The present invention relates to an apparatus for the treatment, such as cleaning, of a surface. More specifically, one embodiment of the present invention is an apparatus for surface cleaning that provides a standing or sitting location for the operator and is capable of operating in tight spaces.
Cleaning machines are used extensively for cleaning flooring surfaces comprised of tile, stone, brick, wood, concrete, carpets and other common surfaces. Maintaining the cleanliness of these surfaces, especially in high volume areas in commercial, industrial, institutional and public buildings is an ongoing and time-consuming process. The present invention relates to a highly maneuverable floor cleaning or treatment apparatus (hereinafter “treatment apparatus”) that supports an operator during use. More specifically, some embodiments of the present invention are adapted to clean, sweep, vacuum, burnish, wax, etc. (hereinafter “treat”) a floored surface, wherein the operator is supported by the cleaning device, thus increasing efficiency and productivity of the cleaning operation. As used herein, A floored surface @, or more generally A surface@, encompasses areas covered by concrete, tile, carpet, wood, plastic, stone, turf or any other substance known in the art. The prior devices address many issues that arise with cleaning such floored surfaces. Unfortunately, prior to the present invention, there was no one device that could address many, if not all, of the issues that arise in cleaning various surfaces in various environments at any given point in time.
Mop & Bucket Cleaning Devices
In the past, building maintenance staff and others often treat surfaces, such as tiled hallways or restroom floors, using traditional mop and bucket techniques. The bucket may include a detachable mop ringer and may be positioned on caster wheels to facilitate easy movement. Depending on the cleanliness of the equipment, a worker may be able to make a good start in treating a floor using the mop and bucket approach. However, soon the mop and fluid in the bucket becomes soiled or otherwise contaminated by germs and/or bacteria. From that point on, each time the worker plunges the mop into the bucket and rings the mop, both the mop and cleaning fluid become more and more dirty/contaminated.
Manually Propelled Cleaning Devices
The basic cleaning problems associated with the prior art mop & bucket approach to cleaning a surfaces have generally been addressed in the art, as shown in U.S. Pat. No. 6,206,980 to Robinson, entitled A Multi-functional Cleaning Machine, @ which is fully incorporated herein by reference. This type of cleaning machine generally includes a manually propelled wheeled body with two tanks, one concentrated chemical receptacle, a vacuum and blower motor and a fluid pumping system. Typically, such equipment includes only a single motor used for both vacuuming soiled fluid and blowing air that can be used to dry a cleaned surface. While such equipment is generally maneuverable and is an improvement over the earlier mop and bucket technology, the system is still labor intensive and slow. As a result, productivity of cleaning professionals, when using these type of systems is generally decreased over what it might be with other type of systems that are available.
Self-Propelled Walk Behind Device
Productivity concerns have been addressed in the art by the creation of certain walk behind floor treatment apparatus. These apparatus typically have a scrub deck at the machine's front and a squeegee at its rear. The squeegee has the ability to “swing” or follow the path of the scrub deck as the machine changes direction. This type of equipment is generally more efficient in cleaning large surface areas than either the mop and bucket or the manually propelled devices. Unfortunately, however, the distance between the scrub deck and squeegee is relatively great. Also, walkbehinds typically have relatively wide squeegees. These characteristics limit such machine's maneuverability and limit the doorways they can easily pass through. Typical 3′ doorway allows a machine with no more than a 33″ squeegee to fit through without removal.
Small walk behind floor cleaning apparatus typically include a scrub deck in the middle of the machine and squeegees at the machine's rear. In this configuration the squeegee has little or no ability to swing or follow the path of the scrub deck as the machine changes direction. Small rider scrubbers typically have relatively narrow squeegees, and rely on “side squeegees” (unvacuumized squeegee blades) adjacent to the scrub deck to direct the water into the path of the main (vacuumized) squeegee. The problem with these side squeegees is that they do not perform very well for very long and tend to leave a film of water in turns because the vacuumized squeegee does not follow the true path of the scrub deck, only the path of the side squeegees (which leave the film of water). Finally, side squeegee are typically very heavy rubber blades and have significant down-pressure applied to them to direct the water—this makes them expensive and causes significant “drag” which increases the work for the propel unit and limits battery run-time. Thus, while more maneuverable than larger walk behind floor treatment machines, the small machines typically do not clean as well as the larger machines.
Storage Issues in Prior Art Devices
Further, known cleaning machines do not provide adequate onboard storage for cleaning supplies, tools, etc. Likewise, prior art machines do not often provide a flexible approach to adding storage facilities for trash and the like when the need for such arises. Machinery that addresses these issues is therefore needed.
Self-Propelled Ride-on Devices
Self-propelled cleaning devices are generally also well known in the field and are employed to treat large floored surfaces, such as tiled, concrete or carpeted floors found in hospitals, department stores, schools, gyms, etc. These devices generally provide the operator with seating from which he/she can control operation of the device. These devices are ideal for cleaning large, open areas because they are capable of containing large amounts of waste fluids and/or debris without having to repeatedly perform time consuming fluid replacement or debris removal. Moreover, because these devices provide the user with seating, the user does not become prematurely fatigued, increasing overall worker productivity. Unfortunately, these large ride-on machines are not particularly well-suited for cleaning smaller, more confined floor surfaces, which are often found in hallways, small rooms, or even large rooms which have many obstacles therein.
