Floor, wall, or ceiling panel and method for producing same

Abstract
A floor, wall, or ceiling panel has a base made of a wood material and an upper veneer. The base and the veneer are hot-pressed together while incorporating a resin layer. During the pressing process, pores, cracks, and/or gaps in the veneer are filled with resin. In particular, the pressing process is carried out such that the veneer is saturated with resin, and the resin can be seen on the surface of the veneer after the pressing process The adhesion of the veneer to the base and the smoothing of the veneer are thus carried out in one operation.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is the U.S. National Stage of International Application No. PCT/DE2014/100106, filed Mar. 27, 2014, which designated the United States and has been published as International Publication No. WO 2015/078434 and which claims the priority of German Patent Application, Serial No. 10 2013 113 125.5, filed Nov. 27, 2013, pursuant to 35 U.S.C. 119(a)-(d).


BACKGROUND OF THE INVENTION

The invention relates to a floor, wall, or ceiling panel, which has a carrier plate and a topside veneer, and a method for the production of such a floor, wall, or ceiling panel.


Panels with a top or cover layer of real wood are in particular used as real wood floors or parquet floors. Such floors provide a natural living atmosphere. They feel pleasantly warm underfoot and compensate humidity fluctuations in the room air, which contributes to a healthy room atmosphere. Also very popular are floor boards with a top or cover layer made of cork or a cork veneer.


A method for producing parquet or veneer floorboards with a top layer of real wood is described in DE 102 45 914 A1. In this reference a top layer of real wood is impregnated with thermosetting synthetic resins. After impregnation the top layer is glued to the carrier plate. The top layer is also printed.


Common are floor panels with a three-layer construction and profiled joining surfaces at the side borders for forming joining means in the form of groove and tongues or a so-called click system. The joining means enable a mechanical coupling of the individual panels with each other in a floor covering or a wall or ceiling covering. The carrier plate is usually made of a wood material, in particular a highly compressed fiber plate (HDF). The topside cover layer of real wood can have different thicknesses. In parquet floors the cover layer of wood has a thickness of more than 2.5 mm. According to a common terminology used in the art, veneers for cover layers of floor panels start at about 0.4 mm. Generally floor panels with wood cover layers of smaller than 2.5 mm are referred to as real wood or veneer floors.


After the gluing of the veneer flaws in the surface, for example branch holes or cracks, are smoothened. Usually an excess of smoothening compound is used and subsequently removed again. This is usually performed by grinding or brushing. In particular in the case of thin veneer layers this involves the risk that the subsequent mechanical processing may damage the layer. For this reason oftentimes veneers are used that are thicker to begin with or veneers that have flaws are sorted out beforehand. However, this is uneconomical and also diminishes the variability of the optical appearance of the natural wood floors.


Also known is a so-called real wood laminate. In this case an overlay is applied to the cover layer made of veneer for example in the form of a melamine paper or melamine film. Subsequently this sandwich is then pressed. A disadvantage is that the flaws naturally occurring in this product, such as gaps, cracks, branches or pores oftentimes appear milky. The cause for this is the missing or insufficient pressing pressure during the pressing process because in the region of the flaws the counter pressure is absent. On the other hand when a higher pressure is applied, the texture of the press plate dominates the wood surface and the natural wood texture or optic suffers.


SUMMARY OF THE INVENTION

In light of the state of the art the invention is based on the object to provide a floor, wall, or ceiling panel which can be manufactured cost-effectively and has a high quality and an improved natural optic, and a method for producing such a floor-, wall- or ceiling-panel.


The part of the object relating to the device is solved with a floor-, wall- or ceiling panel according to the independent apparatus claim. The part of the object relating to the method is solved with the independent method claim.


Advantageous embodiments, refinements and aspects of the invention are the subject matter of the dependent claims.


The present invention relates in particular to real wood or veneer floor panels with a veneer made of wood and a thickness of the veneer of smaller than 2.5 mm, in particular with a thickness between 0.6 mm and 1.2 mm. The veneer can also be a cork veneer, in particular an oak cork veneer.


The carrier plate is a plate material made of a wood material, such as for example solid wood, chipboard, wood fiber material, MDF (Medium Density Fiber Board) or HDF (High Density Fiber Board). Within the scope of the invention preferably a carrier plate made of HDF is used. The starting product in the production of floor-, wall- or ceiling panels according to the invention is a large-area carrier plate, in the present case also referred to as basic carrier plate. Such a large-area carrier plate is configured rectangular and has a size of 2,000 mm to 5,000 mm in length and 1,200 mm to 2,100 mm in width. Usually the carrier plate or the basic carrier plate has a thickness of 5 mm to 12 mm. Also conceivable are waterproof materials for example based on mineral materials such as fiber-cement, sand-binding-mixtures or wood-plastic-composite materials (wood-plastic-composites WPC) and wood fiber polymer composite materials or also the use of magnesite plates. According to one aspect natural-fiber-reinforced plastic is used as work material for the carrier plate or the basic carrier plate. Beside wood fibers also other plant fibers such as jute or flax can be used, in particular in a wood fiber or wood powder proportion of 50% to 90% and a plastic matrix of polypropylene (PP). Further a wood-plastic-composite based on thermoplastically processible thermoplasts, such as modified melamine resin with a natural fiber or natural powder proportion can be used. In this connection also bamboo-plastic-composites (BPC) offers interesting practical approaches. In this material bamboo fibers or bamboo powder are used as natural material.


As mentioned above, also plates based on cement-containing binders or fiber cement plates can be used as carrier plate. Also magnesite plates. Magnesite plates are made of a mixture of magnesium oxide, calcium carbonate, silicates and fibers, in particular wood and/or glass fibers. An advantage of magnesite plates is the low weight and the low heat conductivity as wells as their flame resistance. Magnesite plates are categorized as non-flammable.


The core of the invention is that between the carrier plate and the veneer a resin layer is provided and the carrier plate, the resin layer and the veneer are pressed with each other and are joined with each other. The resin of the resin layer permeates or impregnates the veneer. The pressing is performed hot at a temperature, which essentially depends on the resin material.


Preferably the pressing is performed at a temperature of more than 100° C., preferably at a temperature of between 100° C. and 140° C. The pressing temperature relates to the temperature at the press plate of the pressing tool. This temperature is also present at the contact surfaces of the pressing plate with the topside of the veneer or the bottom side of the carrier plate. In the case of thermosetting resins or reactive resins higher temperatures are required. In particular the pressing is performed at a temperature between 180° C. and 210° C.


In the case of resins in the form of urea-formaldehyde-condensation products the pressing temperatures are lower, in particular in a range between 100° C. and 140° C. In these resin materials also temperatures of 80° C. may be sufficient.


