central longitudinally extending first and second channels 24, 26. The first and second ends 18, 20 comprise outwardly opening channels 28 which are disposed on either side of a slotted channel 30 having slots 32 which are spaced along a length of the slotted channel 30. The web portion 22 further comprises apertures 34 for coupling of adjacent frame members or other frame components to the vertical frame member 10 in assembly. Similarly, as shown in FIG. 5, each horizontal frame member 12 also includes a generally “I”-shaped cross-section having a first end 38 and a second end 40 with a web portion 42 disposed therebetween defining central longitudinally extending first and second upwardly and downwardly opening channels 44, 46. The first and second ends 38, 40 similarly comprise outwardly opening channels 48 which are disposed on either side of a slotted channel 50, having slots 52 which are spaced along a length of the slotted channel 50. As shown in FIG. 6, the vertical and horizontal frame members 10, 12 couple to one another to form the structure of the frame assembly 3 using “L”-shaped brackets 60 which are adapted to couple to central channels 24, 44 and 26, 46 of both the vertical and horizontal frame members 10, 12 in assembly. “L”-shaped brackets 60 can be disposed above or below the horizontal frame member 12 as necessary to support and rigidify the connection between the vertical and horizontal frame members 10, 12.


As noted above, and shown in FIG. 7, each solid panel assembly 6 includes an inwardly facing inner surface 16 having a plurality of latch mechanisms 70 spaced about the periphery thereof, one or more support members 72 spaced along a lower edge thereof, as well as positioning assemblies 74, 76 which are adapted to facilitate the positioning of a skin assembly on the frame assembly 3 as further described below. The latch mechanisms 70, the support members 72, and the positioning assemblies 74, 76 are secured to the inner surface 16 of a panel assembly 6 adjacent a perimeter or outer edge 17 of the panel assembly 6, as shown in FIGS. 7 and 10, using fasteners 78 such as self tapping screws and the like.


As shown in FIGS. 8 and 9, each latch mechanism 70 includes a housing member 80 with a latch member 86 telescopingly received therein. The latch member 86 is movable between a latched first position A and an unlatched second position B. A mounting portion or base portion 94 couples to the housing member 80 using clips 97. Thus, the housing portion 80 is disposed on the base potion 94 and latch member 86 is captured therebetween. As best shown in FIG. 9, the latch member 86 includes a latch portion 88 and a body portion 90 that is telescopingly received within a housing portion 80A of the housing member 80. The body portion 90 includes an actuation channel or groove 92 slidably engaged by an actuator lever 100 as further described below. The actuation groove 92 is a contoured cam surface that is angularly shaped such that a quarter turn of the actuator lever 100, along a path indicated by arrow E, between a recessed or retracted first position C and an extended or accessible second position D, moves the latch member 86 from the latched position A to the unlatched position B, respectively, as shown in FIG. 8. As further shown in FIG. 9, clip members 97 extend upwardly from the base portion 94 such that they are received in apertures 81 disposed on the housing member 80 to clip the housing member 80 to the base portion 94 as shown in FIG. 8. The housing member 80 further includes a planar portion 80B having apertures 83 which are adapted to align with apertures 93 disposed on the base portion 94. In this way, the latch mechanism 70 can be secured with fasteners to a panel assembly through aligned apertures 83, 93. As further shown in FIG. 9, a clip member 87 is disposed on the body portion 90 of the latch member 86. In operation, the clip member 87 is adapted to retain the latch mechanism in the latched or unlatched positions A, B by interacting with features disposed on the upper portion of the housing portion 80A of the housing member 80. As further shown in FIG. 9, a biasing mechanism 98 includes first and second ends 98′, 98″ which are adapted to engage a portion of the actuator lever 100 and an attachment feature 95 disposed on the base portion 94 respectively. The biasing mechanism 98 is adapted to basis the actuator lever 100 to a recessed position as further described below with reference to FIG. 13.


As shown in FIG. 10, the actuator lever 100 is disposed within a gap 110 between adjacent skin assemblies when in the recessed position C, but is visible from the outer surface 14 and easily accessible when in the extended position D. Gap 110 is best shown in FIG. 28 between adjacent panel or skin assemblies 6, 6′. In this way, the actuation lever 100 serves as an indicator mechanism to positively indicate when a skin assembly, such as skin assembly 6 shown in FIG. 10, is fully engaged with a vertical or horizontal member of the frame assembly 3, such as vertical member 10 shown in FIG. 10. As an indicator mechanism, the actuator lever 100 is capable of visibly indicating the engagement status of a latch mechanism 70 with the panel wall system 1.


As shown in FIGS. 11 and 12, the actuator lever 100 of each latch mechanism 70 comprises a handle portion 102 and an engagement portion 106 with a body portion 104 disposed therebetween. In assembly, the engagement portion 106 engages the actuation groove 92 disposed on the body portion 90 of the latch member 86. The handle portion 102 of actuation lever 100 is engaged by a panel installer to actuate the latch mechanism 70. It is noted that the handle portion 102 of the actuator lever 100 of the latch mechanism 70 is accessible from the aesthetic outer surface 14 of the panel assemblies 6 as mounted to the frame assembly 3, even though the latch mechanism 70 is secured to the inner surface 16 of the panel assembly 6.


As noted above and shown in FIG. 10, the handle portion 102 is seated within a gap 110 defined between the outer edge 17 of a solid panel assembly 6 and a component of the panel wall system 1, such as an adjacent panel assembly, as best shown in FIG. 28. Thus, FIG. 10 shows the actuation lever 100 in a recessed position C, thereby indicating positive engagement. As noted above, the latch mechanisms 70 act as indicator mechanisms to let users know when a panel assembly 6 is positively engaged or disengaged from the frame assembly 3. This is indicated by the handle portion 102 of a latch mechanism 70 being disposed outboard of an outer edge 17 of the panel assembly 6 in an extended position D, such as handle portion 102 shown in phantom in FIG. 10. Here, the handle portion 102 of the actuator member 100 is visible from and extends beyond the outer surface 14 of the panel assembly 6. The visibility of the handle portion 102 in an extended position D lets a user know that an associated panel is not properly engaged with the frame assembly 3. It is further contemplated that the actuator lever 100 can include a brightly colored handle portion 102, such as “caution yellow” color, to better visibly indicate to a user or installer when a skin assembly 6 is not positively engaged with the frame assembly 3 and needs adjustment. A latch member 86 of latch mechanism 70 is in the latched position A and shown secured to channel 26 of a vertical member 10 of a frame assembly 3 in FIG. 14. As noted above, gaps 110 are formed between the outer edge 17 of a panel assembly 6 and a component of a panel wall system, wherein the component could be an adjacent panel assembly, a furniture component, a glass panel assembly 8 (FIG. 1), a wall panel accessory or the like. The gaps 110 are contemplated to be approximately 6 mm, plus or minus 1 mm. As shown in FIGS. 8-9, and 12-13, a wire or lever stop member 107 may also be coupled to the base portion 94 of the latch mechanism 70 to prevent the actuator lever 100 from moving too far towards the recessed position C, thus keeping the lever 100 accessible to a user.


As shown in the embodiment of FIG. 13, a portion of the body 104 of the actuator lever 100 is disposed within a housing channel 96 disposed within the base plate member 94. The actuator lever 100 is biased inwardly in a direction 99 by a biasing member, such as biasing spring 98 having a first end 98′ that is coupled to engagement portion 106 of the lever 100. A second end 98″ of spring 98 is coupled to an attachment feature 95 disposed on base plate 94. Thus, when in the recessed position D and seated within a panel gap 110, the actuator lever 100 is biased inwardly by the biasing spring 98, such that the actuator lever 100 is fully concealed behind the inner surface 16 of the panel assembly 6 and out of view of the panel wall system occupants. In this way, the actuator lever 100 is disposed inboard of the outer edge 17 of the panel assembly 6 when in the recessed position C, and disposed outboard of the outer edge 17 of the panel assembly in the extended position D.


As noted above, and shown in FIG. 7, the panel assemblies 6 further comprise support members 72 secured to the inner surface 16 of the solid panel or skin assembly 6 using fasteners 78. As best shown in FIGS. 15 and 16, each support member 72 includes a housing portion 118 disposed between mounting portions 116. In assembly, the mounting portions 116 are generally planar portions used to couple the support members 72 to a lower portion of the inner surface 16 of a solid panel assembly 6. At a lower end of the support members 72, the housing portion 118 defines a downwardly opening hook portion 120 that engages the longitudinally extending channel 44 of an associated horizontal frame member 12. In assembly, the solid panel or skin assembly 6 is positioned with respect to the frame assembly 3 such that the hook portion 120 of each of the support members 72 engages the longitudinally extending channel 44 of an associated horizontal frame member 10. The top edge of the solid panel assembly 6 is then rotated towards the frame assembly 3, and latch mechanisms 70 are actuated to engage a corresponding horizontal or vertical frame member 10, 12 thereby securing the solid panel assembly 6 to the overall frame assembly 3. Panel installation is further described below with reference to FIGS. 52-56. The support members 72 further comprise panel biasing wire springs 122, which function to bias the skin assemblies 6 outward from the frame member 3 as further described below.