As is well known in the art, smaller self-propelled cleaning devices are also in existence that are ideal for cleaning the smaller rooms and hallways. However, smaller devices are usually pushed or pulled by an operator. Hence, the major drawback of these devices is that they often rely on operator strength to maneuver the device. Even if the device is self-propelled, it often employs manual steering. After a long shift of walking behind a treatment device, the operator is bound to become fatigued, wherein his or her attention will deviate from the task at hand, thereby possibly resulting in uneven treatment to the floored area. Thus, a subsequent crew may have to return and retouch certain areas that were not accurately treated during the first operation. In addition, human errors related to the amount of time a surface is exposed to a brush, may occur when the operator lingers over a single area for extended period of time. This situation is never good for a floor surface. The devices in the art are also difficult to maneuver and often are not adapted to operate around tight corners, wherein pre or post cleaning operations must be performed, thus increasing the time and expense of the entire task.
Thus, it is a long felt need in the field of floor cleaning or treatment to provide a device that allows the operator to ride thereon, and which is adapted to be used in small areas and/or around tight corners. The following disclosure describes an improved floor cleaning and treatment device that is adapted for use in small areas that includes a platform adapted to support the operator to ensure optimum floor cleaning or treatment.
It is one aspect of the present invention to provide a floor treatment apparatus that is easy to maneuver. More specifically, one embodiment of the present invention is constructed of a chassis section that includes an enclosure that houses at least a portion of the internal components of the treatment device and a location for installation of devices that are used during cleaning operations. In addition, one embodiment of the present invention provides a standing, leaning or sitting location for the operator. Another embodiment of the present invention is equipped with a powered steering device that allows for greater maneuverability in areas with tight corners, thereby ensuring that more of the flooring surface is treated without having to perform pre or post treatment operations. More specifically, one embodiment of the present invention is equipped with a self-propelled wheel and an easy to use steering device to provide increased maneuverability around obstacles. One embodiment of the present invention employs at least one wheel that provides thrust and/or steering capability. Yet another embodiment of the present invention employs wheels that are substantially centered under the chassis such that the entire apparatus is generally capable of 360E rotation without substantially traversing in any other direction, thus allowing it to treat tight corners of a surface. It is another aspect of the present invention to provide a cleaning apparatus that is cost effective to manufacture. Various aspects of the invention shall now be described in more detail.
Chassis
One embodiment of the present invention employs a chassis section that is designed to protect and house the internal workings of the apparatus and provide a location for interconnection of auxiliary treatment devices used therewith. One embodiment of the present invention employs a chassis that is constructed of rigid plastic, metal, or other common materials used in the art. The chassis of this embodiment also is equipped with a platform for the operator. Alternative embodiments of the present invention employ a foldable, removable or stationary operator seat. In addition, other safety features such as pads or belts may be employed to secure the operator into the cleaning device and thus his/her working environment.
It is yet another aspect of the present invention to provide a chassis with a small envelope. More specifically, one embodiment of the present invention is small enough to fit into and through tight spaces. Often facilities that employ the apparatus of the present invention include narrow doorways, aisles and elevators. In addition, especially in older buildings that have been retrofitted to comply with the Americans with Disabilities Act, elevators are of minimal volume and lifting capability. To fit into small elevators, the chassis is designed to have the smallest practical envelope, a distinct advantage over the prior art. Also, the apparatus of one embodiment of the present invention includes components that are easily removable or adjustable to reduce the profile of the apparatus. Thus, the embodiments of the present invention may be used in various structures.
Steering Mechanism
Another aspect of the present invention is to provide a cleaning apparatus that is easy to operate and maneuver. More specifically, one embodiment of the present invention is equipped with a steering mechanism that allows for inputs from the operator to be efficiently communicated to the steering wheels of the cleaning apparatus. Alternatively, other steering means may be used to facilitate maneuverability of the treatment apparatus, such as joy sticks, touch screens, buttons, remote control elements, etc.
It is still yet another aspect of the present invention to provide a cleaning apparatus that is adapted to efficiently clean areas with tight corners. More specifically, one embodiment of the present invention is adapted to generally perform 360E turns without appreciable lateral motion. This embodiment of the present invention is equipped with a turning mechanism generally under the center of the chassis with two powered exterior wheels adjacent thereto that provide power to the chassis to pivot around the centered wheel. The powered exterior wheels may be independently controlled by joy sticks, wherein movement thereof send directional inputs to each wheel. One embodiment of the invention is equipped with at least one joy stick wherein forward deflection will impart forward motion, rearward deflection will impart rearward motion, and a side-to-side deflection will cause the apparatus to turn. Alternatively, two joy sticks may be used in a similar manner, wherein rearward deflection of the left joy stick and forward deflection of the right joy stick will result in a left turn, and depending on the placement of the powered wheels, perhaps a 360E left hand turn.
Another embodiment of the present invention utilizes a steering wheel, handle bars, a yoke, or similar apparatus for steering. Embodiments may also include a power-assisted steering mechanism.
Power Plant
It is another aspect of the present invention to provide a treatment apparatus that is powered by commonly used power plants. More specifically, one embodiment of the present invention employs an electric motor to power the apparatus. The electric motor may be powered by batteries, solar energy or an electrical cord attached to a permanent power source. Alternatively, the present invention may be powered by an internal combustion engine. Other propulsion means may also be employed by the present invention without departing from its scope, as will be appreciated by one skilled in the art.
Floor Treatment Devices
One embodiment of the present invention employs a chassis that houses a fluid pump assembly and a vacuum assembly. The apparatus further includes at least two tanks, one for retaining a base cleaning fluid, such as water, and a second for retaining spent cleaning solution, dry debris, etc. The apparatus may also include one or more concentrated cleaning chemical receptacles designed to hold concentrated cleaning chemicals. The receptacles are preferably stored within a lockable structure, adding safety to the overall apparatus. These agents can be added to a base cleaning fluid just prior to application to a surface and as desired to facilitate cleaning of various surfaces.