The resin layer is made of a resin. The resin is in particular a polyvinyl acetate (short PVAc) i.e., a thermoplastic plastic. Particularly preferably the resin layer is a polymer resin, in particular a urea-formaldehyde-condensation product as it is sold by the company BASF under the trade name and registered trademark “KAURIT”. Preferably a pulverous melt-formed urea-formaldehyde-condensation product is used. The resin of the resin layer can also be a thermosetting synthetic resin. Colored or transparent resins or colored urea resins, colored urea-melamine or colored melamine-polyurethane mixtures or colored polymer resins can be used. According to an aspect of the invention resins are used that cure and react under the influence of heat. In this connection the use of aminoplastic polyurethane or reactive resins such as polyurethane (PUR) or thermoplastic polyurethane is advantageous. The resin or the resin layer is preferably present or configured as resin film.


An important aspect of the invention is the use of Kaurit resins, in particular Kaurit glues. Particularly appropriate are Kaurit powder glues, which are mixed with water and hardener. This leads to a particularly effective penetration of the pores in the veneer. The resin ensures a good penetration into the veneer layer. In this connection a coloring of the Kaurit glue, for example with black or brown dies is advantageous in order to make the otherwise invisible Kaurit glue visible. For optimization purposes fillers are added to the resin mixture for example in the form of wood fibers, wood chips, cellulose fibers, cork powders, stone powders and other or similar natural fillers.


The resin layer can be applied as powder or as a liquid, in particular a highly pasty film. For application on the basic plate a watery resin solution is produced. An advantageous mixture ratio consists of two weight parts of resin powder and one weight part of water.


Preferably the resin layer is colored, in particular black or brown. This is accomplished in particular by adding color or dyeing agents, for example color pigments to the resin powder.


A further optimization of resin mixtures is accomplished by adding fillers, in particular wood fibers, woodchips, cellulose fibers, cork powder or stone powders and the like, in particular natural additives.


For producing a floor-, wall- or ceiling panel according to the invention a large-area or large dimension basic carrier plate and a veneer are produced in plate shape in the desired size. Hereby the veneers are placed on as strips or as composite (glued or stitched) veneer or as a broad rotary-cut veneer that is adapted to the format of the basic carrier plate. A multilayer body is formed including the basic carrier plate and the veneer. Between the basic plate and the veneer a resin layer is interposed. On the bottom side of the carrier plate a balancing layer is arranged. The thusly formed multilayer body is then pressed in a pressing tool so that the basic carrier plate, the resin layer, the veneer and the balancing layer are joined. The pressing of the multilayer body is carried out in a pressing tool, i.e., at a pressing pressure adjusted to the product.


When using a resin layer of amino plastic, thermosetting or reactive resins such as polyurethane (PUR) or thermoplastic polyurethane, a pressing pressure of greater than or equal to (≥) 1000 Kilopascal (kPA) is regarded appropriate. Preferably the pressing pressure is above 3500 Kilopascal (kPa). The pressing temperature is hereby greater than or equal to (≥) 120° C. preferably the pressing temperature is between 180° C. and 120° C. when the resin layer is made of a polymer resin, in particular a urea formaldehyde condensation product, the pressing is carried out at a pressing pressure of greater than or equal to (≥) 100 Kilopascal (kPa). The pressing is hereby carried out at a pressing temperature which is preferably between 100° C. and 140° C.


The pressing temperature relates to the temperature at the press plate of the pressing tool. Within the framework of the method according to the invention the pressing time during which the multilayer body is impinged in the pressing tool with pressure is between 10 seconds and 60 seconds. In the case of resin layers based on polymer resins the pressing time is preferably between 20 seconds and 25 seconds.


During the pressing process the surface of the veneers may be provided with a texture, a pattern or ornaments by a texturizing plate or a texturizer. The glossiness of the texture can vary in subregions. Further different texture depths are possible. The depth of the texture can be up to 0.6 mm. Relative to the veneer thickness the texture can have a depth of ⅔ of the veneer thickness.


After the pressing process the pressed multilayer body is separated into individual panels. In a subsequent work step the individual panels are then profiled at their side borders. The profiling is carried out only after the carrier plate has cooled to room temperature. The profiling serves in particular for forming joining means at the longitudinal and transverse sides.


The division of the pressed multilayer body is performed after cooling. For this the multilayer body can be passed over a cooling path or can be intermediately stored for cooling.


As pressing tool in particular a short-contact press is used or a continuous press. During the hot pressing process or the pressing process under the influence of temperature the resin layer is plasticized and penetrates into the veneer. An important aspect of the invention is that the resin of the resin layer permeates the veneer up to the topside of the veneer. Hereby pores, cracks, gaps and/or other flaws in the veneer are filled with resin during the pressing process. The resin of the resin layer forms an inseparable connection between the veneer and the carrier plate. A particular advantage of the invention is thus that two production steps, i.e., gluing and smoothening of the veneer are performed in one step.


In particular the pressing of the multilayer body is performed so that the resin permeates the veneer and after the pressing the resin is visible at the surface of the veneer. In this connection in particular resins whose color is coordinated with the color of the veneer are used. In terms of production a black resin is regarded as universally advantageous. Suitably the pressing is performed so that only very little or no resin at all sticks to the surface of the veneer. Pores, cracks, gaps or other flaws are visibly filled. However, no or only very little excess resin exits on the surface. The pressed product then only has to be texture brushed and may be provided with a surface oil treatment or varnishing.


An alternative provides that the resin layer is formed by a resin film that is applied on the topside of the carrier plate. Hereby the resin is applied to the carrier plate in liquid form and is partially dried or pre-condensed. The resin film adheres to the carrier plate as a gel or wax-like layer.


The resin layer can also be formed on the bottom side of the veneers in the form of a resin film. Also in this case the resin is applied in liquid form on a side of the veneers. As a result the veneers are impregnated with resin. The resin applied in liquid form is partially dried and pre-condensed. The thus impregnated veneer provided with the resin layer is further processed after producing the resin layer. Prior to forming the multilayer body, the veneers are rotated so that the resin layer is on the bottom side of the veneers and comes into contact with the topside of the starting carrier plate.


A resin film can also be formed by applying resin in powder form onto the surface of the starting carrier plate or onto the veneers. The pulverous resin is then melted under heat influence so that the resin film forms.


Generally the resin can also be present or processed paste-like, i.e., in the form of a paste.


The amount of resin is dosed so that it infiltrates or permeates through the veneer, however it cannot exit onto the surface of the veneer as a result of the closed press. Pores flaws, cracks or gaps in the veneer are pressed with resin and filled. The natural wood surface or cork surface and structure remains preserved. The resin can be thickened with a filler. As a result more mass is present in order to fill pores cracks gaps and/or flaws. As filler organic or inorganic materials can be used, in particular mineral pigments, stone powder or chalk, as well as wood powder or wood powder.