As noted above and shown in FIGS. 17 and 18, each solid panel assembly 6 may include both right and left positioning assemblies 74, 76 which are spaced along a lower edge of the panel assembly 6. As best illustrated in FIG. 7, the latch mechanisms 70, the support members 72 and positioning assemblies 74, 76 are all secured to the inner surface 16 of the panel assemblies 6 using fasteners 78 which can be self tapping screws and other like fasteners. Each positioning member 74, 76 includes a downwardly opening hook portion 130 that engages an upwardly opening channel 44 of an associated horizontal frame member 12 in a similar manner as the engagement of the hook portions 120 of the support members 72. Further, the hook portion 130 can be adjustable as described below. Each positioning assembly 74, 76 further includes a housing portion 134 disposed between two mounting portions 132. In assembly, the mounting portions 132 are generally planar portions used to couple the positioning support members 74, 76 to the inner surface 16 of the solid panel assembly 6. The positioning assemblies 74, 76 further comprise first and second flanges 138, 140 which are used as attachment surfaces for various positioning features. Specifically, the left positioning assembly 74 (FIG. 17) comprises a biasing spring member 142 coupled to first flange 138 which engages a vertical frame member 10 in assembly to bias the panel assembly 6 to the right as indicated by arrow G. As shown in FIG. 18, right positioning support member 76 comprises a horizontally adjustable conical shaped positioning member 150 which is attached to second flange 140. The conical shaped positioning member 150 comprises a conical shaped head portion 152 and a threaded support shaft 154 which engages a threaded member 156 in assembly which is disposed on the second flange 140. The conical shaped positioning member 150 is horizontally adjustable by rotating the threaded shaft 154 relative to the threaded member 156 thereby moving the conical shaped head portion 152 to a desired horizontal positioning location along a direction as indicated by arrow H. Thus, the conical shaped positioning member 150 is laterally adjustable to accommodate varying configurations of the frame assembly 3. The positioning assembly 76 shown in FIG. 18 further includes a biasing spring member 142 coupled to first flange 138, although as positioned on the inner surface 16 of the panel assembly 6, the biasing spring 142 is not used to position the associated panel 6.


In assembly, the downwardly opening hook portions 130 of the left and right positioning assemblies 74, 76 engage the upwardly opening channel 44 of a horizontal frame member 10, much like the downwardly opening hook portions 120 of support members 72 discussed above. As the panel assembly 6 is rotated upward into its upright position, the conical shaped positioning member 150 of right positioning support member 76 engages a side wall of a vertical frame member 10 and the conical shaped head 152 is positioned such that interaction between the conical shaped head 152 and the side wall of the upright 10 will move the panel assembly 6 laterally to the left as indicated by arrow I (FIG. 18). This movement to the left as indicated by arrow I causes for engagement of the biasing spring member 142, disposed on the left positioning assembly 74, with an opposite vertical frame member 10 as shown in FIG. 17. The left and right designation of the positioning features noted above is not intended to limit the configuration of the positioning features on the positioning assemblies 74, 76 in use. The left and right positioning assemblies 74, 76 further comprise wire biasing springs 122 which function to bias the skin assemblies 6 outward from the frame member 3 as further described below.


As shown in FIG. 19A, and noted above, the positioning assemblies 74, 76 may include a housing portion 134 which is coupled to an adjustable downwardly opening hook portion 130 which is vertically adjustable using an adjustment mechanism 155 shown as an adjustment screw in FIG. 19A. The adjustment screw 155 has a threaded shaft component 157 that engages an engagement block 131 disposed on the adjustable downwardly opening hook portion 130. Once vertically positioned using adjustment screw 155, the downwardly opening hook portion 130 of positioning assembly 76 remains fixed in place. The downwardly opening hook portion 130 of positioning assembly 76 is coupled to the housing 134 using a fastener 172.


Referring now to FIG. 19B, another embodiment of a positioning assembly 250 is shown, wherein the positioning assembly 250 includes first and second portions 254, 256 which are substantially perpendicular to one another giving the position assembly 250 an overall L-shaped configuration. Apertures 258 are disposed on the first portion 254 and are adapted to receive fasteners to secure the position assembly 250 to the inner surface 16 of a panel assembly 6E as shown in FIG. 55. The second portion 256 includes a biasing spring member 260 having a resilient spring portion 262 and a generally planar attachment portion 264. Fasteners 266 are used to couple the biasing spring 260 to the second portion 256 of the positioning assembly 250. In operation, biasing spring 260 functions in a similar manner to biasing spring 142 described above.


Referring now to FIG. 19C, another embodiment of a positioning assembly 252 is shown. Positioning assembly 252 is a generally fixed positioning assembly having a body portion 270 which includes side walls 272, 274 and attachment surface 276, thereby giving the positioning assembly 252 an overall U-shaped cross-section. Apertures 278 are disposed on the attachment surface 276 and are used to fasten the position assembly 252 to an inner surface 16 of a panel assembly 6. In a front portion of the positioning assembly 252, flange portions 272′, 274′ are turned in portions of side walls 272, 274 respectively and include an aperture disposed therethrough (not shown) for receiving a positioning member 300 having a conical-shaped head portion 302 and a threaded member 304 which engages a threaded shaft 303, such that the positioning member 300 operates in a similar manner as positioning member 150, described above with reference to FIG. 18, to provide a fixed positioning assembly 252 that is customizable for a particular panel installation. It is further contemplated that the positioning member 300 may include an externally disposed shaped portion disposed on threaded member 304, to laterally adjust the positioning of the head portion 302.


As shown in FIGS. 20-23B, solid panel assemblies 6 that are adjacent to the upper portion of the frame assembly 3 may further include one or more spring-loaded top support members 160 spaced along the upper edge of the panel assembly 6. Depending on the horizontal span of a particular solid panel assembly 6, any number of spring-loaded top support members 160 can be attached to the inner surface 16 of a panel assembly 6 to provide sufficient support to the panel assembly 6 from the frame assembly 3.


Each spring-loaded top support member 160 includes an upwardly opening hook portion 162 that is spring-loaded and engages an associated downwardly opening channel 46 of a horizontal frame member 12 in assembly as shown in FIG. 23A. Specifically, the spring-loaded top support member 160 includes generally planar mounting portions 164 having apertures 166 for connecting the spring-loaded top support member 160 to the inner surface 16 of a solid panel assembly 6 using fasteners, such as self tapping screws and the like. Between the mounting portions 164, a housing portion 168 is disposed which houses the spring-loaded upwardly opening hook portion 162. As shown in FIG. 20, the upwardly opening hook portion 162 is spring-loaded and adapted to plunge in and out of the housing portion 168 in a substantially vertical direction indicated by arrow J. A biasing spring member 170 biases or loads the upwardly opening hook portion 162 to an extended position as shown in FIG. 20. As shown in FIGS. 20-22, fastener guides 172 are adapted to couple the upwardly opening hook portion 162 to a top wall of the housing portion 168. The upwardly opening hook portion 162 further includes one or more elongate channels or apertures 174 in which fastener guides 172 are received. The fastener guides 172 are not tightened on the elongate apertures 174 and therefore serve as guides to the upwardly opening hook portion 162 as it slidably plunges into and out of the housing portion 168 along a length of the apertures 174 in assembling the panel wall system 1. As shown in FIG. 23A, and FIG. 21 with the housing portion 168 in phantom, the spring-loaded top support member 162 further comprises a back plate 176 disposed on a rear portion of the housing 168, wherein a fastener 178 couples biasing spring 170 to the housing portion 168.


As shown in FIGS. 23A and 23B, the spring-loaded top support member 160 is coupled to panel assembly 6 and the upwardly opening hook portion 162 is engaged with a downwardly open longitudinally extending channel 461 of a structural upper horizontal frame member 450. As shown in FIGS. 22-23B, the spring-loaded top support member 160 further comprises a biasing wire spring member 122, in a similar configuration as the biasing wire spring members 122 found on the support members 72 and the positioning assemblies 74, 76. The biasing wire spring member 122 of the spring-loaded top support member 160 serves the same purpose as the wire spring members 122 noted above, and now discussed in detail. The biasing wire spring member 122 is coupled to the housing portion 168 and includes a spring finger 124. The biasing wire spring member 122 is coupled to the housing portion 168 at spring clips 180 and apertures 182 disposed on side walls of the housing portion 168 which provide a point of leverage for the biasing wire spring member 122. In assembly, the biasing wire spring member 122 contacts the inner surface 16 of an associated panel assembly 6 at a contact portion 126 of the spring member 122. The spring finger 124 contacts a side wall 451 of the upper horizontal frame member 450 to bias the solid panel assembly 6 outwardly away from the upper horizontal structural frame member 450 of the frame assembly 3 in a direction as indicated by arrow K. The panel assembly 6 is biased outwardly by the biasing wire spring member 122 to ensure planar alignment with and aesthetic uniformity between adjacent panel assemblies as mounted on the frame assembly 3 (FIG. 1). As noted above, the biasing wire spring members 122 found on the support members 72 and the positioning assemblies 74, 76 also act to bias the panel assemblies outwardly from the frame assembly 3 to provide an overall uniform appearance for the panel wall system 1 (FIG. 1).


In assembly, and as noted above, the solid panel or skin assembly 6 is positioned with respect to the frame assembly 3 such that the support members 72 engage the longitudinally extending upwardly opening channel 44 of an associated horizontal frame member 12 as shown in FIG. 16. The top edge of the solid panel assembly 6 is then rotated towards the frame assembly 3 such that the upwardly opening hook portions 162 of the spring-loaded top support members 160 engage a portion of an upper horizontal structural member 450 and is thereby plunged downward into the housing portion 168 in a direction indicated by arrow J (FIGS. 21 and 23A). After the panel assembly 6 is in place and the upwardly opening hook portion 162 has cleared the side wall of the horizontal structural member 450, the biasing spring 170 of the spring-loaded top support member 160 urges the upwardly opening hook portion 162 into engagement with the downwardly opening channel 461 of the associated horizontal structural member 450, as shown in FIG. 23A and in phantom in FIG. 23B.