Tanks
As briefly mentioned above, preferably at least one tank is provided that provides a solution that is directed towards the flooring surface to be cleaned to facilitate treatment. The tank may be constructed with multiple compartments wherein waste water from the surface is contained prior to disposal. More specifically, one embodiment of the present invention employs a tank that includes a movable membrane. In this configuration, the clean water and/or cleaning solution is deposited on a surface and agitated. Dirty water is next suctioned up and deposited back into a portion of the tank, thereby moving a membrane accordingly to accept the dirty water. Such a configuration is disclosed in U.S. Pat. No. 4,759,094, which is herein incorporated in its entirety by this reference. A similar selectively expandable fluid storage area can be created by utilizing a collapsible structure, which is placed inside of the primary fluid tank. This type of arrangement is disclosed in U.S. Pat. No. 4,196,492, which is also incorporated herein in its entirety by this reference.
Clean water can obviously come from an outside source such as a hose, rather than be stored on board the device. However, in order to facilitate maneuverability and usability of the present invention, it is envisioned that the chassis will house or hold at least one fluid tank and perhaps a plurality thereof.
Cleaning Solutions
In one type of treatment operation, fluid from the chemical receptacles flows through a tube to a chemical selector, which may include a metering valve. The selector preferably has a positive shut-off position, wherein fluid is prevented from flowing through the selector regardless of the fluid pressure in a fluid line. The selector is responsive to input from an operator selection of one of the several cleaning chemicals. Once a chemical is selected, it is free to flow through the chemical selector and appropriate amounts thereof may be provided to one of any number of inlets to a mixing tee. The amount of chemical allowed to flow may be adjusted by a metering valve built into the selector or separate from the selector, in a known fashion. A base cleaning fluid, such as water, may flow from a fluid tank and through a separate tube to a second leg of a mixing tee. The cleaning fluid and concentrated cleaning chemical then mix within the mixing tee to create a cleaning solution. That solution may then be passed through the selector outlet to a pressure pump, wherein the cleaning solution may be pressurized and communicated via appropriate tubing to a dispensing device. The pump, which draws fluid to and through the selector, also preferably includes a bypass system to facilitate regulation of pump pressure. Use of the pump to draw fluid is preferred as it does not create unwanted pressures in the fluid lines and the system, in general, is not subject to gravity feeding of fluid.
A solution may be applied to a surface using any type of dispensing device. In a preferred embodiment, the dispensing device or associated solution lines or tubes include an adjustable valve, which may be used to adjust the pressure and flow of solution allowed to exit the dispensing device. Because of the adjustability, the apparatus may be utilized as a pre-cleaner for various carpet treatments, including spotting or other treatments.
By use of the chemical selector, two or more receptacles of floor treatment chemicals may be fluidly connected to a mixing tee. In operation, a user is capable of creating any number of cleaning solutions without the need for adding receptacles or switching chemical feed lines from one receptacle to another or without changing metering tips that are easily misplaced, incorrectly interconnected, or damaged. Thus, the treatment process is safer because there is less chemical handling. Similarly, use of a metering valve will allow the operator to create a very precise floor treatment solution.
It is preferred that one-way check valves be used throughout the apparatus. For instance, check valves may be included in: delivery lines that supply cleaning chemicals to the metering tee; lines that supply water to the metering tee; lines that supply cleaning solution to the pump; lines that supply cleaning solution to the spray gun; or in the metering tee, itself. The check valves prevent reversal of fluid and prevent contamination of one fluid with another.
Blower
The treatment apparatus also may include a modular blower assembly. The blower assembly may be hand-held and operate completely apart from the overall cleaning machine. The blower assembly may be used to dry areas physically separate from where the apparatus is stored. Because the blower assembly possibly is separate from the apparatus, it may also be used for other blowing functions, such as blowing leaves, grass, dirt or other debris. The blower assembly may be used with a detachable hand nozzle, a flexible nozzle, an extension wand, etc., thereby increasing the overall flexibility of the blower assembly. The blower assembly may utilize an integrated on/off switch and be powered by electricity supplied by any typical extension cord, including the power source of the apparatus. The blower may be configured to be stored on the apparatus in one of any number of convenient ways. It will be appreciated by one skilled in the art that having a modular blower assembly of this type is very beneficial to the overall functionality of a multifunctional floor treatment apparatus.
Storage
Another aspect of one embodiment of the present invention is that the chassis includes bins, trays, bays and other storage devices preferably within easy reach of the operator. The storage devices provide the operator with substantial flexibility when cleaning a large building or area that has many types of surfaces that may need treatment. Also, the apparatus provides for modular trash/supply bins that may be added to or removed from the apparatus quickly and easily so that the machine can be configured for one of any number of floor treatment activities.
Primary Pump
It is yet another aspect of the present invention to provide an apparatus equipped with a secondary fluid pump that supplies fluid to the main fluid pump prior to ignition. More specifically, one embodiment of the present invention includes a secondary, or priming pump, which is activated prior to the activation of the main fluid pump. Often it is desirable to introduce fluid into a main fluid pump prior to that pump's activation, thereby expelling trapped air that may cause damage to the main fluid pump motor from vapor lock or cavitation, for example. This priming process may be conducted manually, but that is time consuming, wherein the user manually adds fluid to the pump or bleeds the air therefrom. Alternatively, and preferably, one embodiment of the present invention is equipped with a secondary pump that is activated for a brief moment when the fluid discharge apparatus is initially activated, thus ensuring that the main fluid pump will be substantially free of trapped air upon activation.