The balancing layer compensates tensions in the multilayer body. The balancing layer can be a veneer, a paper, a foil or a film in particular a plastic resin film. Advantageously a balancing veneer or a balancing paper is also provided with resin or impregnated with plastic resin. The balancing layer is pressed during production of the floor, wall, or ceiling panel according to the invention together with the basic carrier plate, the veneer and the resin layer and connected on the bottom side with the basic carrier plate.


The panels are profiled at their side borders and provided with joining means. Joining means can be configured as groove and tongues. Preferably the side borders are provided with a click joint. The panels can also be provided with a circumferential chamfer at their topside borders. In the case of a panel with chamfer the intermediate resin layer has a very positive effect on the humidity sealing in the installed product.


A color design of the panels is also possible when the resin remains visible at the side borders. In particular this is accomplished by a colored resin, which is color coordinated with the veneer. Hereby individual or all side borders can be configured with a visible border strip of resin. A different visual appearance of a panel results when using a resin whose color contrasts that of the veneer. This for example allows generating a specific visual appearance of the joint in a targeted manner. The interplay between resin and veneer enables visually accentuating the surface of a floor-, wall- or ceiling panel according to the invention. For this purpose also effect material in the resin such as pigments and other fillers for example glimmer can be used.


A further aspect is to form the chamfer as a decorative optically delimiting edge. The veneer can also be printed with a decor. Preferably the printing is performed by means of digital printing. Hereby a system of printing inks is used that is adapted to the used resins. It is possible to apply a sealing to the veneer. The term sealing means the application of color, a pickle or an oil or a varnish or varnish system.


It is particularly advantageous that the panel or the surface of the veneer can be subjected to a mechanical processing after the pressing. A surface treatment includes in particular a grinding or a brushing of the surface. This allows accentuating the natural visual appearance of the surface. By unevenly treating the surface an aged texture or look, a so-called vintage effect, can be achieved. The surface of the boards can thus for example have a rough-sewn surface or chatter marks or grinding flaws or the like.


A further aspect of the invention provides that during the pressing a texture is embossed into the veneer, in particular into the surface of the veneer. This also contributes to the particularly elegant and decorative surface. The embossing process also advantageously supports the penetration of the resin material into the veneer.


A floor-, wall- or ceiling panel according to the invention can be cost-effectively produced and is of high quality. The panels are compelling in their natural wood optic or cork optic with a rustic character due to the optically perceptible filled cracks, gaps and/or branch holes. Because the veneer, i.e., the topside wear surface or cover layer of the panel is permeated or impregnated with resin, in addition the resistance, in particular the impact resistance and the wear resistance, is increased. The increased resistance enables mechanical processing of the veneer for example by grinding or brushing with a lower risk that the optic is destroyed by the mechanical processing. The boards are significantly more durable. The invention advantageously enables also using softer woods or veneers made of softer woods such as larch. As a result of the resin impregnation or permeation a veneer made of a soft wood becomes harder and more durable.


Within the framework of the invention also advantageously vapored or smoked veneers can be used. Particularly suited are further veneers made of coarse pored woods such as oak, ash larch or spruce as well as veneers made of cork. The quality of the veneers is improved and the veneers are optically accentuated by the resin infiltration according to the invention.





BRIEF DESCRIPTION OF THE DRAWING

Other features and advantages of the present invention will be more readily apparent upon reading the following description of currently preferred exemplified embodiments of the invention with reference to the accompanying drawing, in which:



FIG. 1 shows a cross sectional view of a panel according to an embodiment of the invention, and



FIG. 2 shows a cross sectional view of a panel according to another embodiment of the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS


FIG. 1 shows a cross sectional view of a panel 1 according to an embodiment of the invention. The panel 1 includes a veneer 2, a resin layer 3 and a carrier plate 4.



FIG. 2 shows a cross sectional view of a panel 1 according to another embodiment of the invention. In this embodiment the panel 1 further includes a balancing plate 5 arranged on the bottom side of the carrier plate 4.

