Floorboard

Information

  • Patent Grant
  • 10442152
  • Patent Number
    10,442,152
  • Date Filed
    Tuesday, November 11, 2014
    10 years ago
  • Date Issued
    Tuesday, October 15, 2019
    5 years ago
Abstract
A floorboard, includes a carrier plate and a veneer arranged on a topside of the carrier plate, wherein the carrier plate and the veneer are connected with each other via a resin, wherein an edge strip made of the resin is provided on at least two side margins of the veneer, and wherein a surface of the edge strip extends in a same plane as a surface of the veneer.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the U.S National Stage of International Application No. PCT/DE2014/100398, filed Nov. 11, 2014, which designated the U.S. and has been published as International Publication No. WO 2015/078444 and which claims the priority of German Patent Application, Serial No. 10 2013 113 109.3, filed Nov. 27, 2013, pursuant to 35 U.S.C. 119(a)-(d)


BACKGROUND OF THE INVENTION

The invention relates to a floorboard, which has a carrier plate and a veneer applied to the upper side of the carrier plate, wherein the carrier plate and the veneer are connected to each other via a resin.


Floorboards with a wear layer of genuine wood are used in particular as real wood flooring or parquet floors. A method for manufacturing parquet or floorboards with a wear layer made of real wood, designated there as a top layer, is described in DE 102 45 914 A1. The top layer of real wood is thereby subjected to impregnation with thermosetting synthetic resins and the top layer impressed.


Real wood floorboards with three-layer construction and profiled joining surfaces, the so-called click system, are well-established. This allows a mechanical connection and locking along the abutting edges of the floorboards. The carrier plate is usually made of a high density fiberboard (HDF). The click connection is milled into the carrier plate. A wood veneer is laminated onto the carrier plate as a wear layer. The wood veneer may have different thicknesses. A thickness of the wood veneer of about 0.6 mm is called a real wood or veneer floor. The wear layer is at least 2.5 mm thick for a parquet floor.


The visible surface of floor panels with an upper side wear layer of real wood shows the naturalness and elegance of genuine grown wood. Accordingly, the plurality of different types of wood varies the appearance of the floorboards. Nevertheless, there is a need to enhance the appearance and possible variations of the visible surfaces of the real wood. The same applies for veneers of cork.


Preparing the veneer also requires effort. These are assembled from strips and glued or sewn to each other. In this way, one obtains a large format of the wood veneer tailored to the large format initial carrier plate. However, this preparation also requires correspondingly more effort and expense in manufacturing.


Furthermore, the wood veneers, but also cork veneers, are often amply trimmed on the side in order to tidy these up and ensure a straight side margin profile. This leads to a corresponding cutting scrap. A greater conservation of resources is desirable against this backdrop.


Furthermore, it should be noted that the edge region is particularly stressed along the side margins of the veneer. Problems can arise in the edge region, especially when using of wood veneers made from types of softwoods, both in the machining of the panels in the course of further production steps such as brushing or grinding or by abrasion during the course of intended use in a floor surface.


SUMMARY OF THE INVENTION

The object of the invention is, starting from the prior art, to create a floorboard with an upper side veneer which is improved in terms of costs and production and application technology and has a striking appearance.


This object is solved according to the invention by a floorboard according to the independent claim.


Advantageous embodiments of the floorboard according to the invention are the subject of the dependent claims.


The present invention particularly relates to floorboards with a thickness of the wood veneer of less than 2.5 mm, in particular with a thickness between 0.6 mm and 1.2 mm. Also, the veneer may be a cork veneer, in particular, a cork oak veneer.


The floorboard according to the invention has a carrier plate with an upper side veneer. The carrier plate is a plate material made of a wood material such as solid wood, chipboard, wood-fiber material, MDF (medium density fiberboard) or HDF (high density fiberboard). In practice, the carrier plate in particular is made of HDF. Also carrier plates made of different materials or material mixtures are suitable for practice. Carrier plates made of waterproof materials can be used, for example, based on mineral materials such as fiber cement sand-binding mixtures or wood-plastic composites (WPC) and wood fiber-polymer composites. Magnesite plates are also suitable. One aspect is also directed here to the use of natural fiber-reinforced plastic as a material for the carrier plate or the initial carrier plate. Besides wood fibers, other plant fibers such as jute or flax can be used. A natural fiber or natural flour component of 50% to 90% in a plastic matrix is preferably made of polypropylene (PP) comes to bear here. Further, a wood-plastic composite material based on thermoplastic processed thermosets like modified melamine resin with natural fibers or natural flour component can be used. An interesting approach for the practice also offers a bamboo plastic composite (BPC). Bamboo fiber and bamboo flour can be used as a natural material for this material.