Squeegee
It is another aspect of the present invention to provide a device that includes a squeegee adjacent to the floor treatment device, both generally in the middle of the machine. The squeegee effectively swings, or follows the path of the floor and does not rely on unvacuumized side squeegees to channel water to the main vacuumized squeegee. Thus, it offers as good or better fluid pick-up when the apparatus is turning than is capable with a walk behind scrubber, and far superior than typical small riders since it does not rely on smearing side squeegees. One embodiment of the present invention, employs a squeegee that pivots about the steering axis with a linkage that is supported by a roller and track mechanism. The absence of side squeegees mean less drag and better use of available energy. In addition, some embodiments of the present invention include an adjustable squeegee, a skirt or a shroud that minimally contacts the floor, thus reducing drag and sparing battery charge. Alternatively, some embodiments of the present invention include stops that contact the floor, without marring the same.
Use of the Device
Various aspects of the inventions discussed briefly above combine to provide an effective and efficient tool, useful in the treatment of numerous areas in and around commercial, industrial, institutional and public buildings. Moreover, due to the various aspects of the present invention, a sanitation maintenance worker may clean a particular room or facility more efficiently than previously possible. The present invention may be used in various cleaning operations such as burnishing, vacuuming, scrubbing, sanding, waxing, sweeping, sealing, painting, polishing, etc. In order to accomplish these tasks, the present invention may be equipped with various combinations of floor treatment devices. More specifically, one embodiment of the present invention is equipped with a plurality of brushes and squeegees to agitate and collect debris from a flooring surface. In addition, suction mechanisms may be employed such that fluids and/or dry particulate matter are transferred into a container. It is also envisioned that one embodiment of the present invention include at least one solution applicator positioned adjacent to the scrub brushes, wherein solution is injected onto the surface after, or prior to, agitation by the brushes. The debris-entrained solution is then collected by the squeegee and subsequently vacuumed into the holding tank or expelled out of the chassis to an outside reservoir. The brushes and/or solution used in this embodiment may be adapted to clean, sweep, paint, burnish, sand, strip, varnish or wax a floor. It will be appreciated by one skilled in the art that any type of solution adapted to treat any flooring surface may be employed without departing from the scope of the present invention.
It is yet another aspect of the present invention provide a floor treatment apparatus that can be used in various floor maintenance operations. More specifically, one embodiment of the present invention is adapted for interconnection to a plurality of devices to perform a variety of floor treatment operations. It is envisioned that one embodiment of the present invention be capable of quick removal of certain treatment devices such that different devices may be then added to quickly change the scope of the apparatus, thereby providing a device adapted to scrub, clean carpets, wax floors, burnish floors, remove wax or varnish from floors, vacuum, etc. Thus, it is contemplated, that this system may be used for a plurality of cleaning or floor treatment operations.
Remote Control
It is yet another aspect of the present invention to provide a highly mobile floor treatment apparatus that can include a car washer assembly. As will be appreciated by those skilled in the art, if so configured, the device could include a car washer wand connected to appropriate pumps and could be utilized to pre-clean heavily soiled areas prior to final cleaning with use of the device.
It is still another aspect of the present invention to provide a floor treatment apparatus that does not require direct contact with an operator to perform its tasks. More specifically, one embodiment of the present invention is adapted to be remote controlled. This embodiment of the present invention is equipped with remote control mechanisms and software currently known in the art, such as taught by U.S. Pat. No. 6,625,843 to Kim et al., which is incorporated in its entirety herein. In addition, this embodiment of the present invention may be equipped with the plurality of cameras such that offsite monitoring and control may be performed. In a related embodiment of the present invention, software is installed in the cleaning apparatus such that human contact or monitoring is not required. More specifically, one embodiment of the present invention is adapted to learn its environment as it operates in an area such that remote controlling is not required. Alternatively, it is well within the scope of this invention to preprogram the dimension of floored surfaces into the smart treatment device, wherein the device is parameterized with the surface dimensions before the task is initiated. Apparatus of this type are known in the art, such as the RoombaJ device by iRobot Corporation, aspects of which are described in U.S. Pat. Nos. 6,594,844 and 6,535,793, which are both incorporated in their entirety herein.
Safety
It is another aspect of the present invention to provide a cleaning apparatus that is safe and comfortable to use. More specifically, one embodiment of the present invention includes an operator platform. This platform allows the operator to stand on the device during the treatment operation, thus increasing productivity and lowering the chances of injury or fatigue to the operator. It another embodiment of the present invention, a seat is provided wherein the operator may comfortably sit while completing his or her task. Other safety and comfort features such as rails, pads, and belts, may be provided depending on the needs of the operator.
Thus, it is one aspect of the present invention to provide a floor treatment apparatus which comprises:
a chassis with a lower surface, a front surface, an upper surface, a rear surface, a left surface and a right surface, wherein a platform is provided that is adapted to support the weight of an operator;
a powered wheel operably connected adjacent the lower surface of the chassis, the powered wheel being capable of at least one of transitioning and rotating the floor treating apparatus;
a steering mechanism adjacent to the upper surface that is accessible by the operator;
an operable floor treating device connected adjacent to the lower surface of the chassis;
an operable debris collection device connected adjacent to the lower surface of the chassis; and
wherein an operator controls the floor treatment apparatus from the platform.