Claims
  • 1. A method for producing panels, said method comprising: providing a basic carrier plate, the basic carrier plate comprising a top surface and a bottom surface;providing a veneer, the veneer possessing pores, cracks, and/or gaps;applying a resin layer on the top surface of the basic carrier plate, the resin layer being applied as a powder;forming a multilayer body comprising the basic carrier plate, the veneer, the resin layer interposed between the basic carrier plate and the veneer, and a balancing layer arranged on the bottom surface of the basic carrier plate;joining the basic carrier plate, the resin layer, the veneer, and the balancing layer by pressing the multilayer body in a press, wherein a pressing pressure, a pressing temperature and a pressing time are adjusted so that during the pressing of the multilayer body in the press, the pores, the cracks, and/or the gaps in the veneer are filled with resin from the resin layerseparating the pressed multilayer body into individual panels; andprofiling the panels at side borders of the panels and providing the panels with joining means,wherein the pressing of the multilayer body is carried out so that the resin permeates through the veneer so that after the pressing the resin is visible at a surface of the veneer.
  • 2. The method of claim 1, wherein the resin layer is formed by a polymer resin or a urea formaldehyde condensation product.
  • 3. The method of claim 2, wherein the press comprises a press plate, andthe press plate is heated to a temperature of between 100° C. and 140° C. during the pressing in the press.
  • 4. The method of claim 1, wherein the resin layer comprises wood fibers admixed to the powder.
  • 5. The method of claim 1, further comprising printing a decor on the veneer.
  • 6. The method of claim 1, further comprising applying a sealing to the veneer.
  • 7. The method of claim 1, further comprising after the pressing, subjecting the veneer to a mechanical surface processing comprising a grinding process and/or a brushing process.
  • 8. The method of claim 1, further comprising embossing a texture into the veneer during the pressing in the press.
  • 9. The method of claim 1, wherein the base carrier plate is rectangular with a length of 2,000 mm to 5,000 mm and a width of 1,200 mm to 2,100 mm.
  • 10. The method of claim 1, wherein the pressing comprising simultaneously subjecting the multilayer body to a temperature of between 100° C. and 140° C.
  • 11. The method of claim 1, wherein the press comprises a press plate,the resin of the resin layer is a thermosetting resin, andthe press plate is heated to a temperature of between 180° C. and 210° C. during the pressing in the press.
  • 12. The method of claim 1, wherein the resin of the resin layer is a polyvinyl acetate.
  • 13. The method according to claim 1, wherein the pressing is performed at greater than or equal to 3500 kPA for between 10 seconds and 60 seconds.
  • 14. The method according to claim 1, further comprising cooling the multilayer body to room temperature before separating the multilayer body into the individual panels.
  • 15. The method according to claim 1, wherein the balancing layer is a second veneer.
  • 16. The method according to claim 1, further comprising providing a circumferential chamfer at a top border of the panels after the separating of the pressed multilayer body into individual panels.
  • 17. The method according to claim 1, wherein the basic carrier plate has a thickness of between 5 mm and 12 mm, and the veneer has a thickness of between 0.6 mm and 1.2 mm.
  • 18. The method according to claim 1, wherein the resin layer comprises wood fibers, andthe wood fibers and the resin fill the pores, the cracks, and/or the gaps in the veneer during the pressing.
  • 19. A method for producing panels, said method comprising: providing a basic carrier plate, the basic carrier plate comprising a top surface and a bottom surface;providing a veneer, the veneer being a single wood component, the veneer possessing pores, cracks, and/or gaps;applying a resin layer on the top surface of the basic carrier plate;forming a multilayer body comprising the basic carrier plate, the single veneer, the resin layer interposed between the basic carrier plate and the single veneer, and a balancing layer arranged on the bottom surface of the basic carrier plate;joining the basic carrier plate, the resin layer, the veneer, and the balancing layer by pressing the multilayer body in a press, wherein a pressing pressure, a pressing temperature and a pressing time are adjusted so that during the pressing of the multilayer body in the press, the pores, the cracks, and/or the gaps in the veneer are filled with resin from the resin layerseparating the pressed multilayer body into individual panels; andprofiling the panels at side borders of the panels and providing the panels with joining means,wherein the pressing of the multilayer body is carried out so that the resin permeates through the veneer so that after the pressing the resin is visible at a surface of the veneer,wherein the resin layer is applied as a watery resin solution,wherein the watery resin solution consists of two weight parts of resin powder and one weight part of water.