The panel wall system 1 further includes a variety of acoustical seal assemblies which help provide privacy and help make for a more soundproof office environment for panel wall system occupants. The variety of acoustical seal assemblies includes acoustical seals 190, shown in FIGS. 24 and 25, which are adapted to couple to the vertical and horizontal frame members 10, 12 in assembly as further described below. Acoustical seal assemblies 190 are configured to form seals between adjacent panel assemblies 6 and the frame assembly 3, such as panel assemblies 6, 6′ shown in phantom in FIG. 28. As shown in FIGS. 25 and 26, each acoustical seal assembly 190 includes a generally planar elongate body portion 192 having a central pierceable membrane 194 and a pair of longitudinally and inwardly extending hook-shaped connector portions 196 disposed on a first side of the body portion. The planar body portion 192 also includes landings 198 from which the hook-shaped connector portions 196 inwardly extend. The central pierceable membrane 194 is disposed between and connects the landings 198. The central pierceable membrane 194 is flexibly resilient and pierceable, such that engagement or attachment features (i.e. hooks and other like connectors) of partition wall components can pierce through the central pierceable membrane 194 to engage slots 52 disposed on a slotted channel 50 of an associated horizontal frame member 12 as best shown in FIG. 27A. Similarly, the acoustical seals 190 can be used on vertical frame members 10, thereby providing pierceable access to slots 32 disposed thereon as shown in FIG. 27B. In this way, the acoustical seal assemblies 190 do not need to be removed from an associated frame member (10, 12) when connecting another frame component, or other like accessory, to the associated frame member (10, 12), even if the pierceable membrane 194 is covering necessary engagement features. Thus, as shown in FIGS. 27B and 27C, the pierceable membrane 194 of seal assembly 190 is covering attachment locations or engagement features 32, shown in FIG. 27B as vertically disposed slots or apertures disposed along vertical frame member 10. A furniture component 202 includes a support portion 204 and a mounting portion 206, wherein the mounting portion includes one or more attachment features 208a-208c. As shown in FIG. 27C, the attachment features 208a-208c have pierced through the pierceable membrane 194 of seal assembly 190 to engage engagement features 32. Thus, a portion of the furniture component 202 extends through the pierceable membrane 194 of seal assembly 190. This is a beneficial feature in that the acoustical seal assembly 190 may require the removal of one or more panel assemblies, such as panel assemblies 6, 6′ shown in FIG. 28 to be fully removed.


Thus, the acoustical seal assemblies 190 of the present invention having a pierceable membrane 194 that does not have any apertures disposed thereon, until the a furniture component, such as furniture component 202 described above, pierces the membrane 194 to couple to a frame component. As shown in FIG. 28, with the attachment features covered by the pierceable membrane 194, both of which are disposed in and aligned with gap 110 between the adjacent panel assemblies 6, 6′, the connecting of another panel wall component is all the more practical. Further, in a partition system, sound can travel through small gaps, such as gaps 110 of the present invention, as well as engagement features, such as slots 32, 52 disposed along frame members 10, 12. The pierceable membrane 194 of the acoustical seal assemblies 190 covers the entirety of the gap 110 between the adjacent panel assemblies 6, 6′, and therefore, provides both an aesthetically clean appearance between the panel assemblies 6, 6′, and further helps to prevent sound propagation through the panel wall system.


Referring again to FIGS. 27A-28, each hook-shaped connector portion 196 is flexibly resilient and is releasably received within outwardly opening channels, such as channels 28, 48 as found on the frame members 10, 12. The acoustical seal assembly 190 further includes a pair of longitudinally and outwardly extending, loop-shaped seal portions or bulbs 200, which, as shown in FIGS. 25 and 26, are disposed on a second and opposite side of the planar body portion 192 relative to the inwardly extending connector portions 196. Each seal portion 200 is also flexibly resilient to form acoustical seals between frame components and panel assemblies as further described below.


Referring to FIGS. 24-28, the overall makeup of the acoustical seal assembly 190 varies with regards to rigidity and resiliency. The pierceable membrane 194 is flexibly resilient and pierceable, such that the overall acoustical seal assembly 190 can be folded or deformed to aid in the alignment of the hook-shaped connector portions 196 within an associated channel 28, 48 of the frame members 10, 12. The loop-shaped seal portions 200 are also flexibly resilient and similar in makeup as compared to the pierceable membrane 194 to ensure that the seal portions 200 are easily deformed to provide a tight seal between panel assemblies 6 and the frame assembly 3. The landing portions 198 and connector portions 196 are also resilient, but are more rigid as compared to the pierceable membrane 194 and the seal portions 200. In this way, the hook-shaped connector portions 196 allow for a more snap-fit type engagement with the channels 28, 48 of the frame members 10, 12. Thus, the acoustical seal assembly 190 is a one-piece integrally formed acoustical seal assembly having varying degrees of resilience in its component parts. It is further noted that each component part of the acoustical seal assembly 190 runs the length of the acoustical seal assembly 190, but may be trimmed as necessary in assembly.


Regarding the varying makeup of the acoustical seal assemblies 190, it is contemplated that the acoustical seal assemblies 190 can be pultruded or co-extruded polymeric acoustical seals, wherein the acoustical seal assemblies 190 are one-piece integrally formed unitary members have different Shore hardness values with respect to different components of the acoustical seal assemblies. A Shore hardness value or durometer is a measurement of a hardness of a material which is often defined as a materials resistance to permanent indentation. The higher the Shore hardness value or durometer, the more resistant a material is to indentation. The acoustical seal assemblies 190 of the present invention are one-piece integrally formed unitary seal assemblies which exhibit a dual durometer makeup. Thus, the hardness of the different portions of the acoustical seal assemblies 190 exhibit varying hardness values. For example, in one embodiment, the acoustical seal assembly 190 shown in FIG. 25 has an elongate generally planar body portion 192 which includes the pierceable membrane 194. As noted above, the body portion 192 is flexible, so it has a relatively low Shore hardness value with respect to other components of the seal assembly. Specifically, in one embodiment, it is contemplated that the outwardly extending connector portions 196 have a first Shore hardness value, whereas the seal portions 200 have a second Shore hardness value. In this embodiment, it is contemplated that the first Shore hardness value is higher than the second Shore hardness value, such that the outwardly extending connector portions 196 are more rigid as compared to the more flexible seal portions 200. In the embodiment shown in FIG. 25, it is contemplated that both the loop-shaped seal portions 200 and the pierceable membrane 194 have a similar Shore hardness value, whereas the outwardly extending connector portions 196 and the landings 198 have a higher Shore hardness value in comparison. Thus, a seal assembly 190 of the present invention has an overall dual durometer makeup.


In assembly, the solid panel assemblies 6, 6′, as shown in FIG. 28 are adjacent panel assemblies connected to and supported by a vertical member 10 of the frame assembly 3. During assembly, the seal portions 200 of each of the acoustical seal assemblies 190 are deformed as the inner surface 16 of the panel assemblies 6, 6′ contact the seal assemblies 190 as adjacent panels 6, 6′ are positioned on the frame assembly 3, thereby acoustically sealing the overall panel wall system 1. In this way, one acoustical seal assembly 190 is able to provide a seal between the frame assembly 3 and two adjacent panel assemblies 6, 6′ disposed on either side of the gap 110 formed between the adjacent panel assemblies 6, 6′. In this way, first and second seal portions 200 disposed on a second side of the body portion 190 are adapted to separately engage adjacent panel assemblies 6, 6′ about a periphery thereof.


As shown in FIGS. 29-31, the panel wall system 1 further comprises a plurality of end trim members 210 which are adapted to couple to frame members, such as the vertical frame members 10 located on an end run of the panel wall assembly 1, and provide an aesthetic cover thereto. Each end trim member 210 includes a body portion 212 having an inner surface 215 and an outer surface 217. The body portion 212 includes a generally rectangularly-shaped cross-sectional configuration that defines an open channel 214 extending the length thereof, and a pair of longitudinally extending engagement arms 216 disposed on the inner surface 215 as shown in FIG. 30. The arms 216 are adapted to engage a frame member in assembly, thereby releasably securing the end trim member 210 with the frame assembly 3. First and second acoustical seal members 218, 220 are positioned within first and second open ends 222, 224 of the open channel 214, thereby preventing sound or noise from propagating along the open channel 214 into an adjacent section of the panel wall system 1. The first and second open ends 222, 224 are disposed on either side of a middle portion 213 of the channel 214. It is noted that the first and second acoustical seal members 218, 220 may also be configured to be inserted in trim members of varying configurations, such as the angled trim member 211 shown in FIG. 32. Angled trim seal member 218 may further include proud or raised portions 219 that form the seal within the open channel 214 of the end trim member 210. Further, it is contemplated that the acoustical seal assemblies 218, 220 can be die cut foam pieces or malleable foam members which can be compacted for insertion into the open ends 222, 224, and then allowed to expand or resiliently fill the open ends 222, 224 to seal the channel 214. The first and second acoustical seal members 218, 220 provide an acoustic barrier to noises which may be carried to or originate from trim member 210. The configuration of the first and second acoustical seal members 218, 220 allows for the open channel 214 of the end trim member 210 to be accessible at the middle portion 213 for coupling of other frame components thereto. The middle portion is accessible as the acoustical seal assemblies 218, 220 function like plugs on the first and second ends 222, 224 of the open channel 214 of the end trim member 210, and thus do not occupy the entirety of the open channel 214, such as the middle portion 213. It is further contemplated that the middle portion 213 of channel 214 can house an attachment feature for securing a component of the panel wall system thereto.


Referring now to FIGS. 33-34D, an electrical box assembly 550 includes an adjustment bracket assembly 552 having a body portion and upper and lower bracket portions 554, 558. Upper bracket portion 554 is adapted to couple to a horizontal frame member 12 using fasteners 556 shown in FIG. 33. The lower bracket portion 558 couples to an adapter bracket 560. The adapter bracket 560 supports multiple sizes of electrical and data boxes, such as gang boxes 570A-570D. As shown in FIG. 33, a single gang box 570A is coupled to the adapter bracket 560 using brackets 572 and fasteners 574. In this way, the single gang box 570a is adapted to couple to an outwardly facing surface 562 of the adapter bracket 560 with brackets and fasteners 572, 574 being disposed on an inwardly facing surface 564 of the adapter bracket 560. As further shown in FIG. 33, the single gang box 570A includes top and bottom surfaces 576, 578, side wall surfaces 580, 582 and a rear wall surface 584 to define a cavity 586. In assembly, the cavity portion 586 of the gang box 570A is adapted to support and house an electrical or data receptacle which, in FIG. 33, is shown as receptacle 588. The receptacle 588 couples to attachment flanges 590 disposed at upper and lower portions of the opening into the cavity 586. Further, a cover member 592 is disposed over the receptacle 588 and further couples to attachment flanges 590. As further shown in FIG. 33, U-shaped mounting brackets 594A, 594B are fastened to the sidewalls 580, 582 using fasteners 596. U-shaped mounting brackets 594A and 594B further include attachment flanges 598 which, in assembly, align with brackets 572 for coupling to the adapter bracket 560. In this way, the attachment flanges 598 are disposed on the outer facing surface 564 of the adapter bracket 560 and the attachment brackets 572 are disposed on the inner facing surface 564 of adapter bracket 560 in assembly. As further shown in FIG. 33, the adapter bracket 560 includes a plurality of vertical slots 566 disposed along a length thereof, such that the adapter bracket 560 can support varying sizes of electrical boxes as shown in FIGS. 34A-34D.