Platform & Ergonomics
In various embodiments of the present disclosure, a platform is provided on a rear portion of a cleaning device to receive a user. In preferred embodiments, the platform comprises an area that is operable to receive the feet of user in a standing position and wherein the user is acting as an operator of the device. In some embodiments, the center of the platform is offset from a centerline of the cleaning device.
Various embodiments of the present disclosure comprise at least one floor treating device (e.g. a rotary brush) that is biased or otherwise provided closer to a first side of the device than a second side. The platform of the device is offset or biased toward the first side of the device. It should be recognized, however, that embodiments of the present disclosure that comprise an offset platform are not limited to a corresponding or similarly offset floor treating device. For example, it is contemplated that devices are provided that comprises an offset platform but that do not comprise an offset, biased, or asymmetrical floor treating device.
In at least some embodiments, and as is shown and described herein, a user platform of the device is provided proximal to the side of the device that comprises the cleaning device. Applicant has determined that the provision of an offset platform improves the functioning of the device wherein users and users' line of sight is directed toward a portion of the device that comprises cleaning and floor or surface contact features. Such offset platforms and related features prevent users from directing their focus elsewhere, and thereby improve both cleaning functions and safety.
In some embodiments, other cleaning device features in addition to the platform are provided off-center. For example, certain embodiments of the present disclosure provide that a cleaning deck including a scrubbing pad and a squeegee is positioned off-center on the machine. Additionally, a drive wheel is provided off-center on the machine. As shown and described in more detail herein, certain embodiments of the present disclosure contemplate a pivotable trailing squeegee that is capable of rotating as the cleaning device turns. Device and squeegee performance has been optimized by the positioning of various components including, but not limited to a steerable drive wheel provided on a lower portion of the device.
In one embodiment, a floor treatment apparatus is provided that is operable to receive inputs from direct contact with an operator and without direct contact with an operator to perform tasks. The apparatus comprises a chassis comprising a front, a back, a lower surface, a front surface adjacent the front, an upper surface, a rear surface located behind a center point of the chassis, a left surface, and a right surface. The chassis comprises a centerline extending through a lateral midpoint of the left surface and the right surface. A platform is located partially between a portion of the right surface and the left surface and at least partially behind the rear surface, wherein the platform includes a top surface adapted to receive the feet of an operator. The platform comprises a midpoint that is offset relative to the centerline of the chassis and wherein the platform is provided closer to one side of the apparatus than the other.
Debris Management & Bearing Protection
In various embodiments of the present disclosure, cleaning devices are provided with one or more cleaning brushes. For example, in embodiments that comprise vacuum capabilities, at least one cleaning brush is provided that is rotatable about a horizontal axis (i.e. parallel to a floor or ground surface). Bearing members are provided on opposing ends of the brush and/or drive member to enable a rotation of the brush. Applicant has determined that a cleaning motion of the brush (i.e. rotation of the brush coupled with a vacuum force) causes debris including but not limited to hair strands to migrate along the length of the brush to the periphery of the brush where such debris can become entrained in or otherwise enter the bearing(s). This has been found to degrade the seals of the bearing(s) and may cause lubricant to escape from the bearings while also allowing debris to enter the bearings. Various embodiments of the present disclosure comprise at least one bearing protector. In some embodiments, the bearing protector(s) comprise a stationary brush provided proximal to the bearing. In certain embodiments, the stationary brush comprises bristles that are substantially perpendicular to the horizontal axis of the rotary brush. The stationary brush acts as a barrier to keep hair and fibers from breaching the bearings, and thereby preserves the life of certain critical components of the device. In some embodiments, at least one stationary brush is provided that is selectively removable and wherein a user may remove the stationary brush for cleaning and/or replacement. In various embodiments, cleaning brushes are provided that comprise selectively removable brushes that selectively attach and detach from drive members of the device. It will be recognized, however, that stationary bearing-protector brushes of the present disclosure are contemplated as being employed on various different machines and are not limited to any particular embodiment or type of cleaning device. For example, it is contemplated that such stationary brushes are provided on conventional floor vacuums that employ rotatory cleaning brushes.
In one embodiment, a floor treatment and cleaning device is provided. The device comprises a first roller and a second roller, wherein the first roller and the second roller each comprise a longitudinal axis. The first roller is spaced apart from the second roller, and the longitudinal axis of the first roller extends parallel to the longitudinal axis of the second roller. The first roller and the second roller each comprise a plurality of bristles extending therefrom. At least one of the first roller and the second roller is rotatably connected to a bearing assembly. A stationary brush is provided proximal to the bearing assembly, wherein the stationary brush is operable to contact and deflect debris provided on at least one of the first roller, the second roller, the plurality of bristles, and the bearing assembly to prevent ingress of the debris into the bearing assembly.
Cable Management
In various embodiments of the present disclosure, at least one wire and cable management device is provided. In various steered or steerable floor cleaning devices, cables and wired connections to power and control a motor (for example) are provided. Such cables and wires are often wrapped around a steering column, or otherwise poorly secured to the device. Over time, these cables and wires can become caught or entangled on various components of the device as the device is steered, which may further lead to breakage of the wires and inoperability of critical elements such as a drive motor.
Embodiments of the present disclosure provide a containment system for wires and cables. In some embodiments, a containment system is provided that comprises a wire storage member provided adjacent or proximal to a rotatable drive motor, and wherein the wire storage member is fixed at least relative to the rotatable motor. Cables and wires are operable to extend and retract as the device is steered, thereby allowing cables and wires to be rigidly fixed to anchor points, minimize slack, and protect such wiring and cabling from damage and breakage.