As already mentioned, plates based on cementitious binders or fiber cement sheets can be used as carrier plates as well as magnesite plates. Magnesite plates consist of a mixture of magnesium oxide, calcium carbonate, silicates, as well as fibers, particularly wood and/or glass fibers. An advantage of magnesite plates is the weight and the low heat conductivity as well as its fire resistance. Magnesite plates are classified as non-combustible.


The carrier plate may also be made of elastic materials, such as fleece or woven materials or based on cellulose. In this context, relatively thin carrier plates with a thickness between 1 mm and 6 mm can be used.


The carrier plate and the veneer are thermally pressed together and bonded inseparably via a resin. According to the invention, an edge strip is provided on at least two side margins of the veneer. This edge strip is made of resin. An edge strip of resin is preferably configured circumferentially around the veneer on all sides.


Preferably, the edge strip differs visually from the veneer. One can therefore distinguish the edge strips significantly from veneer, however, the edge strip is matched visually to the veneer. The edge strip has the basic color of the veneer but is of uniform hue. A variance in the optical design of a floorboard results if a resin whose color contrasts with the color of the veneer is used. For example, a groove design can be specifically generated through this. A visual emphasis of the surface of a floorboard is possible through the interplay of resin and veneer. Effect materials such as pigments and other fillers can also be used in the resin for this. An effect material may be, for example, mica. Even fluorescent pigments are possible as an effect material.


The veneer dimensions are smaller than the carrier plate. Consequently, the veneer does not fully cover the carrier plate. This thereby results in edge strips on at least two side margins of the veneer which are formed by resin. The surface of the edge strips extends into the plane of the surface of the veneer. The resin fills the edge strips and equalizes the surface to the surface of the veneer.


One aspect of the invention provides that the veneer has uneven side margins, in particular, the side margins may be untrimmed. An otherwise common cutting scrap is eliminated. This leads to a better utilization of the available raw material and resource conservation.


The starting product in the manufacture of floorboards according to the invention is a large-surface initial carrier plate. The initial carrier plate is rectangularly configured and has a size of 2,000 mm to 5,600 mm in length and 1,200 mm to 2,100 mm in width. Usually, the carrier plate or the initial carrier plate has a thickness of 4.5 mm to 12 mm.


The veneers are placed as strips or sheets on a large-format initial carrier plate. The individual strips or sheets of wood veneer arranged on the initial carrier plate are laid with distances to one another such that a gap exists between the individual veneers. The resin is incorporated between initial carrier plate and the veneers. In particular, this is a thermosetting synthetic resin. Color or transparent melamine resins or melamine/polyurethane resin mixtures can be applied. The resin may be present on a paper-like carrier in the form of a paper impregnation, also called resin paper. The resin or resin layer may further be present or configured as a resin film. A resin layer may be formed by a resin film applied on the upper side of the carrier plate. Also, a resin layer may be formed on the under side of the veneers in the form of a resin film. In both cases, the resin is applied onto the carrier plate or the veneer in liquid form and dried or pre-condensed. When a coating of resin is applied to the veneer, the wood veneer is impregnated with resin. The amount of resin is measured such that a reliable bond is created between the initial carrier plate and the veneers and the gap is filled and equalized between the veneers.


The resin used according to the invention, in particular, is a thermosetting synthetic resin. One aspect of the invention aims to use resins which react and cure under heat and pressure. In this connection, the use of aminoplastic, thermosetting or reactive resins such as polyurethane (PU) or thermoplastic polyurethane is offered.


During manufacturing, the initial carrier plate, the resin and the veneers are pressed together and joined together. The veneer thereby is infiltrated by the resin, preferably completely saturated. The grouting takes place hot at a temperature of over 100° C., in particular more than 120° C., preferably at a temperature between 180° C. and 210° C. The pressing temperature refers to the temperature at the press plate of the press. This temperature is also present on the contact surfaces of the pressing plate with the upper side of the veneer or the under side of the carrier plate.


A balancing layer is provided at the under side of the carrier plate. This balancing layer is joined to the under side of the carrier plate during the pressing process. To do this, the balancing layer is positioned on the under side of the initial carrier plate for the formation of the multilayer body made of initial carrier plate, resin and veneers. The grouting of the multilayer body is carried out in a press, and actually at a pressure of greater than or equal (≥) 1,000 kilopascals (kPa). Preferably, the pressing pressure is above 3,500 kilopascals (kPa). The pressing temperature is greater than or equal to (≥) 100° C., preferably the pressing temperature is between 180° C. and 210° C. The pressing time, when pressure in the press is applied to the multilayer body, is between 10 seconds and 60 seconds.