  • 20. A method for producing panels, said method comprising: providing a basic carrier plate, the basic carrier plate comprising a top surface and a bottom surface;providing a veneer, the veneer possessing pores, cracks, and/or gaps;applying a resin layer on the top surface of the basic carrier plate;forming a multilayer body comprising the basic carrier plate, the veneer, the resin layer interposed between the basic carrier plate and the veneer, and a balancing layer arranged on the bottom surface of the basic carrier plate;joining the basic carrier plate, the resin layer, the veneer, and the balancing layer by pressing the multilayer body in a press, wherein a pressing pressure, a pressing temperature and a pressing time are adjusted so that during the pressing of the multilayer body in the press, the pores, the cracks, and/or the gaps in the veneer are filled with resin from the resin layerseparating the pressed multilayer body into individual panels; andprofiling the panels at side borders of the panels and providing the panels with joining means,wherein the pressing of the multilayer body is carried out so that the resin permeates through the veneer so that after the pressing the resin is visible at a surface of the veneer, andwherein the pressing is performed at greater than or equal to 1000 kPA for between 10 seconds and 60 seconds.
  • 21. A method for producing panels, said method comprising: providing a basic carrier plate, the basic carrier plate comprising a top surface and a bottom surface;providing a veneer, the veneer possessing pores, cracks, and/or gaps;applying a resin layer on the top surface of the basic carrier plate;forming a multilayer body comprising the basic carrier plate, the veneer, the resin layer interposed between the basic carrier plate and the veneer, and a balancing layer arranged on the bottom surface of the basic carrier plate;joining the basic carrier plate, the resin layer, the veneer, and the balancing layer by pressing the multilayer body in a press, wherein a pressing pressure, a pressing temperature and a pressing time are adjusted so that during the pressing of the multilayer body in the press, the pores, the cracks, and/or the gaps in the veneer are filled with resin from the resin layerseparating the pressed multilayer body into individual panels; andprofiling the panels at side borders of the panels and providing the panels with joining means, whereinthe pressing of the multilayer body is carried out so that the resin permeates through the veneer so that after the pressing the resin is visible at a surface of the veneer,the resin layer is applied on the top surface of the basic carrier plate in liquid form, andthe applying of the resin layer comprises partially drying the resin layer to adhere the resin layer to the basic carrier plate as a gel or wax layer.
  • 22. A method for producing panels, said method comprising: providing a basic carrier plate, the basic carrier plate comprising a top surface and a bottom surface;providing a veneer, the veneer possessing pores, cracks, and/or gaps;applying a resin layer on the top surface of the basic carrier plate;forming a multilayer body comprising the basic carrier plate, the single veneer, the resin layer interposed between the basic carrier plate and the single veneer, and a balancing layer arranged on the bottom surface of the basic carrier plate;joining the basic carrier plate, the resin layer, the veneer, and the balancing layer by pressing the multilayer body in a press, wherein a pressing pressure, a pressing temperature and a pressing time are adjusted so that during the pressing of the multilayer body in the press, the pores, the cracks, and/or the gaps in the veneer are filled with resin from the resin layerseparating the pressed multilayer body into individual panels; andprofiling the panels at side borders of the panels and providing the panels with joining means, whereinthe pressing of the multilayer body is carried out so that the resin permeates through the veneer so that after the pressing the resin is visible at a surface of the veneer,the press comprises a press plate, andthe press plate is heated to a temperature of between 180° C. and 210° C. during the pressing in the press.
  • 23. The method of claim 22, wherein the resin layer is formed by a resin film.
  • 24. The method of claim 22, wherein the resin layer is applied as a liquid, pasty film, and wherein color pigments and wood based fillers are added to the resin.
Priority Claims (1)
Number Date Country Kind
10 2013 113 125 Nov 2013 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/DE2014/100106 3/27/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/078434 6/4/2015 WO A
US Referenced Citations (300)
Number Name Date Kind
2018712 Elmendorf Oct 1935 A
2419614 Welch Apr 1947 A
2587064 Rapson Feb 1952 A
2630395 McCullough Mar 1953 A
2634534 Brown Apr 1953 A
2695857 Lewis et al. Nov 1954 A
2720478 Hogg Oct 1955 A
2831793 Elmendorf Apr 1958 A
2831794 Elmendorf Apr 1958 A
2932596 Rayner Apr 1960 A
2962081 Dobry et al. Nov 1960 A
2992152 Chapman Jul 1961 A
3032820 Johnson May 1962 A
3135643 Michl Jun 1964 A
3286006 Annand Nov 1966 A
3308013 Bryant Mar 1967 A
3325302 Hosfeld Jun 1967 A
3342621 Point et al. Sep 1967 A
3345234 Jecker et al. Oct 1967 A
3392082 Lloyd Jul 1968 A
3426730 Lawson et al. Feb 1969 A
3463653 Letter Aug 1969 A
3486484 Bullough Dec 1969 A
3533725 Bridgeford Oct 1970 A
3540978 Ames Nov 1970 A
3565665 Stranch et al. Feb 1971 A
3578522 Rauch May 1971 A
3615279 Ward, Jr. Oct 1971 A
3673020 De Jaeger Jun 1972 A
3729368 Ingham Apr 1973 A
3844863 Forsythe Oct 1974 A
3846219 Kunz Nov 1974 A
3880687 Elmendorf et al. Apr 1975 A
3895984 Cone et al. Jul 1975 A
3897185 Beyer Jul 1975 A
3897588 Nohtomi Jul 1975 A
3914359 Bevan Oct 1975 A
3950599 Board, Jr. Apr 1976 A
3956542 Roberti May 1976 A
3961108 Rosner et al. Jun 1976 A
4052739 Wada et al. Oct 1977 A
4093766 Scher et al. Jun 1978 A
4115178 Cone et al. Sep 1978 A
4126725 Shiflet Nov 1978 A
4131705 Kubinsky Dec 1978 A
4277527 Duhl Jul 1981 A
4311621 Nishizawa et al. Jan 1982 A
4313857 Blount Feb 1982 A
4337290 Kelly et al. Jun 1982 A
4361612 Shaner Nov 1982 A