In one embodiment, a floor treatment apparatus is provided that is operable to receive inputs from direct contact with an operator and without direct contact with an operator to perform tasks. The apparatus comprises a chassis comprising a front, a back, a lower surface, a front surface adjacent the front, an upper surface, a rear surface located behind a center point of the chassis, a left surface, and a right surface. A motor is rotatably secured to a lower surface of the chassis. The motor is coupled to a cable housing member that is operable to receive and house a length of cable. The cable housing member is fixed to the lower surface of the chassis and comprises an aperture for receiving at least one of a wire and a cable extending between an interior volume of the cable housing member and an electrical component of the apparatus.
The Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. Some aspects of the present invention are set forth in various levels of detail in the Summary of the Invention, as well as in the attached drawings and the Detailed Description of the Invention. No limitation as to the scope of the present invention is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description of the invention given above and the detailed description of the drawings given below, serve to explain the principles of these embodiments.
To assist in the understanding of the present invention the following list of components and associated numbering found in the drawings is provided herein:
It should be understood that the drawings are not necessarily to scale. In certain instances, details which are not necessary for an understanding of the invention or which render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
Referring now to
The chassis 8 also includes a plurality of wheels 18 operably interconnected to the bottom surface 10 to enable steering and provide stability. It is contemplated that the operator 6 will stand on the platform 4 and steer the apparatus 2 with either a steering wheel 20 or other type of steering mechanism, such as a joy stick 22. Such an embodiment of the present invention enables the floor surface to be cleaned or otherwise treated more efficiently, since the operator 6 does not have to push or pull an often heavy apparatus 2. In addition, since the human component of powering or otherwise moving the apparatus 2 is omitted, more consistent flooring treatment is achieved, thereby saving materials and reducing costs of the entire operation.
Referring now to
The chassis 8 is constructed of any material, but preferably hard plastic will be used to reduce the weight of the apparatus 2. As shown herein, a plurality of wheels 18 are operably interconnected to the rear of the apparatus 2 to provide stability and perhaps power for locomotion. In addition, a squeegee 16 is included that is adapted to extract or funnel water or debris to a location where it is extracted via vacuum into a container generally, but not always, located at least partially inside the chassis 8. Further, this embodiment of the present invention includes a brush 12 that is used to agitate the flooring surface to loosen dirt, wherein spray nozzles may be employed situated behind the brush 12 to treat the flooring and capture the dirt so that it can be gathered by the squeegee 16 and suction system of the apparatus 2.
Referring now to
In the illustrated embodiment, the operator 6 is able to control the apparatus 2 with a plurality of j oy sticks 22. In addition, hand grips 24 are provided on the sides of the operator 6 to increase safety. Further, this embodiment of the present invention employs powered wheels 26 that allow the entire system to rotate on a single vertical axis without substantially transitioning in other directions. More specifically, this embodiment of the present invention is capable of performing a 360E turn, which aids cleaning of tight spaces.
An alternate embodiment of the present invention that is used for burnishing is shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The squeegee 16 of one embodiment of the present invention is provided with a plurality of wheels that interface with the floor to maintain the vertical clearance of the squeegee assembly. In addition, side rollers may be provided that prevent the squeegee 16 from contacting a vertical surface, such as a wall. These wheels and various portions of the squeegee assembly may be selectively adjustable such that the width of the squeegee 16 and the placement of the wheels (squeegee height) may be altered at will.
As shown herein, the swing arm 36 connects to a pivot 42 that utilizes the momentum of the squeegee 16 to swing it from the apparatus 2. However, one skilled in the art will appreciate other methods of transitioning the squeegee 16 from the floor treatment apparatus 2 may be utilized without departing from the scope of the invention. More specifically, a motorized system may be employed that is in communication with the steering system of the vehicle such that rotation of the steering wheel will swing the squeegee 16 away from the apparatus 2 in a predetermined manner.
An actuation system that selectively raises the squeegee 16 from the floor may also be included as shown in
Referring now to
Referring now specifically to
Referring now to
Referring now to
Embodiments of the present invention also include hand grips 24 adjacent to the control panel 76 to provide support for the operator. More specifically, during tight turns the inertial forces acting upon an individual may cause an operator to fall. Hand grips 24, which may be integrated onto the chassis of the apparatus, will give the operator a place to hold onto the device for added comfort and provide an additional safety feature. In addition they provide support when operating control switches located adjacent to handle grip 78.
Referring now to
The operator presence switch 80 of one embodiment of the present invention is designed to act as a safety feature that interrupts the throttle pedal when not depressed. This ensures that the operator has both feet positioned on the platform when the machine is in use. Upon deactivation of the switch, for example if the operator removes a foot from the switch, a neutral mode may be engaged such that no power or forward or rearward motion of the device is possible. In addition, the operator presence switch 80 may ensure that sufficient weight is maintained on the platform at all times as a safety feature.
In the typical use, the platform switch is in operable connection with the platform, such that it is activated when the operator stands on the platform. The operator must then engage a reset device, preferably on the control panel, to initiate motion. The purpose of the platform switch and reset switch is to act as a safety feature such that the machine does not immediately move when the operator steps on to the peddle platform. Upon deactivation of the switch, for example if the operator steps from the apparatus, a neutral mode may be engaged such that no power and forward or rearward motion is possible.