During the pressing process, the surface of the veneers can receive a structure, a pattern or ornaments by a structure sheet or a texturing agent. The structure may vary in gloss level in sub-areas. In addition, various structure depths are possible. The structure depth may be up to 0.6 mm. In relation to the veneer thickness, the structure may have a structure depth of ⅔ of the veneer thickness.


After the pressing process, the pressed multilayer body is cooled and divided into individual boards. As already stated, the resin fills the gap between adjacent veneers and equalizes the surface. The division of the compressed large format multilayer body into individual boards occurs along or in the area of the gap between two adjacent mutually arranged veneers. Accordingly, the width of the individual veneers is matched to the width of a divided individual board. The individual boards are profiled at their side margins in a subsequent work step. The profiling is used in particular for the formation of connecting means such as groove and spring or click connections on the long and short sides of the boards. Folds can also be formed. Since the side margin portions of the boards are stabilized by the resin, a mechanical processing of the side margins is advantageously possible. In particular, a fraying of the upper side wear layer of veneer can be prevented.


The edge strip of resin is completely or partially obtained in the course of mechanical machining of the side margins of a board.


During the pressing process, the resin is plasticized under the influence of temperature and saturates or infiltrates into the wood veneer. Preferably, the resin saturates the wood veneer completely up to the upper side of the wood veneer. Existing pores, cracks, splits and/or flaws in the wood veneer are filled with resin during the pressing process. The resin forms an inseparable connection between the veneer and the carrier plate. Another advantage of the invention is therefore that two production steps, namely the bonding and smoothing the wood veneer, can be performed together in one work operation.


In particular, the grouting of the multilayer body is carried out such that the veneer is soaked with resin and is visible after grouting the resin on the surface of the veneer. In this context, color coordinated resins are used in particular for the color of the veneer. Technically, a black resin is universally applicable and advantageous. Advantageously, the grouting is performed such that the surface of the veneer and thus of the board is contaminated by very little or no resin. Pores, cracks, crevices and other flaws are visibly filled. However, there is no or at least very little excess resin on the surface. The grouted product then only needs to be structure brushed and possibly receives a surface oiling or varnish.


The resin may contain a filler or be thickened with a filler. More mass is thereby available to fill pores, cracks, crevices and/or flaws. Organic or inorganic materials may be used as a filler, in particular, mineral pigments or powder, as well as wood powder or wood flour.


The surface of the floorboard or the surface of the veneer and the surface of the side margins are subjected to a mechanical surface treatment after the grouting. A grinding or brushing of the surface in particular takes place in the context of the surface treatment. Also, the surface can be mechanically embossed and structured. Since the upper side veneer is impregnated by the resin, resistance, especially the resistance to indentation and wear-through resistance, is also increased. The high resistance is advantageous in a mechanical processing of the wood veneer. The impregnation of the veneer with resin also allows the use of softer veneers, especially wood veneers made of woods such as larch or coarsely porous woods.


Furthermore, a sealing of the surface is possible, for example, by the application of a color, a stain, an oil or a varnish or varnish system. In this context, the surface may be printed with a decoration.





BRIEF DESCRIPTION OF THE DRAWING

The invention is described below with reference to drawings. It shows:



FIG. 1 in an enlarged view, the region of the longitudinal side of two adjacent floorboards with corresponding locking means;



FIG. 2 a section made of two floorboards coupled to each other;



FIG. 3a schematically a plan view of a floor covering made of floorboards according to the invention;



FIG. 3b a plan view for a floorboard according to the invention and



FIG. 3c two individual floorboards and a section of a floor covering formed from the floorboards also in plan view.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS


FIGS. 1 and 2 illustrate schematically the construction of floorboards 1 and 2 according to the invention in their vertical plane. The figures, in particular as regards the thickness of the individual layers, are not to scale.