The adapter bracket 560 further includes a generally horizontal slot 569 which is disposed above vertical slots 566, such that the lower bracket portion 556 of the adjustment bracket assembly 552 can allow for the adapter bracket 560 to move laterally in a direction as indicated by arrow L (FIG. 34B) to meet specific configuration requirements of a particular system.


As shown in FIGS. 34A-34D, the adjustment bracket assembly 552 is adapted to support a single gang box 570A, a double gang box 570B, a triple gang box 570C, and a quadruple gang box 570D. The varying sizes of the gang boxes 570A-570D are supported on the vertical slots 566 of the adapter bracket 560. Thus, the mounting flanges 594A and 594B, as shown in FIG. 33, engage various vertical slots 566 as necessary to support an electrical gang box of a particular size. Further, it is contemplated that a smaller gang box, such as gang box 570A, can be disposed anywhere along the length of the adapter bracket 560 to accommodate a specific design requirement. In this way, the adjustable back assembly 12 can be adjusted by moving the adapter bracket 560 laterally within slot 569 as indicated by arrow K (FIG. 34B), and further, the electrical gang box, such as gang box 570A, can be positioned anywhere laterally across the body of the adapter bracket 560, thereby providing a multi-positional adjustment bracket assembly 552.


Referring now to FIG. 35, a first electrical box assembly 550 is shown coupled to a horizontal frame member 12, with a second adjustment bracket assembly 550′ coupled to a lower horizontal structural member 450′. Thus, as shown in FIG. 35, the electrical box assembly 550 can be coupled to a horizontal frame member 12 using fasteners 556 disposed through apertures 34 which are spaced along upwardly opening channel 44 of the horizontal frame member 12. As shown in FIG. 35, the first electrical box assembly 550 is spaced along horizontal frame member 12 a distance X from vertical frame member 10. Electrical box assembly 550′ is positioned within an upwardly opening channel of structural horizontal member 450′, such that the electrical box assembly 550′ supports gang box 570A above the structural horizontal member 450′.


Referring now to FIGS. 36A, 36B, the electrical box assembly 550 is shown supporting a power block bracket 600 which is adapted to receive a power block 602. The power block 602 includes first and second ports 604, 606 which are adapted to couple to first and second harness connectors 610, 612 for providing power to the power block 602. The power block 602 further includes a cavity portion 608 disposed between outer ports 604, 606. In assembly, receptacles 614, 616 are adapted to couple to ports 604 and 606 within the cavity portion 608 of the power block 602 as shown in FIG. 36B. Cover assemblies 618, 620 are adapted to cover receptacles 614, 616 as received within the cavity portion 608 of the power block 602. It is contemplated that the cover assemblies 618, 620 may be disposed between the receptacles 614, 616 and a solid panel assembly as supported on the frame assembly 3. As shown in FIG. 36B, the power block 602 is received within the power block bracket 600 and harness connector 612 is shown being coupled to outside port 606. In the embodiment shown in FIG. 36B, the harness connector 612 is coupled to a hardwire assembly 622 which is adapted to feed through aperture 34A disposed through body portion 42 of the horizontal frame member 12. The hardwire assembly 622 is further shown disposed through an upper horizontal structural member 450, such that the hard wire assembly 622 is a conduit to junction box 624. A strain relief bracket 626 is adapted to couple to the hardwire assembly 622 and further couple to outwardly opening channel 24 of the vertical frame member 10 through an attachment aperture 34. In this way, the strain relief bracket 626 can support the weight of the hardwire assembly 622 as necessary for a specific design configuration.


Referring now to FIG. 37, the electrical box assembly 550 is shown supporting a data block 630 having data receptacle 632 received in apertures 634. A data cable 636 is coupled to data block 630 to provide data and power to data receptacle 632. A cable tie assembly 638 is used to support the data cable 636 with an interior of the frame assembly 3. In the embodiment shown in FIG. 37, the cable tie 638 is a general loop-shaped cable tie that is disposed around data cable 636 and through adjacent apertures 34 disposed on horizontal frame member 12. A connector clip 640 is used to adjust the size of the cable tie 638 to properly support the data cable 636 in a configuration necessary for a specific design layout.


The panel wall system 1 further includes an optional structural reinforcement horizontal frame member 350 which can be used to support wall panel components off of the frame assembly 3 as further described below. As shown in FIG. 38, a solid panel or skin assembly 6 is exploded away from two opposite and spaced apart vertical frame members 10, wherein a structural reinforcement horizontal frame member 350 is coupled to and disposed between vertical frame members 10. The structural reinforcement horizontal frame member 350 is coupled to and disposed between vertical frame members 10 by L-shaped brackets 60 disposed on upper and lower sides of the structural reinforcement horizontal member 10 to ensure a rigid engagement with the frame assembly 3. L-shaped brackets 60 are similar to those discussed above with reference to FIG. 6. As shown in FIGS. 38 and 39 the reinforcement horizontal frame member 350 includes a plurality of mounting assemblies 370 which couple to a body portion 352 of the horizontal frame member 350 and are further disposed in holes 360 cut through the skin assembly 6 and through the aesthetic outer surface 14 as shown in FIG. 40. In this way, accessories, such as cabinets, do not need to be directly mounted to the skin assembly 6, but rather can be mounted to a brace kit comprising the horizontal reinforcement member 350 and mounting assemblies 370, such that the frame assembly 3 carries the load.


As shown in FIGS. 41 and 42, each mounting assembly 370 includes a rivet nut 372, a cylindrical spacer 374, such as an aluminum spacer, and a foam ring 376. In assembly, the rivet nut 372 is installed into holes 354 cut in the body portion 352 of the structural reinforcement member 350 as shown in FIG. 38 and then crimped into place as shown in FIG. 39. The spacer 374 is inserted into a foam ring 376 and the foam ring 376 is then inserted into holes 360 of the skin assembly 6, such that the spacer 374 and foam ring 376 align with the rivet nut 372 in assembly. The foam ring 376 plugs the holes 360 in the skin assembly 6 for blocking sound and light transmission as shown in FIG. 40.


With the skin assembly 6 in place on the frame assembly 3 as shown in FIG. 40, an accessory, such as a cabinet 380, shown in phantom in FIG. 43, can be coupled to the partition system using mounting assemblies 370. When mounting an item such as a cabinet, multiple reinforcement horizontal members 350, 350′ may be required. As shown in FIG. 43, a cabinet assembly 380 is mounted to the mounting assemblies 370 disposed on upper and lower structural reinforcement horizontal members 350 via fasteners 382, such that the cabinet 380 is spaced apart from the reinforcement horizontal member 350 by spacers 374, thereby allow room for the skin assembly 6. In this way, the load of the cabinet 380 is tied into the reinforcement horizontal member 350 and the frame assembly 3, and therefore does not carry to the skin assembly 6.


Referring now to FIG. 44, vertical frame members 10 of the frame assembly 3 are shown supporting a structural horizontal member 450 which is adapted to couple to a ceiling track 13. The structural horizontal member 450 includes a first side 452 and a second side 454 having upwardly opening channels 456 and 458 disposed on either side of a body portion 460. In the cross section, the structural horizontal member 450 has an upwardly opening channel 462 disposed above the body portion 460, and a downwardly opening channel 461 disposed below the body portion 460. The ceiling track 13 includes a body portion 472 and first and second sides 474, 476 disposed on either side of the body portion 472 to define a downwardly opening “C” channel 478. In assembly, first and second sides 474, 476 are received within the upwardly opening channels 456 and 458 of the structural horizontal member 450. The structural horizontal member 450 is adapted to receive seal strips 465 as coupled to the first and second sides 452, 454 of the structural horizontal member 450. The ceiling track 13 further includes a seal 480 which is adapted to coupled to the body portion 472 of the ceiling track 13, and further includes outwardly extending resiliently flexible seal portions 482 which are adapted to create a seal between the ceiling track 14 and a ceiling surface in assembly.


As shown in FIGS. 45A and 45B, the sealing strips 465 include a body portion 467 having outwardly extending sweep portions 466 disposed on the upper and lower portions of the body 467. A hook-shaped member 468 is disposed on the upper end of the body portion 467 on the opposite sides of the sweeps 466, wherein the hook shaped member 468 is adapted to couple to the first and second sides 452, 454 of the structural horizontal member 450 as shown in FIG. 44. In assembly, and as shown in FIG. 46, the upper sweep 466 of sealing strip 465 forms a seal between the structural horizontal member 450 and the ceiling track 13. The lower sweeps 466 of the sealing strips 465 are adapted to form seals between the structural horizontal member 450 and panel assemblies 6 as coupled to the frame assembly 3.


As shown in FIGS. 47 and 48, the vertical frame members 10 include a post extension system having post extensions 490 telescopingly received within slotted channels 30 of the vertical frame members 10. The post extensions 490 are telescopingly received within the slotted channel 30 such that the post extensions 490 can be vertically adjusted to account for variations in a ceiling surface in a building space. The post extensions 490 are coupled to one another via a bracket 492 using fasteners 494. In assembly, the bracket 492 and the fasteners 494 abut the ceiling track 13 along the body portion 472 of the ceiling track 13. As shown in FIG. 47, the horizontal structural member 450 is coupled to the vertical frame members 10 via “L” shaped brackets 60, which are similar to the “L” shaped brackets 60 shown in FIGS. 6 and 24. Thus, in assembly, the “L” shaped brackets 60 couple to the body portion 460 of the structural horizontal member 450 and also coupled to the channel 24, at a body portion 22, of the vertical frame members 10. As further shown in FIGS. 47 and 48, the acoustical seal 190 disposed on vertical frame member 10 includes looped-shaped sealing portions 200 for sealing against panel assemblies as attached to the frame assembly 3.