The throttle 82 of some embodiments of the present invention is adapted to selectively increase or decrease the speed of the apparatus depending on the desires of the operator. More specifically, various speed ranges may be included: neutral, first, second, third, reverse, etc. (or slow, medium, fast, etc.). In some embodiments, cleaning operations are performed at slow speeds, while transportation from location to location is performed at higher speeds. When the operator sets the speed range to first, for example, the activation of the throttle 82 will propel the apparatus within that speed range, such that it cannot transition from the first range to the second range without a manual shift of the range. Thus, embodiments of the present invention include a hand speed range selector, wherein the throttle 82 simply turns the desired speed range to an activated mode. The neutral mode may also be set by the operator, wherein no amount of throttle 82 engagement will increase the speed of the apparatus. In addition, as mentioned briefly above, when the operator removes his or her foot from the operator presence switch 80, the apparatus automatically disengages the throttle. One skilled in the art will appreciate however, that a throttle 82 may be provided that provides selective speed increments, such as employed on an automobile, without departing from the scope of the invention.
It is likewise known that a throttle used on an electric motor drive device could operate by switches which regulate power delivered from batteries to a motor. For instance, and referring now to
Embodiments of the present invention also include a braking mechanism. For example, when an operator removes his or her foot from the operator presence switch 80, throttle, or disengages the platform switch, a braking mechanism may be employed such that any motion of the apparatus automatically or gradually ceases. The braking mechanism may be electro mechanical, mechanical or hydraulic. Alternatively, the foot brake may be provided adjacent to the throttle 82 or operator presence switch 80 that provides the same halting capability. Further, hand or emergency brakes may be employed adjacent to the control panel of the apparatus.
Referring now to
Referring now to
Although not shown, a filter may be provided in fluid communication with the fluid pump. This filter is designed to capture any debris that may adversely affect the operation of the pump. Unfortunately, on many cleaning machines, the filter is placed in a hard to access location, such that repair or monitoring thereof is very difficult. Thus, one embodiment of the present invention includes a filter that is situated on the outer surface of the housing, perhaps on the control panel. Thus, the operator has ample opportunity to monitor the integrity of the filter and make quick repairs when necessary.
Referring now to
In addition, the tank 50 may be made out of a formable material such that exhaust channels 94 may be machined or molded into the tank 50. The channels 94 direct the exhaust air from the vacuum 92 to an exit muffler of the apparatus. The channels 94 also act as a baffle to remove noise energy from the exhaust gases, thus making the entire system quieter.
Referring now to
Further, some embodiments of the present invention are provided with tip over stops adjacent to the front corners of the apparatus. The stops may be replaceable and ensure that the apparatus does not tip over during tight turns. The tip over stops are generally constructed out of a material that is harmless to flooring, such as Teflon, silicone, rubber, plastic, etc. In addition, one skilled in the art will appreciate that rollers may be employed that are situated a predetermined distance from the floor to perform the same function.
Referring now to
As shown in
Based in part on the lateral offset of the cleaning pad 132 toward the right of the machine (at least with respect to
As shown in
As further shown in
While
The motor 174 is rotatable relative to the housing member 172. As the motor 174 rotates, the first cable 176 is allowed to extend and retract from and to the housing member 172. The first cable 176 comprises some rigidity due its construction (e.g. copper wire and related housing) that resists a compressive force and allows the cable 176 to wrap or otherwise be stowed in a coil arrangement within the housing member 172. Accordingly, the motor 174 is allowed to pivot freely and as needed during turning and standard operation of an associated device, and associated wiring is stored and protected from various moving elements of the device.
The device 170 is operable to secure cables, protect the cables, and prevent loose cables from entering a field of view of Lidar sensors in embodiments that comprise such features. Although
As noted, the distal ends of wiring that extends through the device 172 are secured. The length of the wiring is therefore wrapped and unwrapped within the plate members 182, 184 as the motor 174 rotates about the axis 189. At least a portion of the length of the wiring is therefore housed and secured such that wiring does not become entangled on other components, does not interfere with various sensors, and is at least partially protected from water and cleaning solutions.
In preferred embodiments, the anchor points or inputs and outputs of the cables 176, 178 are fixed (e.g. secured by one or more cord grips or clamps). The upper and lower plates 182, 184 of the device 170 provide an internal volume for housing cables. In various embodiments, this internal volume comprises a substantially cylindrical or toroidal volume. While it is contemplated that the dimensions of this volume will vary based on the gauge of cable or hose that is intended to be received by the device, various embodiments of the present disclosure contemplate that a relatively tight tolerance is provided between the plates 182, 184 and the cable. In other words, the distance between the plates 182, 184 is only slightly larger than a thickness of a cable to be retained in the volume. In some embodiments, a gap of between approximately 0.40 inches and 0.750 inches, and more preferably of about 0.562 inches is provided for housing at least one cable or wire that is 0.50 inches in diameter. The spacing of the plates 182, 184 and containment of the wires aids in the functioning of the device 170 by constraining wiring and prevent the wires from moving, folding, rolling, and otherwise becoming entangled.
Although cable management devices of the present disclosure have been described in combination with and/or intended for use with floor cleaning devices, it will be recognized that cable management systems provided herein are not limited to use with any particular device or machine. Indeed, inventive aspects of the cable management system(s) exist that are independent of an intended use of the device. Such devices are contemplated as being useful with and provided on various devices including, but not limited to, floor cleaning devices, lawn mowing devices, various electric vehicles, power tools, etc.
While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention, as set forth in the following claims.