Each floorboard 1, 2 has a carrier plate 3, on whose upper side a veneer, namely a wood veneer 4, is applied. The carrier plate 3 and the wood veneer 4 are fully pressed and bonded together via a resin layer 5 made of resin 6. A balancing layer 7 is provided on the under side of the carrier plate 3. Locking strips 10, 11 are provided on the longitudinal sides 8, 9 of the floorboards 1, 2. For adjacent floorboards 1, 2 in a floor covering, the respective corresponding locking strips 10, 11 engage with each other. In FIG. 1 as well as in FIG. 2, the locking strips 10, 11 are shown at two longitudinal sides 8, 9 with respect to each other of a floorboard 1, 2. The floorboards 1, 2 also have locking means at their respective head sides, which however, are not to be seen here.


The carrier plate 3 and the upper side wood veneer 4 and the carrier plate 3 and the under side balancing layer 7 are thermally pressed against each other and bonded together inseparably. The bonding between the carrier plate 3 and wood veneer 4 is accomplished via the incorporated resin 6. The balancing layer 7 is also bonded to the carrier plate 3 via a resin.


An edge strip 14, 15 is configured on at least two side margins 12, 13 of the wood veneer 4 on the upper side of the floorboards 1, 2. These edge strips 14, 15 are made of resin 6. The surface 16 of the edge strip 14, 15 extends into the plane of the surface 17 of the wood veneer 4.


The resin 6 is plasticized during grouting of the resin 6 (resin layer, resin film) provided between each of carrier plate 3, wood veneer 4, balancing layer 7. The resin 6 provided on the upper side between the carrier plate 3 and wood veneer 4 infiltrates the wood veneer 4. The resin 6 can thereby saturate the wood veneer 4 to the surface 17 of the wood veneer 4. This is illustrated in FIG. 2.


Pores, cracks, crevices and/or flaws present in the wood veneer 4 are filled with resin 6 during grouting. The bonding of the wood veneer 4 with the carrier plate 3, and the filling of the surface 17 of the wood veneer 4 occurs together in a single work operation during the grouting of the multilayer body.



FIG. 3 shows an exemplary represented section from a floor covering formed from floorboards 1, 2 according to the invention in plan view. The floorboards 1, 2 are coupled to a floor covering. The side margins 12, 13 of the wood veneers 4 each have circumferentially an outer strip 14, 15 formed from resin 6. Pores, cracks, gaps and/or flaws such as knotholes in the wood veneers 4 are filled with resin 6. The surface 17 of the wood veneer 4 can be stained in color after grouting or printed with decorations or patterns. A protective layer or sealing, for example, of a transparent varnish, floor oil or similar is subsequently applied. Furthermore, it is possible to print or varnish in color the edges or side margins of the floorboard, which are made of hard high-strength resin material.



FIG. 3b shows a floorboard 18. This has a carrier plate 19 and a number of wood veneers 20, 21 on the upper side. As described above, the carrier plate 19 and the wood veneers 20, 21 are thermally grouted together. Edge strips 24, 25 which consist of resin 26 are configured along the side margins 22, 23 of the wood veneers 20, 21. It can be seen that the surface of the floorboard 18 has an uneven character based on the geometrically variously formed and arranged wood veneers 20, 21.



FIG. 3c shows two individual floorboards 27, 28 and a section of a floor covering formed from floorboards 27, 28. The construction of the floorboards 27, 28 is as previously described. The floorboards 27, 28 have wood veneers 29, 30 on the upper side. Edge strips 33, 34 are configured from high strength resin material each circumferential to the side margins 31, 32. Basically, the wood veneers 29, 30 may be arranged regularly but also irregularly.