4420351 Lussi Dec 1983 A
4420525 Parks Dec 1983 A
4430375 Scher et al. Feb 1984 A
4430380 Hönel Feb 1984 A
4474920 Kyminas et al. Oct 1984 A
4743484 Robbins May 1988 A
4863777 Callaway et al. Sep 1989 A
4872825 Ross Oct 1989 A
4890656 Ohsumi et al. Jan 1990 A
4911969 Ogata et al. Mar 1990 A
4942084 Prince Jul 1990 A
5034272 Lindgren et al. Jul 1991 A
5059472 LeBell et al. Oct 1991 A
5085930 Widmann et al. Feb 1992 A
5147486 Hoffman Sep 1992 A
5206066 Horacek Apr 1993 A
5246765 Lussi et al. Sep 1993 A
5258216 Von Bonin et al. Nov 1993 A
5292576 Sanders Mar 1994 A
5314554 Owens May 1994 A
5354259 Scholz et al. Oct 1994 A
5405705 Fujimoto Apr 1995 A
5422170 Iwata et al. Jun 1995 A
5447752 Cobb Sep 1995 A
5466511 O'Dell et al. Nov 1995 A
5543193 Tesch Aug 1996 A
5569424 Amour Oct 1996 A
5601930 Mehta et al. Feb 1997 A
5604025 Tesch Feb 1997 A
5609966 Perrin et al. Mar 1997 A
5755068 Ormiston May 1998 A
5766522 Daly et al. Jun 1998 A
5827788 Miyakoshi Oct 1998 A
5855832 Clausi Jan 1999 A
5891564 Schultz et al. Apr 1999 A
5925211 Rakauskas Jul 1999 A
5925296 Leese Jul 1999 A
5942072 McKinnon Aug 1999 A
5976689 Witt et al. Nov 1999 A
5985397 Witt et al. Nov 1999 A
6036137 Myren Mar 2000 A
6103377 Clausi Aug 2000 A
6238750 Correll et al. May 2001 B1
6291625 Hosgood Sep 2001 B1
6468645 Clausi Oct 2002 B1
6481476 Okamoto Nov 2002 B1
6521326 Fischer et al. Feb 2003 B1
6528437 Hepfinger et al. Mar 2003 B1
6537610 Springer et al. Mar 2003 B1
6620349 Lopez Sep 2003 B1
6667108 Ellstrom Dec 2003 B2
6769217 Nelson Aug 2004 B2
6773799 Persson et al. Aug 2004 B1
6803110 Drees et al. Oct 2004 B2
6926954 Schuren et al. Aug 2005 B2
6991830 Hansson et al. Jan 2006 B1
7022756 Singer Apr 2006 B2
7485693 Matsuda et al. Feb 2009 B2
7811489 Pervan Oct 2010 B2
8021741 Chen Sep 2011 B2
8206534 McDuff et al. Jun 2012 B2
8245477 Pervan Aug 2012 B2
8302367 Schulte Nov 2012 B2
8349234 Ziegler et al. Jan 2013 B2
8349235 Pervan et al. Jan 2013 B2
8407963 Schulte Apr 2013 B2
8419877 Pervan et al. Apr 2013 B2
8431054 Pervan et al. Apr 2013 B2
8480841 Pervan et al. Jul 2013 B2
8481111 Ziegler et al. Jul 2013 B2
8499520 Schulte Aug 2013 B2
8617439 Pervan et al. Dec 2013 B2
8635829 Schulte Jan 2014 B2
8650738 Schulte Feb 2014 B2
8663785 Ziegler et al. Mar 2014 B2
8728564 Ziegler et al. May 2014 B2
8752352 Schulte Jun 2014 B2
8784587 Lindgren et al. Jul 2014 B2
8920874 Ziegler et al. Dec 2014 B2
8920876 Vetter et al. Dec 2014 B2
8993049 Pervan Mar 2015 B2
9085905 Persson et al. Jul 2015 B2
9109366 Schulte Aug 2015 B2
9181698 Pervan et al. Nov 2015 B2
9255405 Pervan et al. Feb 2016 B2
9296191 Pervan et al. Mar 2016 B2
9352499 Ziegler et al. May 2016 B2
9403286 Vetter et al. Aug 2016 B2
9410319 Ziegler et al. Aug 2016 B2
9556622 Pervan et al. Jan 2017 B2
9783996 Pervan et al. Oct 2017 B2
10017950 Pervan Jul 2018 B2
10100535 Pervan et al. Oct 2018 B2
10214913 Persson et al. Feb 2019 B2
10286633 Lundblad et al. May 2019 B2
10315219 Jacobsson Jun 2019 B2
20010006704 Chen et al. Jul 2001 A1
20010009309 Taguchi et al. Jul 2001 A1
20020031620 Yuzawa et al. Mar 2002 A1
20020054994 Dupre et al. May 2002 A1
20020100231 Miller Aug 2002 A1
20020155297 Schuren Oct 2002 A1
20030008130 Kaneko Jan 2003 A1
20030056873 Nakos et al. Mar 2003 A1
20030059639 Worsley Mar 2003 A1
20030102094 Tirri et al. Jun 2003 A1
20030108760 Haas et al. Jun 2003 A1
20030208980 Miller et al. Nov 2003 A1
20040035078 Pervan Feb 2004 A1
20040088946 Liang et al. May 2004 A1
20040123542 Grafenauer Jul 2004 A1
20040137255 Martinez et al. Jul 2004 A1
20040191547 Oldorff Sep 2004 A1
20040202857 Singer Oct 2004 A1
20040206036 Pervan Oct 2004 A1
20040237436 Zuber et al. Dec 2004 A1
20040250911 Vogel Dec 2004 A1
20050003099 Quist Jan 2005 A1
20050016107 Rosenthal et al. Jan 2005 A1
20050079780 Rowe et al. Apr 2005 A1
20050136234 Hak et al. Jun 2005 A1
20050153150 Wellwood et al. Jul 2005 A1
20050166514 Pervan Aug 2005 A1
20050193677 Vogel Sep 2005 A1
20050208255 Pervan Sep 2005 A1
20050227040 Toupalik Oct 2005 A1
20050252130 Martensson Nov 2005 A1
20060008630 Thiers et al. Jan 2006 A1
20060024465 Briere Feb 2006 A1
20060032175 Chen et al. Feb 2006 A1
20060048474 Pervan et al. Mar 2006 A1
20060070321 Au Apr 2006 A1
20060070325 Magnusson Apr 2006 A1
20060145384 Singer Jul 2006 A1
20060154015 Miller et al. Jul 2006 A1
20060172118 Han et al. Aug 2006 A1
20060182938 Oldorff Aug 2006 A1
20060183853 Sczepan Aug 2006 A1
20070055012 Caldwell Mar 2007 A1
20070066176 Wenstrup et al. Mar 2007 A1
20070102108 Zheng May 2007 A1
20070148339 Wescott Jun 2007 A1
20070166516 Kim et al. Jul 2007 A1
20070184244 Doehring Aug 2007 A1
20070207296 Eisermann Sep 2007 A1
20070218260 Miclo et al. Sep 2007 A1
20070224438 Van Benthem et al. Sep 2007 A1
20070256804 Garcis Espino et al. Nov 2007 A1
20080000179 Pervan et al. Jan 2008 A1
20080000190 Håkansson Jan 2008 A1
20080000417 Pervan et al. Jan 2008 A1
20080032120 Braun Feb 2008 A1
20080090032 Perrin et al. Apr 2008 A1
20080093013 Muller Apr 2008 A1
20080152876 Magnusson Jun 2008 A1
20080176039 Chen et al. Jul 2008 A1
20080263985 Hasch et al. Oct 2008 A1
20090056257 Mollinger et al. Mar 2009 A1
20090124704 Jenkins May 2009 A1
20090135356 Ando May 2009 A1
20090145066 Pervan Jun 2009 A1
20090155612 Pervan et al. Jun 2009 A1
20090165946 Suzuki Jul 2009 A1
20090208646 Kreuder et al. Aug 2009 A1
20090294037 Oldorff Dec 2009 A1
20090311433 Wittmann Dec 2009 A1
20100092731 Pervan et al. Apr 2010 A1
20100136303 Kreuder Jun 2010 A1
20100196678 Vermeulen Aug 2010 A1
20100223881 Kalwa Sep 2010 A1
20100239820 Buhlmann Sep 2010 A1
20100291397 Pervan et al. Nov 2010 A1
20100300030 Pervan et al. Dec 2010 A1
20100304089 Magnusson Dec 2010 A1
20100307675 Buhlmann Dec 2010 A1
20100307677 Buhlmann Dec 2010 A1