This application is a Continuation of U.S. Non-Provisional patent application Ser. No. 16/751,657, filed on Jan. 24, 2020, now abandoned, which claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 62/796,530, filed Jan. 24, 2019, the entire disclosures of which are hereby incorporated by reference. This application is related to U.S. patent application Ser. No. 15/676,745, filed Aug. 14, 2017, which is a Continuation of U.S. patent application Ser. No. 15/248,560 which is a Continuation of U.S. patent application Ser. No. 15/245,488, filed Aug. 24, 2016, which is a Continuation of U.S. patent application Ser. No. 14/643,768, filed Mar. 10, 2015, which is a Continuation of U.S. patent application Ser. No. 13/964,046, filed Aug. 10, 2013, now U.S. Pat. No. 9,015,887, which is a Continuation of U.S. patent application Ser. No. 13/888,140, now U.S. Pat. No. 8,528,142, filed May 6, 2013, which is a Continuation of U.S. patent application Ser. No. 13/554,593, now U.S. Pat. No. 8,438,685, filed Jul. 20, 2012, which is a Divisional of U.S. patent application Ser. No. 11/868,353, now U.S. Pat. No. 8,245,345, filed Oct. 5, 2007, which is a Continuation of U.S. patent Ser. No. 11/059,663, now U.S. Pat. No. 7,533,435, filed Feb. 15, 2005, which claims the benefit of U.S. Provisional Patent Application Ser. Nos. 60/545,153 and 60/627,606, filed Feb. 16, 2004 and Nov. 12, 2004, respectively, and which is a Continuation-In-Part of abandoned U.S. patent application Ser. No. 10/737,027, filed Dec. 15, 2003, which is a Continuation-In-Part of abandoned U.S. patent application Ser. No. 10/438,485, filed May 14, 2003, the entire disclosures of which are incorporated by reference in their entirety herein. This application is related to abandoned U.S. patent application Ser. No. 11/253,100, filed Oct. 17, 2005, which is incorporated by reference in its entirety herein. This application is also related to U.S. patent application Ser. No. 13/589,321, now U.S. Pat. No. 8,397,333, filed Aug. 20, 2012, which is a Continuation of U.S. patent application Ser. No. 12/511,704, now U.S. Pat. No. 8,302,240, filed Jul. 29, 2009, the entirety of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1999696 | Kitto | Apr 1935 | A |
3583818 | Smyth et al. | Jun 1971 | A |
3892003 | Peabody | Jul 1975 | A |
5027464 | Knowlton | Jul 1991 | A |
6397429 | Legatt | Jun 2002 | B1 |
6442789 | Legatt | Sep 2002 | B1 |
20020007529 | Legatt et al. | Jan 2002 | A1 |
20060064844 | Venard et al. | Mar 2006 | A1 |
20080276414 | Wood et al. | Nov 2008 | A1 |
20090306822 | Augenbraun et al. | Dec 2009 | A1 |
20140102476 | Hall et al. | Apr 2014 | A1 |
20160095489 | Pedlar et al. | Apr 2016 | A1 |
20160166127 | Lewis | Jun 2016 | A1 |
20170049288 | Knutson | Feb 2017 | A1 |
20170164804 | Dickrell et al. | Jun 2017 | A1 |
20170215667 | Thorne et al. | Aug 2017 | A1 |
20170360270 | Dickrell et al. | Dec 2017 | A1 |
20180070785 | Udy et al. | Mar 2018 | A1 |
20180110390 | Pedlar et al. | Apr 2018 | A1 |
20180338654 | Kelsey | Nov 2018 | A1 |
20200237177 | Venard et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
101297267 | Oct 2008 | CN |
104127156 | Nov 2014 | CN |
204120958 | Jan 2015 | CN |
2018821 | Apr 2020 | EP |
S62-217930 | Sep 1987 | JP |
H05-300863 | Nov 1993 | JP |
2007-523698 | Aug 2007 | JP |
2009-509220 | Mar 2009 | JP |
2013-027558 | Feb 2013 | JP |
2013-230199 | Nov 2013 | JP |
Entry |
---|
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US2020/014967, dated Apr. 6, 2020, 16 pages. |
International Preliminary Report on Patentability for International (PCT) Application No. PCT/US2020/014967, dated Aug. 5, 2021, 10 pages. |
Official Action for Australia Patent Application No. 2020211414, dated Jun. 29, 2022, 5 pages. |
Official Action for Australia Patent Application No. 2020211414, dated Oct. 13, 2022, 5 pages. |
Official Action for Australia Patent Application No. 2020211414, dated Jan. 31, 2023, 10 pages. |
Official Action for Canada Patent Application No. 3125521, dated Oct. 17, 2022, 4 pages. |
Official Action for China Patent Application No. 202080010196.6, dated Jan. 21, 2022, 25 pages. |
Notice of Allowance (with English translation) for China Patent Application No. 202080010196.6, dated Aug. 26, 2022, 6 pages. |
Extended European Search Report for Europe Patent Application No. 20744886.1, dated Sep. 1, 2022, 8 pages. |
Official Action (with English translation) for Japan Patent Application No. 2021-538857, dated Aug. 30, 2022, 9 pages. |
Official Action for Korea Patent Application No. 10-2021-7023269, dated Oct. 17, 2022, 4 pages. |
Official Action for U.S. Appl. No. 16/751,657, dated Jun. 17, 2022, 15 pages. |
Official Action for U.S. Appl. No. 16/751,657, dated Oct. 28, 2022, 12 pages. |
Official Action (with English translation) for Korea Patent Application No. 10-2022-7044246, dated Jul. 19, 2023, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20230240500 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
62796530 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16751657 | Jan 2020 | US |
Child | 18160131 | US |