Claims
  • 1. A floorboard, comprising: a carrier plate and a veneer arranged on a topside of the carrier plate, said carrier plate and said veneer being connected with each other via a resin,wherein an edge strip made of the resin is provided on at least two side margins of the veneer,wherein a surface of the edge strip and a surface of the veneer are coplanar, andwherein the resin forms a continuous layer on the topside of the carrier plate in contact with a bottom surface of the veneer to connect the carrier plate to the veneer, the continuous layer of the resin on the topside of the carrier plate including the edge strips of the resin.
  • 2. The floorboard of claim 1, wherein the edge strip differs visually from the veneer.
  • 3. The floorboard of claim 1, wherein the at least two side margins of the veneer are uneven.
  • 4. The floorboard of claim 1, wherein the resin is infiltrated into the veneer.
  • 5. The floorboard of claim 1, wherein the resin is saturated into the veneer.
  • 6. The floorboard of claim 1, further comprising a balancing layer provided on an under side of the carrier plate.
  • 7. The floorboard of claim 1, wherein the resin contains a filler.
  • 8. The floorboard of claim 1, wherein the surface of the veneer and/or the surface of the edge strips are at least one of burnished, embossed, brushed and sealed.
  • 9. A floorboard comprising: a carrier plate comprising a top surface;a veneer connected to the top surface of the carrier plate via a resin layer, the veneer comprising a bottom surface, a top surface, and a side margin extending between the bottom and top surfaces;the veneer possessing a longitudinal dimension smaller than a longitudinal dimension of the top surface of the carrier plate such that the top surface of the carrier plate extends beyond the side margin of the veneer when the veneer is connected to the top surface of the carrier plate via the resin layer; andthe resin layer comprising an edge strip that contacts the top surface of the carrier plate and extends upwards beyond the bottom surface of the veneer to be in contact with the side margin of the veneer,wherein the resin layer is a continuous layer on the topside of the carrier plate in contact with the bottom surface of the veneer to connect the carrier plate to the veneer, the continuous layer on the topside of the carrier plate including the edge strip of the resin layer.
  • 10. The floorboard according to claim 9, wherein the edge strip of the resin layer has a top surface that is coplanar with the top surface of the veneer.
  • 11. The floorboard according to claim 9, wherein the carrier plate is a wood board.
  • 12. The floorboard according to claim 11, wherein the wood board is high density fiber (HDF).
  • 13. The floorboard according to claim 9, wherein the side margin of the veneer is untrimmed.
  • 14. The floorboard according to claim 9, wherein the veneer is embedded into the resin layer such that the resin saturates into the veneer.
Priority Claims (1)
Number Date Country Kind
10 2013 113 109 Nov 2013 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/DE2014/100398 11/11/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/078444 6/4/2015 WO A
US Referenced Citations (295)
Number Name Date Kind
2018712 Elmendorf Oct 1935 A
2419614 Welch Apr 1947 A
2587064 Rapson Feb 1952 A
2630395 McCullough Mar 1953 A
2634534 Brown Apr 1953 A
2695857 Lewis et al. Nov 1954 A
2720478 Hogg Oct 1955 A
2831793 Elmendorf Apr 1958 A
2831794 Elmendorf Apr 1958 A
2932596 Rayner Apr 1960 A
2962081 Dobry et al. Nov 1960 A
2992152 Chapman Jul 1961 A
3032820 Johnson May 1962 A
3135643 Michl Jun 1964 A
3286006 Annand Nov 1966 A
3308013 Bryant Mar 1967 A
3325302 Hosfeld Jun 1967 A
3342621 Point et al. Sep 1967 A
3345234 Jecker et al. Oct 1967 A
3392082 Lloyd Jul 1968 A
3426730 Lawson et al. Feb 1969 A
3463653 Letter Aug 1969 A
3486484 Bullough Dec 1969 A
3533725 Bridgeford Oct 1970 A
3540978 Ames Nov 1970 A