As further shown in FIG. 48, the vertical frame member 10 is illustrated supporting two adjacent horizontal structural members 450. The acoustical seal 190 is coupled to the vertical frame member 10 and abuts the bottom of the associated adjacent horizontal structural members 450. In the illustrated example, the acoustical seal 190 does not extend to an upper edge of the adjacent horizontal structural members 450. The exposed surfaces of the adjacent horizontal structural members 450 are adapted to be hidden by ceiling track covers 13 as shown in FIG. 46. However, because of the overall construction of the frame assembly 12, these ceiling track covers 13 may not abut one another, thereby leaving a gap there between which exposes portions of the horizontal structural members 450 located above the acoustical seal 190. In order to mask any gaps between the adjacent horizontal structural members 450 or the ceiling track covers 13, an adhesive patch 310 is placed in the position adjacent to the vertical frame member 10 and above acoustical seal 190, thereby aesthetically covering the portion of the horizontal structural members 450 which the acoustical seal 190 does not cover. It is noted that the adhesive patch 310 may be color coded to match the acoustical seal 190, the ceiling track covers 13, the adjacent horizontal structural members 450 or a combination thereof. The color coding may include line features that match the specific configuration of a horizontal structural member 450, or another similar component, to provide a seamless appearance to the adhesive patch 310 as applied to the system.


Referring now to FIGS. 49-51, the panel wall system 1 further includes a structural horizontal member 450′ disposed along a lower portion of the panel wall assembly, wherein the structural horizontal member 450′ is the same in configuration as the structural horizontal member 450 coupled to the ceiling track 13. At the lower portion of the panel wall assembly 1, the structural horizontal member 450′ is in a reverse orientation as compared to the structural horizontal member 450 coupled to the ceiling track 13. The structural horizontal member 450′ includes sealing strips 465 coupled thereto in a similar fashion in regards to structural horizontal member 450. In assembly, the sealing strips 465 include upper sweeps 466 which are adapted to seal between the structural horizontal member 450′ and panel assemblies as coupled to the panel wall system. Covers 15 are disposed on either side of the structural horizontal member 450′ and, in assembly, are coupled to a base track 500. As best shown in FIG. 50, the covers 15 include a hook-shaped portion 17 which is adapted to engage the base track 500. The base track 500 includes first and second sides 502, 504 which couple to the hook-shaped portions 17 of the covers 15. The base track 500 further includes planar portions 506, 508 disposed about opposite sides of a central channel 510. Sealing strips 512 are disposed near the planar portions 506, 508 of the base track 500 and include looped-shaped portions 514 adapted to form a seal between the base track 500 and a floor surface 4. Referring again to FIG. 49, a telescoping vertical adjustment member 520 is coupled to the base track 500 and is adapted to make vertical adjustments of the panel wall system to account for uneven areas of a floor surface. As shown in FIG. 49, a spring member 522 is disposed between the structural horizontal member 450′ and the base track 500 thereby biasing the structural horizontal member 450′ in an upwardly direction from the base track 500. In assembly, the telescoping vertical adjustment member 520 is coupled to the horizontal frame members 10 using “L” shaped brackets 60 in a similar manner as noted above. As shown in FIG. 51, the structural horizontal member 450′ is disposed between vertical frame members 10 wherein each vertical frame member 10 includes a telescoping vertical adjustment assembly 520 coupled to the base track 500 for vertical adjustment of the frame assembly 3.


Referring now to FIG. 52, a frame assembly 3 is shown supporting a variety of panel assemblies 6A-6D thereon. Panel 6A is a monolithic panel which is adapted to couple to the ceiling track 13 and the base assembly 15 to cover the frame assembly 3 along an entire vertical length thereof. Panel 6B is a top skin assembly while panel assemblies 6C and 6D are intermediate and bottom panel assemblies respectively. As shown in FIG. 52, the monolithic panel assembly 6A is positioned on the frame assembly 3 by first moving a top edge of the panel assembly 6A towards the ceiling track 13 in a direction indicated by arrow M for engagement of an attachment feature, such as a spring loaded top support member 160 described above with reference to FIGS. 23A and 23B. The bottom edge of the monolithic panel assembly 6A is then rotated towards the base assembly 15 of the frame assembly 3 in a direction as indicated by arrow N. Once in position, the monolithic panel 6A will then move downward to engage the base assembly 15 using an attachment feature, such as one or more support members 72 as described above with reference to FIGS. 15 and 16. Similarly, the top panel assembly 6B is moved towards the ceiling track 13 in a direction that is indicated by arrow M and the rotated towards the frame assembly 3 in a direction as indicated by arrow N. The intermediate panel assembly 6C and bottom panel assembly 6D are adapted to couple to the frame assembly 3 in a different manner. The panel assemblies 6C, 6D are first positioned such that an engagement feature, such as a support member 72, will engage frame member 12 through a downward movement in the direction indicated by arrow O. Once the bottom edges of the panel assemblies 6C, 6D are positioned on the horizontal frame members 12 or base assembly 15, the panel assemblies 6C, 6D are then rotated toward the frame assembly 3 in a direction as indicated by arrow P. Once in position, the panel assemblies 6A-6D are locked into place using latch mechanisms 70 as shown and described above with reference to FIGS. 7-10.


Referring now to FIGS. 53 and 54, intermediate skin assembly 6C is shown being positioned on the frame assembly 3 using support member 72 to engage upwardly opening channel 44 of horizontal frame member 12. Positioning assemblies 74, 76 are further shown engaging respective vertical frame members 10 to properly position panel assembly 6C laterally on the frame assembly 3. The support member 72 and positioning assembly 74, 76 are coupled to inwardly facing inner surface 16 of the panel assembly 6C. As further shown in FIG. 53, a plurality of latch mechanisms 70A-70E are coupled to the inner surface 16 of panel assembly 6C. The latch mechanisms 70A-70E are used to secure panel assembly 6C to the frame assembly 3 as shown in FIG. 54. Once the panel assembly 6C is engaged with the lower horizontal member 12, the top edge of the panel assembly 6C is rotated towards the frame assembly 3 in a direction as indicated by arrow P in FIG. 52. As shown in FIG. 54, handle portions 102A-102D of the actuator levers of latch mechanisms 70A-70D are visible and disposed outwardly from the outer surface 14 of the panel assembly 6C. In this way, the handle portions 102A-102D of the actuator levers of latch mechanisms 70A-70D function as an indication mechanism to a user that the latch mechanisms 70A-70A are not in a latched position, such that the panel assembly 6C is not properly secured to the frame assembly 3. Handle portions 102A and 102B are moved upward as indicated by arrows E which moves the latch members of latch mechanisms 70A and 70B to the latched position A as described above with reference to FIG. 8. Handle portions 102C and 102D are moved downward in a path as indicated by arrow E to also latch the latch mechanisms 70C, 70D to the horizontal frame member 10.


Referring now to FIGS. 55 and 56, an intermediate panel assembly 6E is shown having inner surface 16 with a plurality of latch mechanisms 70 disposed along a top portion thereof. Positioning assemblies 74, 76 are positioned on a bottom portion of the inner surface 16 and a support member 72 is further coupled thereto. Positioning assemblies 250 are further coupled to the inner surface 16 and disposed along a top portion thereof. Thus, as shown in FIG. 56, the support member 72 and positioning assemblies 74, 76 are generally engaged with the frame assembly 3 as the panel assembly 6E moves downward in a direction as indicated by arrow O. The top portion of the panel assembly 6BE is then rotated towards the frame assembly 3 in a direction as indicated by arrow P, whereby the spring member 262, as shown and described above with reference to FIG. 19B, helps to position the panel assembly 6E in place and ensure engagement of the support member 72 to the horizontal frame member 12. Once properly rotated into place along a direction as indicated by arrow P, the latch mechanisms 70 are actuated to secure the panel assembly 6E to the frame assembly 3.


The positioning assemblies 250 may be used in a configuration as shown in FIG. 55 for a panel, such as panel 6E which is a generally smaller panel that may not have the weight to gravitationally seat the panel 6E on the support assembly 72 or the positioning assemblies 74, 76. Thus, the downward movement, in the direction as indicated by arrow O, provided by the biasing mechanisms 262 drive the panel to its proper position. The position assemblies 250 may further be placed on side portions of the panel 6E in order to laterally adjust the position of a panel in assembly as further described below.


The size of the panel being installed on a frame assembly may dictate the number of latch mechanisms, support mechanisms, and position assemblies necessary to properly secure a panel to the frame assembly. For instance, as shown in FIG. 1, a segmented panel wall assembly 1 is shown having multiple panel assemblies 6, 6′ which are spaced apart along a frame assembly 3, such that gaps 110 are formed between adjacent panel assemblies 6, 6′ as best shown in FIG. 28. The present invention is designed to provide gap controlling features, such that the aesthetic appearance of the panel wall assembly 1 is consistent and uniform. In controlling the gaps between adjacent panel assemblies, the placement of positioning assemblies, such as positioning assemblies 74, 76, 250, and 252 are chosen to permit greater production tolerances while alleviating tolerance stack ups that could otherwise lead to unsightly variations in the gaps 110 between adjacent panel assemblies 6, 6′. As shown in FIG. 53, panel 6C has inner surface 16 with positioning assemblies 74, 76 disposed on first and second side edges of panel 6C. The positioning assemblies 74, 76 are best shown engaging the vertical and horizontal frame members 10, 12 in FIGS. 17 and 18 respectively. As shown in FIG. 18, positioning member 150 is adjustable laterally in a direction as indicated by arrow H. When the positioning member 150 is properly adjusted, the positioning assembly 76 defines a registration point for the panel 6C. Thus, in assembly and as shown in FIG. 18, positioning assembly 76 bears on the horizontal frame member 12 with vertically adjustable downwardly opening hook portion 130. The engagement of the downwardly opening hook portion 130 with frame member 12 prevents vertical movement of the panel 6C. Further, positioning member 150 abuts a side portion of vertical frame member 10, thereby preventing lateral movement of the panel 6C towards the vertical member 10. In this way, positioning member 76 is coupled to the inner surface 16 of panel member 6C thereby defining a registration point for the panel 6C at a lower right-hand corner of the panel 6C when viewed along inner surface 16. This registration point translates to the lower left-hand corner of the panel 6C when viewed from the outer surface 14 as shown in FIG. 54. Once the registration point has been set by the downwardly opening hook portion 130 and positioning member 150 the panel member 6C is driven to the registration point by a driving member as further described below.