20100314368 Groeke Dec 2010 A1
20100319282 Ruland Dec 2010 A1
20100323187 Kalwa Dec 2010 A1
20100330376 Trksak Dec 2010 A1
20110175251 Ziegler et al. Jul 2011 A1
20110177319 Ziegler et al. Jul 2011 A1
20110177354 Ziegler et al. Jul 2011 A1
20110189448 Lindgren et al. Aug 2011 A1
20110247748 Pervan et al. Oct 2011 A1
20110250404 Pervan et al. Oct 2011 A1
20110262720 Riebel et al. Oct 2011 A1
20110274872 Yu Nov 2011 A1
20110283642 Meirlaen et al. Nov 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20110287211 Bailey et al. Nov 2011 A1
20110293823 Bruderer et al. Dec 2011 A1
20110293906 Jacobsson Dec 2011 A1
20120048487 Brewster Mar 2012 A1
20120124932 Schulte et al. May 2012 A1
20120263878 Ziegler et al. Oct 2012 A1
20120263965 Persson et al. Oct 2012 A1
20120264853 Ziegler et al. Oct 2012 A1
20120276348 Clausi et al. Nov 2012 A1
20120288689 Hansson et al. Nov 2012 A1
20120308774 Persson et al. Dec 2012 A1
20130025216 Reichwein et al. Jan 2013 A1
20130092314 Zeigler et al. Apr 2013 A1
20130095315 Pervan et al. Apr 2013 A1
20130111845 Pervan et al. May 2013 A1
20130189534 Pervan et al. Jul 2013 A1
20130196119 Dobecz Aug 2013 A1
20130269863 Pervan et al. Oct 2013 A1
20130273244 Vetter et al. Oct 2013 A1
20130273245 Ziegler et al. Oct 2013 A1
20140027020 Klaeusler et al. Jan 2014 A1
20140044872 Pervan Feb 2014 A1
20140075874 Pervan et al. Mar 2014 A1
20140147585 Smith May 2014 A1
20140171554 Ziegler et al. Jun 2014 A1
20140178630 Pervan et al. Jun 2014 A1
20140186610 Pervan Jul 2014 A1
20140199558 Pervan et al. Jul 2014 A1
20140234531 Ziegler et al. Aug 2014 A1
20140290171 Vermeulen Oct 2014 A1
20150017461 Lindgren et al. Jan 2015 A1
20150072111 Rischer et al. Mar 2015 A1
20150079280 Vetter et al. Mar 2015 A1
20150093502 Ziegler et al. Apr 2015 A1
20150111055 Persson et al. Apr 2015 A1
20150118456 Carlborg et al. Apr 2015 A1
20150159382 Pervan Jun 2015 A1
20150197942 Pervan et al. Jul 2015 A1
20150197943 Ziegler et al. Jul 2015 A1
20150275526 Persson et al. Oct 2015 A1
20150298433 Kalwa Oct 2015 A1
20160031189 Pervan et al. Feb 2016 A1
20160114495 Pervan et al. Apr 2016 A1
20160186318 Pervan et al. Jun 2016 A1
20160230400 Pervan et al. Aug 2016 A9
20160297174 Kim Oct 2016 A1
20160322041 Kim Nov 2016 A1
20160326744 Döhring et al. Nov 2016 A1
20160368180 Ziegler et al. Dec 2016 A1
20160369507 Pervan et al. Dec 2016 A1
20160375674 Schulte Dec 2016 A1
20170120564 Schulte May 2017 A1
20170165936 Schulte Jun 2017 A1
20170190156 Lundblad et al. Jul 2017 A1
20170305119 Bergelin et al. Oct 2017 A1
20170348984 Pervan et al. Dec 2017 A1
20180002934 Pervan Jan 2018 A1
20180291638 Pervan Oct 2018 A1
20180370278 Persson et al. Dec 2018 A1
20190010711 Pervan et al. Jan 2019 A1
Foreign Referenced Citations (218)
Number Date Country
8028475 Jun 1975 AU
2011236087 May 2013 AU
2 557 096 Jul 2005 CA
2 852 656 Apr 2013 CA
298894 May 1954 CH
1709717 Dec 2005 CN
102166775 Aug 2011 CN
202200608 Apr 2012 CN
1 815 312 Jul 1969 DE
7148789 Apr 1972 DE
29 39 828 Apr 1981 DE
33 34 921 Apr 1985 DE
36 34 885 Apr 1988 DE
42 33 050 Apr 1993 DE
42 36 266 May 1993 DE
202 14 532 Feb 2004 DE
102 45 914 Apr 2004 DE
103 00 247 Jul 2004 DE
103 31 657 Feb 2005 DE
20 2004 003 061 Jul 2005 DE
10 2004 050 278 Apr 2006 DE
20 2006 007 797 Aug 2006 DE
10 2005 046 264 Apr 2007 DE
10 2006 024 593 Dec 2007 DE
10 2006 058 244 Jun 2008 DE
10 2007 043 202 Mar 2009 DE
20 2009 008 367 Sep 2009 DE
10 2010 045 266 Mar 2012 DE
0 129 430 Dec 1984 EP
0 234 220 Sep 1987 EP
0 129 430 Jan 1990 EP
0 355 829 Feb 1990 EP
0 611 408 Dec 1993 EP
0 592 013 Apr 1994 EP
0 656 443 Jun 1995 EP
0 611 408 Sep 1996 EP
0 732 449 Sep 1996 EP
0 744 477 Nov 1996 EP
0 914 914 May 1999 EP
0 732 449 Aug 1999 EP
0 744 477 Jan 2000 EP
0 993 934 Apr 2000 EP
1 808 311 Jul 2000 EP
1 035 255 Sep 2000 EP
1 125 971 Aug 2001 EP
1 136 251 Sep 2001 EP
1 193 288 Apr 2002 EP
1 209 199 May 2002 EP
1 242 702 Sep 2002 EP
1 249 322 Oct 2002 EP
1 262 607 Dec 2002 EP
1 388 414 Feb 2004 EP
1 454 763 Sep 2004 EP
1 242 702 Nov 2004 EP
1 498 241 Jan 2005 EP
1 507 664 Feb 2005 EP
1 584 378 Oct 2005 EP
1 657 055 May 2006 EP
1 681 103 Jul 2006 EP
1 507 664 Jul 2007 EP
1 690 603 Aug 2007 EP
1 847 385 Oct 2007 EP
1 961 556 Aug 2008 EP
1 985 464 Oct 2008 EP
1 997 623 Dec 2008 EP
2 025 484 Feb 2009 EP
1 454 763 Aug 2009 EP
2 105 320 Sep 2009 EP
2 119 550 Nov 2009 EP
2 213 476 Aug 2010 EP
2 226 201 Sep 2010 EP
2 246 500 Nov 2010 EP
2 263 867 Dec 2010 EP
2 264 259 Dec 2010 EP
2 272 667 Jan 2011 EP
2 272 668 Jan 2011 EP
2 305 462 Apr 2011 EP
1 847 385 Sep 2011 EP
2 415 947 Feb 2012 EP
2 263 867 Mar 2012 EP
2 902 196 Jan 2014 EP
801 433 Aug 1936 FR
2 873 953 Feb 2006 FR
984 170 Feb 1965 GB
1090450 Nov 1967 GB
1 561 820 Mar 1980 GB
2 238 983 Jun 1991 GB
2 248 246 Apr 1992 GB
2 464 541 Apr 2010 GB
S51-128409 Nov 1976 JP
S52-087212 Jul 1977 JP
S56-049259 May 1981 JP
S56-151564 Nov 1981 JP
S58084761 May 1983 JP
S59-101312 Jun 1984 JP
S64-062108 Mar 1989 JP
H02-198801 Aug 1990 JP
H02-229002 Sep 1990 JP
H03-030905 Feb 1991 JP
H03-211047 Sep 1991 JP
H03-267174 Nov 1991 JP
H04-107101 Apr 1992 JP
H04-247901 Sep 1992 JP
H04-269506 Sep 1992 JP
H05-077362 Mar 1993 JP
H05-237809 Sep 1993 JP
H06-312406 Nov 1994 JP
H08-207012 Aug 1996 JP
H09-164651 Jun 1997 JP
10018562 Jan 1998 JP
H10-002098 Jan 1998 JP
H11-291203 Oct 1999 JP
2000-226931 Aug 2000 JP
2000-263520 Sep 2000 JP
2001-287208 Oct 2001 JP
2001-329681 Nov 2001 JP
2003-311717 Nov 2003 JP
2003-311718 Nov 2003 JP
2004-068512 Mar 2004 JP
2004-076476 Mar 2004 JP
2005-034815 Feb 2005 JP
2005-074682 Mar 2005 JP
2005-170016 Jun 2005 JP
2005-219215 Aug 2005 JP
3705482 Oct 2005 JP
2005-307582 Nov 2005 JP
2007098755 Apr 2007 JP
2007-216692 Aug 2007 JP
2007-268843 Oct 2007 JP
2008-188826 Aug 2008 JP
2010-017963 Jan 2010 JP
2011-110768 Jun 2011 JP
10-0997149 Nov 2010 KR
10-1439066 Sep 2014 KR
225556 Feb 1992 NZ
469 326 Jun 1993 SE
WO 9206832 Apr 1992 WO
WO 9324295 Dec 1993 WO
WO 9324296 Dec 1993 WO
WO 9400280 Jan 1994 WO
WO 9506568 Mar 1995 WO
WO 0022225 Apr 2000 WO
WO 0044576 Aug 2000 WO
WO 0100409 Jan 2001 WO
WO 0148333 Jul 2001 WO
WO 0164408 Sep 2001 WO
WO 0168367 Sep 2001 WO
WO 0192037 Dec 2001 WO
WO 0242167 May 2002 WO
WO 0242373 May 2002 WO
WO 03078761 Sep 2003 WO
WO 03095202 Nov 2003 WO
WO 2004042168 May 2004 WO
WO 2004050359 Jun 2004 WO
WO 2004067874 Aug 2004 WO
WO 2005035209 Apr 2005 WO
WO 2005035209 Apr 2005 WO
WO 2005035209 Apr 2005 WO
WO 2005054599 Jun 2005 WO
WO 2005054600 Jun 2005 WO
WO 2005066431 Jul 2005 WO
WO 2005080096 Sep 2005 WO
WO 2005097874 Oct 2005 WO
WO 2005116337 Dec 2005 WO
WO 2005116361 Dec 2005 WO
WO 2006007413 Jan 2006 WO
WO 2006013469 Feb 2006 WO
WO 2006015313 Feb 2006 WO
WO 2006042651 Apr 2006 WO
WO 2006043893 Apr 2006 WO
WO 2006066776 Jun 2006 WO
WO 2006126930 Nov 2006 WO
WO 2007015669 Feb 2007 WO
WO 2007015669 Feb 2007 WO
WO 2007042258 Apr 2007 WO
WO 2007059294 May 2007 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008148771 Dec 2008 WO
WO 2009015682 Feb 2009 WO
WO 2009050565 Apr 2009 WO
WO 2009065768 May 2009 WO
WO 2009065769 May 2009 WO
WO 2009065769 May 2009 WO
WO 2009080772 Jul 2009 WO
WO 2009080813 Jul 2009 WO
WO 2009116926 Sep 2009 WO
WO 2009124704 Oct 2009 WO
WO 2010046698 Apr 2010 WO
WO 2010084466 Jul 2010 WO
WO 2010087752 Aug 2010 WO
WO 2010094500 Aug 2010 WO
WO 2011058233 May 2011 WO
WO 2011087422 Jul 2011 WO
WO 2011087423 Jul 2011 WO
WO 2011087424 Jul 2011 WO
WO 2011129755 Oct 2011 WO
WO 2011129757 Oct 2011 WO
WO 2011141851 Nov 2011 WO
WO 2012004699 Jan 2012 WO
WO 2012076608 Jun 2012 WO
WO 2012141647 Oct 2012 WO
WO 2012154113 Nov 2012 WO
WO 2013056745 Apr 2013 WO
WO 2013079950 Jun 2013 WO
WO 2013139460 Sep 2013 WO
WO 2013167576 Nov 2013 WO
WO 2013182191 Dec 2013 WO
WO 2013182191 Dec 2013 WO
WO 2014017972 Jan 2014 WO
WO 2014109699 Jul 2014 WO
WO 2015078434 Jun 2015 WO
WO 2015078443 Jun 2015 WO
WO 2015078444 Jun 2015 WO
WO 2015105455 Jul 2015 WO
WO 2015105456 Jul 2015 WO
WO 2015106771 Jul 2015 WO
Non-Patent Literature Citations (28)
Entry
Machine translation of description of JPH03211047 (A), 6 pages, Sep. 1991. (Year: 1991).
International Search Report issued by the European Patent Office in International Application PCT/DE2014/100106.
U.S. Appl. No. 14/593,458, filed Jan. 9, 2015, Göran Ziegler.
U.S. Appl. No. 14/593,521, filed Jan. 9, 2015, Darko Pervan.
U.S. Appl. No. 15/183,424, filed Jun. 15, 2016, Darko Pervan.
U.S. Appl. No. 15/308,737, filed Nov. 3, 2016, Christer Lundblad.
U.S. Appl. No. 15/496,357, filed Apr. 25, 2017, Marcus Bergelin.
U.S. Appl. No. 15/039,748, filed May 26, 2016, Guido Schulte.
U.S. Appl. No. 15/039,504, filed May 26, 2016, Guido Schulte.
Parquet International, “Digital Printing is still an expensive process,” Mar. 2008, cover page/pp. 78-79, www.parkettmagazin.com.
Floor Daily, “Shaw Laminates: Green by Design,” Aug. 13, 2007, 1 pg, Dalton, GA.
BTLSR Toledo, Inc. website. http://www.btlresins.com/more.html. “Advantages to Using Powdered Resins,” May 26, 2007, 2 pages, per the Internet Archive WayBackMachine.
Nimz, H.H., “Wood,” Ullmann's Encyclopedia of Industrial Chemistry, published online Jun. 15, 2000, pp. 453-505, vol. 39, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, DE.
Le Fur, X., et al., “Recycling melamine-impregnated paper waste as board adhesives,” published online Oct. 26, 2004, pp. 419-423, vol. 62, Springer-Verlag, DE, XP055332791.
Odian, George, “Principles of Polymerization,” 1991, 3rd Edition, 5 pages incl. pp. 122-123, John Wiley & Sons, Inc., New York, NY, USA.
Engstrand, Ola (Contact)/Valinge Innovation, Technical Disclosure entitled “Fibre Based Panels With a Wear Resistance Surface,” Nov. 17, 2008, IP.com No. IPCOM000176590D, IP.com PriorArtDatabase, 76 pages.
Engstrand, Ola (Contact)/Valinge Innovation, Technical Disclosure entitled “WFF Embossing,” May 15, 2009, IP.com No. IPCOM000183105D, IP.com PriorArtDatabase, 36 pages.
Engstrand, Ola (Contact)/Valinge Innovation, Technical Disclosure entitled “VA063 VA064 Scattering and Powder Backing,” Nov. 11, 2011, IP.com No. IPCOM000212422D, IP.com PriorArtDatabase, 34 pages.
U.S. Appl. No. 16/223,708, Ziegler, et al.
U.S. Appl. No. 16/223,833, Ziegler, et al.
U.S. Appl. No. 16/325,543, Ziegler.
Lstiburek, Joseph, “BSD-106: Understanding Vapor Barriers,” Apr. 15, 2011, Building Science Corporation, pp. 1-18; (retrieved Sep. 26, 2018 https://buildingscience.com/documents/digests/bsd-106-understanding-vapor-barriers).
Mercene Labs, official home page, retrieved Feb. 23, 2017, retrieved from the Internet: http://www.mercenelabs.com/technology/, according to the Internet Archive WayBack Machine this page was available on Jan. 22, 2013.
**Ziegler, Göran, et al., U.S. Appl. No. 16/223,708 entitled “A Method to Produce a Veneered Element and a Veneered Element,” filed in the U.S. Patent and Trademark Office on Dec. 18, 2018.
**Ziegler, Göran, et al., U.S. Appl. No. 16/223,833 entitled “A Method to Produce a Veneered Element and a Veneered Element,” filed in the U.S. Patent and Trademark Office on Dec. 18, 2018.
**Ziegler, Göran, U.S. Appl. No. 16/325,543 entitled “A Method to Coat a Building Panel and Such a Coated Building Panel,” filed in the U.S. Patent and Trademark Office on Feb. 14, 2019.
U.S. Appl. No. 16/365,764, Lundblad et al.
**Lundblad, Christer, et al., U.S. Appl. No. 16/365,764 entitled “A Method of Producing a Veneered Element and Such a Veneered Element,” filed in the U.S. Patent and Trademark Office on Mar. 27, 2019.
Related Publications (1)
Number Date Country
20170120564 A1 May 2017 US