Referring now to FIGS. 17 and 53, positioning member 74 includes a biasing member 142 in the form of a biasing spring which bears laterally against an inner side edge of horizontal frame member 10. In this way, positioning member 74 is a driving member which drives the panel, 6 or 6C, laterally in a direction as indicated by arrow G. As further shown in FIG. 17, positioning member 74 includes downwardly opening hook portion 130 as well as a second flange 140 which are adapted to engage the horizontal frame member 12 to sufficiently limit vertical movement of the panel member 6. As best shown in FIG. 53, the positioning assemblies 74 and 76 are disposed on opposite side edges of the panel 6C such that driving member 74 laterally drives the panel 6C towards the registration point which is set by positioning member 150 and downwardly opening hook portion 130 of positioning assembly 76. As shown in FIG. 52, a monolithic panel 6A comprises an outer perimeter wherein the height of the monolithic panel is greater than the width of the panel 6A. A typical ratio of height to width for a monolithic panel, such as panel 6A, can be anywhere from 2 to 1 or greater. When such a dimensional ratio is realized, a second set of positioning members can be utilized to ensure the gaps 110 between adjacent panel assemblies 6, 6′ is consistent throughout the panel walls assembly 1. The ratio need not be 2 to 1 with regards to the height and width of a panel, however, when the height exceeds the length of a panel, a second set of lateral positioning members could be used to help maintain gap control through the system. An example of a second set of positioning members is shown in FIGS. 19B and 19C. Thus, a monolithic panel member, or a smaller portrait style panel member, could include a lower positioning assembly and driving member in a similar configuration to positioning assembly 76 and driving member 74 shown in FIG. 53. Positioning assemblies 250 and 252 would be mounted on the monolithic panel along the side edges thereof near a mid or top portion of the panel 6A. The biasing mechanism 260 of positioning assembly 250 defines a driving member for the monolithic panel 6A which drives the panel towards a second registration point which is set by positioning member 300. Thus as described above, positioning member 300 is an adjustable positioning member is laterally adjustable to help locate a panel horizontally as positioned on a frame assembly. Positioning assembly or driving member 250 then drives the panel member towards the second registration point set by positioning member 300. As shown in FIGS. 19B and 19C, the driving member 250 and positioning assembly 252 are precise instruments used to accurately define a second registration point for a large panel, such as monolithic panel 6A shown in FIG. 52. The positioning assembly 252 and driving member 250 must be more accurately positioned on the panel as tolerances defined along a length of the monolithic panel 6A are multiplied relative to the tolerances of the lower positioning assemblies 74, 76. The registration points noted above could be adjustable or fixed values. Whether fixed or adjustable values are used, the registration point can be set at a manufacturing facility for later installation in the field using the predetermined registration point.


As noted above, and with specific reference to FIG. 13, the handle portions 102 of the latch mechanism 70 are adapted to move to a recessed position C where the handle portions 102 are concealed behind inner surface 16 of a panel assembly as shown in FIG. 58. Thus, in order to retrieve the handle portion 102 of latch mechanism 70 from between the frame assembly and the panel assembly 6, a user U, as shown in FIG. 57, uses a tool 650 having engagement portions 652, 654 which further include cradle portions 656 adapted to engage the handle portion 102 of a latch mechanism 70 when in a latched position. The user U then leverages the tool 650 to overcome the bias of the biasing spring 98, as described above with reference to FIG. 13, to move the actuator level 100 into the gap 110 defined between adjacent panel assemblies 6, 6′. In this way, the user can retrieve handle portion 102 of an actuator lever 100 for releasing a panel assembly 6 from the frame assembly 3. As further shown in FIG. 58, the latch mechanisms 70 may include a locking feature which, as shown in FIG. 58, is in the form of a fastener 660 that is used to engage an aperture 662 disposed on the housing portion 80A of the latch mechanism 70 to retain the latch member 86 in the latched positioned A. In this way, the latch mechanism 70 is locked in a latched position on the frame assembly such that access to the interior of the frame assembly is necessary to release a locked panel assembly 6 from the frame assembly 3.


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A partition comprising: a partition frame including a pair of horizontally spaced apart upright partition frame members, and a pair of vertically spaced apart horizontal partition frame members that are connected to the vertical frame members to define a frame opening therebetween;at least one connector assembly adjacent the frame opening, the connector assembly including at least one movable retainer defining an engaged position, the movable retainer including a cam surface and a first retaining surface, and wherein the movable retainer is biased towards the engaged position;a window subassembly configured to be installed to the partition frame at the frame opening, wherein the window subassembly is adapted to allow light to pass therethrough, the window subassembly including a connecting portion that is configured to initially engage the cam surface of the movable retainer as the window subassembly is moved into an installed position and to move the movable retainer away from its engaged position, followed by movement of the movable retainer to the engaged position due to the bias when the window subassembly is installed on the partition frame, the connecting portions of the window subassembly including a second retaining surface that engages the movable retainer when the movable retainer is in the engaged position and retains the window subassembly on the partition frame.
  • 2. The partition of claim 1, wherein: the frame opening is rectangular.
  • 3. The partition of claim 1, wherein: the window subassembly comprises a glass window assembly.
  • 4. The partition of claim 1, wherein: the window subassembly comprises a translucent window assembly.
  • 5. The partition of claim 1, wherein: the connector assembly is mounted to the partition frame.
  • 6. The partition of claim 1, wherein: the connector assembly is mounted to the window subassembly.
  • 7. The partition of claim 1, wherein: the connector assembly comprises a support bracket assembly including a base structure that is connected to the partition frame.
  • 8. The partition of claim 7, wherein: the movable retainer has a base end that is rotatably connected to the base structure.
  • 9. The partition of claim 8, wherein: the movable retainer includes a distal end portion having a tapered transverse extension, wherein the cam surface is formed on a first side of the transverse extension.
  • 10. The partition of claim 1, including: a lock member that is configured to engage the movable retainer and retain the movable retainer in its engaged position.
  • 11. The partition of claim 1, wherein: the window subassembly includes a sheet of glass material.
  • 12. The partition of claim 1, wherein: the window subassembly includes a sheet of polymer material.
  • 13. The partition of claim 1, wherein: the window subassembly includes a sheet of material comprising light-transmitting glass or polymer.
  • 14. A partition comprising: a partition frame defining a frame opening;at least one connector assembly adjacent the frame opening, the at least one connector assembly including at least one movable retainer that is biased towards an engaged position;a window subassembly that is adapted to allow light to pass therethrough, and wherein the window subassembly is configured to be installed to the partition frame at the frame opening, the window subassembly including a connecting portion configured to engage the movable retainer and to move the movable retainer away from the engaged position as the window subassembly is installed to the partition frame, followed by movement of the movable retainer to the engaged position due to the bias when the window subassembly is installed on the partition frame to connect the window subassembly to the at least one connector assembly.
  • 15. The partition of claim 14, wherein: the partition frame includes a pair of horizontally spaced apart upright partition frame members, and a pair of vertically spaced apart horizontal partition frame members that are connected to the vertical frame members to define the frame opening.
  • 16. The partition of claim 14, wherein: the frame opening is generally rectangular.
  • 17. The partition of claim 14, wherein: the window subassembly includes a subframe comprising two pairs of elongated subframe members having opposite ends that are rigidly interconnected to define a generally rectangular central opening, the subframe further defining oppositely facing inner and outer side faces.
  • 18. The partition of claim 17, wherein: the connecting portion protrudes away from the inner side face.
  • 19. The partition of claim 14, wherein: the window subassembly includes at least one sheet of light-transmitting material secured to the subframe and extending across the central opening.
  • 20. The partition of claim 14, wherein: the movable retainer includes a cam surface; andthe connecting portion includes an angled surface that is configured to slidably engage the cam surface and move the movable retainer away from its engaged position as the window assembly is moved relative to the at least one connector assembly.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation-in-Part of U.S. patent application Ser. No. 14/029,239, U.S. Patent Publication No. 2014/0075757, now U.S. Pat. No. 9,487,949 entitled “FLOOR-TO-CEILING PARTITION WALL ASSEMBLY,” filed on Sep. 17, 2013, which claims the benefit of U.S. Provisional Application No. 61/702,018, filed Sep. 17, 2012, entitled “FLOOR-TO-CEILING PARTITION WALL ASSEMBLY”; U.S. Provisional Application No. 61/702,008, filed Sep. 17, 2012, entitled “VERTICALLY ADJUSTABLE DOOR ASSEMBLY”; U.S. Provisional Application No. 61/701,977, filed Sep. 17, 2012, entitled “MONITOR MOUNT ASSEMBLY”; U.S. Provisional Application No. 61/701,969, filed Sep. 17, 2012, entitled “SLIDING DOOR ASSEMBLY.” The present application is also a Continuation-in-Part of U.S. patent application Ser. No. 14/670,928 U.S. Patent Publication No. 2015/0275513, now U.S. Pat. No. 9,506,247 entitled “TRANSPARENT PANEL SYSTEM FOR PARTITIONS,” filed on Mar. 27, 2015, which claims the benefit of U.S. Provisional Application No. 61/971,989, filed Mar. 28, 2014 entitled “TRANSPARENT PANEL SYSTEM FOR PARTITIONS.” Each of the above-identified applications are hereby incorporated by reference.

US Referenced Citations (338)
Number Name Date Kind
19391 Van Loan Feb 1858 A
261998 Carson Aug 1882 A
291672 Bourke Jan 1884 A
316282 McCormick Apr 1885 A
865198 Meigs Sep 1907 A
901470 Rankins Oct 1908 A
982388 Higgins et al. Jan 1911 A
1000094 Klemm Aug 1911 A
1000943 Pritchard Aug 1911 A
1013395 Hyle Jan 1912 A
1180726 Keil Apr 1916 A
1216370 Seng Feb 1917 A
1270014 Conwell Jun 1918 A
1406537 Choate Feb 1922 A
1444425 Ogden Feb 1923 A
1533120 Lasker Apr 1925 A
1571012 Keuser, Sr. Jan 1926 A
1778344 Venzie Oct 1930 A
1888535 Kreuger et al. Nov 1932 A
1911275 Hanson May 1933 A
1997605 Strom et al. Apr 1935 A
1997606 Strom Apr 1935 A
2007618 Snead Jul 1935 A
2054856 Fox et al. Sep 1936 A
2068243 McLaughlin, Jr. Jan 1937 A
2095037 Reintjes Oct 1937 A
2124353 Plym Jul 1938 A
2166361 Lowry Jul 1939 A
2183619 Meyers et al. Dec 1939 A
2186270 Persson Jan 1940 A
2228358 Lowry Jan 1941 A
2231514 Verhagen Feb 1941 A
2236812 Edwards et al. Apr 1941 A
2239173 Madsen Apr 1941 A
2249257 Rumney et al. Jul 1941 A
2256548 Chaffee Sep 1941 A
2260104 Henderson Oct 1941 A
2268269 Toney et al. Dec 1941 A
2293648 Horn Aug 1942 A
2308918 Hertel et al. Jan 1943 A
2346495 Lingel Apr 1944 A
2367610 Randall Jan 1945 A
2388786 Knight et al. Nov 1945 A
2402717 Winer Jun 1946 A
2497515 Pearse Feb 1950 A
2552298 Stiles May 1951 A
2582765 Brew Jan 1952 A
2595665 Hurd May 1952 A
2599811 Clerk Jun 1952 A
2614298 Ketchum, Jr. Oct 1952 A
2614665 Floyd Oct 1952 A
2640232 Price Jun 1953 A
2651084 Goldberg Sep 1953 A
2666234 Lester, Jr. Jan 1954 A
2672959 Young Mar 1954 A
2691803 Keebler Oct 1954 A
2725606 Persson Dec 1955 A
2746098 Cooper et al. May 1956 A
2766855 Johnson et al. Oct 1956 A
2807339 Wagner Sep 1957 A
2838109 Persson Jun 1958 A
2840202 Hehr Jun 1958 A
2871520 Ruda Feb 1959 A
2883717 Arnd Apr 1959 A
2902727 Samolis Sep 1959 A
2912078 Kiehl et al. Nov 1959 A
2928144 Persson Mar 1960 A
2939185 Ader et al. Jun 1960 A
2949985 Becker et al. Aug 1960 A
2953824 Minick Sep 1960 A
2965935 Olsen Dec 1960 A
2975492 Persson Mar 1961 A
2989787 Smith Jun 1961 A
2996767 Konil et al. Aug 1961 A
3020988 Bransford, Jr. Feb 1962 A
3037589 Cole Jun 1962 A
3042473 Vincens Jul 1962 A
3064320 Blaszkowski Nov 1962 A
3088560 Preuss May 1963 A
3099337 Hetman Jul 1963 A
3100320 Frederick Aug 1963 A
3125191 Singer et al. Mar 1964 A
3151715 Hagerty Oct 1964 A
3180459 Liskey, Jr. Apr 1965 A
3181662 Maertzig, Jr. May 1965 A
3184801 Fletcher May 1965 A
3197807 Persson Aug 1965 A
3201831 Cudini Aug 1965 A
3203053 Lane et al. Aug 1965 A
3212225 Neal Oct 1965 A
3213980 Persson Oct 1965 A
3222018 Masters Dec 1965 A
3238574 Martin et al. Mar 1966 A
3239976 Hall Mar 1966 A
3242627 Fountain Mar 1966 A
3252260 Mills May 1966 A
3254461 White et al. Jun 1966 A
3256668 Downes Jun 1966 A
3262226 Persson Jul 1966 A
3310927 Persson Mar 1967 A
3312027 Lawer Apr 1967 A
3315998 Dollaire Apr 1967 A
3318360 Persson May 1967 A
3320710 Byssing May 1967 A
3332182 Mark Jul 1967 A
3342005 Rickards et al. Sep 1967 A
3353314 Melcher Nov 1967 A
3360893 Wattelez Jan 1968 A
3363365 Laepple Jan 1968 A
3363385 Evans et al. Jan 1968 A
3381434 Carson May 1968 A
3381438 Bohnsack May 1968 A
3389522 Hordis Jun 1968 A
3420003 Cline Jan 1969 A
3429090 Metelnick Feb 1969 A
3439465 Du P Re Apr 1969 A
3445080 Flannelly May 1969 A
3462904 Napler Aug 1969 A
3487602 Braun et al. Jan 1970 A
3503168 Eggert, Jr. Mar 1970 A
3527011 Bloom et al. Sep 1970 A
3563577 Wittenmayer Feb 1971 A
3574985 Pierce et al. Apr 1971 A
3685227 Grisard et al. Aug 1972 A
3694984 Shwartz Oct 1972 A
3712013 Kalus Jan 1973 A
3744201 Dochnahl Jul 1973 A
3749432 Janssen Jul 1973 A
3750358 Lawkowitz Aug 1973 A
3760543 McAllister Sep 1973 A
3788019 Kiselewski Jan 1974 A
3797191 Sukolics Mar 1974 A
3837118 Goss, Jr. et al. Sep 1974 A
3837132 Weller Sep 1974 A
3861085 Jacob Jan 1975 A
3868789 Gates Mar 1975 A
3869839 Johnson et al. Mar 1975 A
3885367 Thunberg May 1975 A
3899858 Zenker Aug 1975 A
3903669 Pease, Jr. et al. Sep 1975 A
3908320 Houge Sep 1975 A
3919815 Alabaster Nov 1975 A
3943679 Dissinger Mar 1976 A
3964225 Yoshida Jun 1976 A
3969857 Stark Jul 1976 A
3971178 Mazzoni Jul 1976 A
3994243 Anders Nov 1976 A
3995405 Peterson Dec 1976 A
3998018 Hodges Dec 1976 A
4021967 Mulder et al. May 1977 A
4031680 Stoakes Jun 1977 A
4048768 Good Sep 1977 A
4061371 Prather et al. Dec 1977 A
4074489 Eckel Feb 1978 A
4082047 Williams Apr 1978 A
4089143 La Pietra May 1978 A
4103981 Donahue et al. Aug 1978 A
4109429 Whisson Aug 1978 A
4126975 Williams Nov 1978 A
4134240 Bologna et al. Jan 1979 A
4134564 Hanna Jan 1979 A
4165588 Bayley Aug 1979 A
4187657 Sukolies Feb 1980 A
4223500 Clark et al. Sep 1980 A
4231204 Krueger et al. Nov 1980 A
4241556 Bursk Dec 1980 A
4246731 Miro Jan 1981 A
4255910 Wendt Mar 1981 A
4266386 Bains May 1981 A
4271566 Perina Jun 1981 A
4280309 Huelsekopf Jul 1981 A
4300794 Dunsmoor Nov 1981 A
4327796 Rochman May 1982 A
4370828 Miro Feb 1983 A
4372094 Boschetti Feb 1983 A
4377060 Ragland Mar 1983 A
4407100 Huelsekopf Oct 1983 A
4416096 Schuster et al. Nov 1983 A
4417430 Loikitz Nov 1983 A
4423573 Omholt et al. Jan 1984 A
4428154 Rinehart Jan 1984 A
4430836 Mckann Feb 1984 A
4432182 Addie et al. Feb 1984 A
4459790 Vermillion Jul 1984 A
4471589 Schmidlin Sep 1984 A
4488391 Pavnica Dec 1984 A
4516619 Hasbrouck May 1985 A
4523408 McConnell Jun 1985 A
4523413 Koppenberg Jun 1985 A
4525961 Hansen Jul 1985 A
4539243 Miller Sep 1985 A
4541595 Fiala et al. Sep 1985 A
4542924 Brown et al. Sep 1985 A
4550542 La See Nov 1985 A
4563846 Webb Jan 1986 A
4570399 Wentink Feb 1986 A
4592167 Andrawos Jun 1986 A
4625479 Giguere Dec 1986 A
4630411 Salzer Dec 1986 A
4631881 Charman Dec 1986 A
4631937 Debus et al. Dec 1986 A
4644711 Eickhof Feb 1987 A
4648231 Laroche Mar 1987 A
4665662 Swanborn May 1987 A
4679368 Pettinga et al. Jul 1987 A
4702050 Giguere Oct 1987 A
4715245 Daloz Dec 1987 A
4718704 Verhoog, Jr. Jan 1988 A
4756135 Citrullo et al. Jul 1988 A
4768316 Haas Sep 1988 A
4782630 Kleyn Nov 1988 A
4787184 Boidron Nov 1988 A
4798035 Mitchell et al. Jan 1989 A
4799330 Hudson Jan 1989 A
4839989 McConnell Jun 1989 A
4873803 Rundo Oct 1989 A
4884376 DeBlock et al. Dec 1989 A
4897975 Artwick et al. Feb 1990 A
4905428 Skykes Mar 1990 A
4910937 Sperling Mar 1990 A
4918879 Bodurow et al. Apr 1990 A
4920718 Artwick et al. May 1990 A
4924930 Drennan May 1990 A
4947597 Simpson Aug 1990 A
4947606 La See Aug 1990 A
4962805 Allen Oct 1990 A
4972640 DeFazio Nov 1990 A
4986046 Mazzarantani Jan 1991 A
4989381 De Block et al. Feb 1991 A
4996814 Guillemet Mar 1991 A
4999958 Harrison Mar 1991 A
5018330 Lewkowitz May 1991 A
5038535 Van Praag, III Aug 1991 A
5038539 Kelley et al. Aug 1991 A
5042216 Stratmann et al. Aug 1991 A
5054255 Maninfior Oct 1991 A
5133168 Neilly et al. Jul 1992 A
5155955 Ball et al. Oct 1992 A
5165737 Riegelman Nov 1992 A
5218799 Appino Jun 1993 A
5242207 Carson et al. Sep 1993 A
5245788 Riegelman Sep 1993 A
5251418 Jacobs et al. Oct 1993 A
5253904 Ruby Oct 1993 A
5265388 Sherwood Nov 1993 A
5301989 Dallmann et al. Apr 1994 A
5307599 Herbst et al. May 1994 A
5309686 Underwood et al. May 1994 A
5323579 Ruff Jun 1994 A
5369922 Hansen Dec 1994 A
5369923 Schilt Dec 1994 A
5373671 Roth et al. Dec 1994 A
5379518 Hopper Jan 1995 A
5400560 Hellwig et al. Mar 1995 A
5419091 Roberts May 1995 A
5471803 Logan et al. Dec 1995 A
5497597 Elzenbeck Mar 1996 A
5590502 Wendt Jan 1997 A
5598674 Lay et al. Feb 1997 A
5603585 Bruchu et al. Feb 1997 A
5622017 Lynn et al. Apr 1997 A
5653076 Habraken et al. Aug 1997 A
5660010 Sayers Aug 1997 A
5666773 Librande et al. Sep 1997 A
5675948 Boesch Oct 1997 A
5692346 Irvine et al. Dec 1997 A
5692349 Guillemet Dec 1997 A
5857304 Karten et al. Jan 1999 A
5893600 McManus Apr 1999 A
5941022 Schmuck Aug 1999 A
6000180 Goodman et al. Dec 1999 A
6047509 Savoie Apr 2000 A
6058667 MacDonald et al. May 2000 A
6012258 Brown et al. Jun 2000 A
6141925 Havorson, Jr. et al. Nov 2000 A
6151849 Twigg et al. Nov 2000 A
6158179 Ackerly et al. Dec 2000 A
6167664 Reuter et al. Jan 2001 B1
6227491 Stephan et al. May 2001 B1
6272801 Suh Aug 2001 B1
6354639 Minter et al. Mar 2002 B1
6363670 Dewitt Apr 2002 B1
6367210 Trundle Apr 2002 B1
6390718 Steege May 2002 B1
6390765 Dick May 2002 B1
6397533 Hornberger et al. Jun 2002 B1
6449917 Sullivan, III Sep 2002 B1
6513288 MacDonald et al. Feb 2003 B1
6550193 Potts Apr 2003 B2
6553735 Wang Chen Apr 2003 B1
6581344 Niewiadomski et al. Jun 2003 B1
6581354 Skarpness Jun 2003 B1
6688659 Kobrehel Feb 2004 B2
6763647 Yeany Jul 2004 B2
6769214 Kenkel et al. Aug 2004 B1
6775953 Burken Aug 2004 B2
6786453 Jones Sep 2004 B2
6805185 Gravel et al. Oct 2004 B2
6883277 Wiechecki et al. Apr 2005 B2
6931810 Beaudoin et al. Aug 2005 B2
6981724 Denys Jan 2006 B2
7010888 Tumlin et al. Mar 2006 B2
7114299 Ringness Oct 2006 B2
7124543 Chubb Oct 2006 B2
7150127 Underwood et al. Dec 2006 B2
7178300 Elsing Feb 2007 B2
7331142 Gerard Feb 2008 B2
7448174 Krochmal et al. Nov 2008 B2
7461484 Battey et al. Dec 2008 B2
7540115 Metcalf et al. Jun 2009 B2
7634885 Hoffmann Dec 2009 B2
7644552 Kuipers et al. Jan 2010 B2
7676999 Arias Mar 2010 B2
7707796 Arias May 2010 B2
7752816 Gunther et al. Jul 2010 B2
7849654 Ban et al. Dec 2010 B2
7856777 Lamfers et al. Dec 2010 B2
7891148 Underwood et al. Feb 2011 B2
7908805 Metcalf et al. Mar 2011 B2
7918063 Etemadi Apr 2011 B2
7922224 Arias Apr 2011 B2
8104241 Andres Jan 2012 B2
8291656 Gunther et al. Oct 2012 B2
8966842 Hager et al. Mar 2015 B2
20020095885 Sampson Jul 2002 A1
20030089057 Wiechecki et al. May 2003 A1
20030115811 Sibbett Jun 2003 A1
20040060253 Elsing Apr 2004 A1
20040227349 Denys Nov 2004 A1
20050252098 Kletscher Nov 2005 A1
20060130403 Krehbiel et al. Jun 2006 A1
20070089369 Gore Apr 2007 A1
20080022731 Javaux Jan 2008 A1
20080302054 Gosling et al. Dec 2008 A1
20090284111 Hazzard et al. Nov 2009 A1
20100115852 Daniels et al. May 2010 A1
20100251640 Franchini Oct 2010 A1
20120311946 Liu et al. Dec 2012 A1
Foreign Referenced Citations (151)
Number Date Country
637728 Sep 1963 BE
1127010 Jul 1982 CA
1214962 Dec 1986 CA
2450636 Nov 2004 CA
517887 Jan 1972 CH
552110 Jul 1974 CH
597489 Apr 1978 CH
600125 Jun 1978 CH
1052661 Mar 1959 DE
1281134 Oct 1968 DE
1509168 Jan 1969 DE
1534844 Jul 1969 DE
1922239 Nov 1969 DE
2023309 Nov 1971 DE
2036962 Mar 1972 DE
2104387 Aug 1972 DE
2105711 Aug 1972 DE
2155602 May 1973 DE
2217877 Oct 1973 DE
2242431 Feb 1974 DE
2360661 Jun 1974 DE
2360677 Jun 1974 DE
2416390 Nov 1974 DE
2401496 Jul 1975 DE
2412464 Sep 1975 DE
2426718 Dec 1975 DE
2528531 Jan 1976 DE
2507753 Aug 1976 DE
2516036 Oct 1976 DE
2607937 Sep 1977 DE
1960024 Oct 1977 DE
2731466 Feb 1978 DE
2656035 Jun 1978 DE
2748487 May 1979 DE
2752928 May 1979 DE
2810710 Jun 1979 DE
2911673 Oct 1979 DE
2915255 Oct 1979 DE
2819733 Nov 1979 DE
2940811 Apr 1980 DE
2945148 Jul 1980 DE
2915329 Oct 1980 DE
2945134 May 1981 DE
2951185 Jun 1981 DE
3009729 Sep 1981 DE
3142169 Jun 1982 DE
3102921 Jul 1982 DE
3103548 Aug 1982 DE
3107997 Sep 1982 DE
3131985 Mar 1983 DE
3140756 Apr 1983 DE
3045551 May 1983 DE
3211427 Oct 1983 DE
3425047 Jan 1985 DE
3420883 Feb 1985 DE
3405519 Aug 1985 DE
3432021 Mar 1986 DE
3434406 Mar 1986 DE
3524347 Jan 1987 DE
3627096 Feb 1988 DE
268022 May 1989 DE
3801564 Aug 1989 DE
3812819 Oct 1989 DE
4027335 May 1993 DE
4142151 Jul 1993 DE
4203483 Aug 1993 DE
4428718 Feb 1996 DE
19533273 Mar 1997 DE
19834962 Mar 2000 DE
19944872 Apr 2001 DE
102006009620 Sep 2007 DE
0007324 Feb 1980 EP
0078503 May 1983 EP
0082338 Jun 1983 EP
0093364 Nov 1983 EP
0102500 Mar 1984 EP
0163374 Dec 1985 EP
0231338 Aug 1987 EP
0240401 Oct 1987 EP
0266314 Apr 1988 EP
0307953 Mar 1989 EP
0315612 May 1989 EP
0467047 Jan 1992 EP
0626494 Nov 1994 EP
0752512 Jan 1997 EP
0884438 Dec 1998 EP
0937856 Aug 1999 EP
1302601 Apr 2003 EP
1488725 Dec 2004 EP
1617032 Jan 2006 EP
1221507 Jun 1960 FR
1464678 Jan 1967 FR
2154931 May 1973 FR
2230841 Dec 1974 FR
2408027 Jun 1979 FR
2491524 Apr 1982 FR
2518159 Jun 1983 FR
2540174 Aug 1984 FR
2554862 May 1985 FR
2561300 Sep 1985 FR
2593850 Aug 1987 FR
2623238 May 1989 FR
2625250 Jun 1989 FR
2639995 Jun 1990 FR
2648178 Dec 1990 FR
2669673 May 1992 FR
2695689 Mar 1994 FR
2716695 Sep 1995 FR
298111 Oct 1928 GB
409604 May 1934 GB
476547 Dec 1937 GB
512601 Sep 1939 GB
589889 Jul 1947 GB
638234 Jun 1950 GB
651090 Mar 1951 GB
667007 Feb 1952 GB
706881 Apr 1954 GB
817526 Jul 1959 GB
872870 Jul 1961 GB
1000943 Aug 1965 GB
1010789 Nov 1965 GB
1013395 Dec 1965 GB
1034246 Jun 1966 GB
1159159 Jul 1969 GB
1216370 Dec 1970 GB
1236958 Jun 1971 GB
1254419 Nov 1971 GB
1274118 May 1972 GB
1444425 Jul 1976 GB
1533120 Nov 1978 GB
2030627 Apr 1980 GB
2051197 Jan 1981 GB
2121858 Jan 1984 GB
2130629 Jun 1984 GB
2150626 Jul 1985 GB
2190418 Nov 1987 GB
2196045 Apr 1988 GB
2202260 Sep 1988 GB
2204347 Nov 1988 GB
2275709 Jul 1994 GB
2317145 Mar 1998 GB
60343 Jul 1947 NL
198200292 Sep 1982 WO
1988009423 Dec 1988 WO
19900012187 Oct 1990 WO
1991013221 Sep 1991 WO
19911019877 Dec 1991 WO
1991001853 Feb 1992 WO
9505517 Feb 1993 WO
1993020320 Oct 1993 WO
1994008122 Apr 1994 WO
Related Publications (1)
Number Date Country
20170022707 A1 Jan 2017 US
Provisional Applications (5)
Number Date Country
61971989 Mar 2014 US
61701969 Sep 2012 US
61702018 Sep 2012 US
61702008 Sep 2012 US
61701977 Sep 2012 US
Continuation in Parts (2)
Number Date Country
Parent 14670928 Mar 2015 US
Child 15283976 US
Parent 14029239 Sep 2013 US
Child 14670928 US