3565665 Stranch et al. Feb 1971 A
3578522 Rauch May 1971 A
3615279 Ward, Jr. Oct 1971 A
3673020 De Jaeger Jun 1972 A
3729368 Ingham Apr 1973 A
3844863 Forsythe Oct 1974 A
3846219 Kunz Nov 1974 A
3880687 Elmendorf et al. Apr 1975 A
3895984 Cone et al. Jul 1975 A
3897185 Beyer Jul 1975 A
3897588 Nohtomi Jul 1975 A
3914359 Bevan Oct 1975 A
3950599 Board, Jr. Apr 1976 A
3956542 Roberti May 1976 A
3961108 Rosner et al. Jun 1976 A
4052739 Wada et al. Oct 1977 A
4093766 Scher et al. Jun 1978 A
4115178 Cone et al. Sep 1978 A
4126725 Shiflet Nov 1978 A
4131705 Kubinsky Dec 1978 A
4277527 Duhl Jul 1981 A
4311621 Nishizawa et al. Jan 1982 A
4313857 Blount Feb 1982 A
4337290 Kelly et al. Jun 1982 A
4361612 Shaner Nov 1982 A
4420351 Lussi Dec 1983 A
4420525 Parks Dec 1983 A
4430375 Scher et al. Feb 1984 A
4430380 Hönel Feb 1984 A
4474920 Kyminas et al. Oct 1984 A
4743484 Robbins May 1988 A
4863777 Callaway et al. Sep 1989 A
4872825 Ross Oct 1989 A
4890656 Ohsumi et al. Jan 1990 A
4911969 Ogata et al. Mar 1990 A
4942084 Prince Jul 1990 A
5034272 Lindgren et al. Jul 1991 A
5059472 LeBell et al. Oct 1991 A
5085930 Widmann et al. Feb 1992 A
5147486 Hoffman Sep 1992 A
5206066 Horacek Apr 1993 A
5246765 Lussi et al. Sep 1993 A
5258216 Von Bonin et al. Nov 1993 A
5292576 Sanders Mar 1994 A
5314554 Owens May 1994 A
5354259 Scholz et al. Oct 1994 A
5405705 Fujimoto Apr 1995 A
5422170 Iwata et al. Jun 1995 A
5447752 Cobb Sep 1995 A
5466511 O'Dell et al. Nov 1995 A
5543193 Tesch Aug 1996 A
5569424 Amour Oct 1996 A
5601930 Mehta et al. Feb 1997 A
5604025 Tesch Feb 1997 A
5609966 Perrin et al. Mar 1997 A
5755068 Ormiston May 1998 A
5766522 Daly et al. Jun 1998 A
5827788 Miyakoshi Oct 1998 A
5855832 Clausi Jan 1999 A
5891564 Schultz et al. Apr 1999 A
5925211 Rakauskas Jul 1999 A
5925296 Leese Jul 1999 A
5942072 McKinnon Aug 1999 A
5976689 Witt et al. Nov 1999 A
5985397 Witt Nov 1999 A
6036137 Myren Mar 2000 A
6103377 Clausi Aug 2000 A
6238750 Correll et al. May 2001 B1
6291625 Hosgood Sep 2001 B1
6468645 Clausi Oct 2002 B1
6481476 Okamoto Nov 2002 B1
6521326 Fischer et al. Feb 2003 B1
6528437 Hepfinger et al. Mar 2003 B1
6537610 Springer et al. Mar 2003 B1
6620349 Lopez Sep 2003 B1
6667108 Ellstrom Dec 2003 B2
6769217 Nelson Aug 2004 B2
6773799 Persson et al. Aug 2004 B1
6803110 Drees et al. Oct 2004 B2
6926954 Schuren et al. Aug 2005 B2
6991830 Hansson et al. Jan 2006 B1
7022756 Singer Apr 2006 B2
7485693 Matsuda et al. Feb 2009 B2
7811489 Pervan Oct 2010 B2
8021741 Chen Sep 2011 B2
8206534 McDuff et al. Jun 2012 B2
8245477 Pervan Aug 2012 B2
8302367 Schulte Nov 2012 B2
8349234 Ziegler et al. Jan 2013 B2
8349235 Pervan et al. Jan 2013 B2
8407963 Schulte Apr 2013 B2
8419877 Pervan et al. Apr 2013 B2
8431054 Pervan et al. Apr 2013 B2
8480841 Pervan et al. Jul 2013 B2
8481111 Ziegler et al. Jul 2013 B2
8499520 Schulte Aug 2013 B2
8617439 Pervan et al. Dec 2013 B2
8635829 Schulte Jan 2014 B2
8650738 Schulte Feb 2014 B2
8663785 Ziegler et al. Mar 2014 B2
8728564 Ziegler et al. May 2014 B2
8752352 Schulte Jun 2014 B2
8784587 Lindgren et al. Jul 2014 B2
8920874 Ziegler et al. Dec 2014 B2
8920876 Vetter et al. Dec 2014 B2
8993049 Pervan Mar 2015 B2
9085905 Persson et al. Jul 2015 B2
9109366 Schulte Aug 2015 B2
9181698 Pervan et al. Nov 2015 B2
9255405 Pervan et al. Feb 2016 B2
9296191 Pervan et al. Mar 2016 B2
9352499 Ziegler et al. May 2016 B2
9403286 Vetter et al. Aug 2016 B2
9410319 Ziegler et al. Aug 2016 B2
9556622 Pervan et al. Jan 2017 B2
9783996 Pervan et al. Oct 2017 B2
10017950 Pervan Jul 2018 B2
10100535 Pervan et al. Oct 2018 B2
10214913 Persson et al. Feb 2019 B2
10286633 Lundblad et al. May 2019 B2
10315219 Jacobsson Jun 2019 B2
20010006704 Chen et al. Jul 2001 A1
20010009309 Taguchi et al. Jul 2001 A1
20020031620 Yuzawa et al. Mar 2002 A1
20020054994 Dupre et al. May 2002 A1
20020100231 Miller Aug 2002 A1
20020155297 Schuren Oct 2002 A1
20030008130 Kaneko Jan 2003 A1
20030056873 Nakos et al. Mar 2003 A1
20030059639 Worsley Mar 2003 A1
20030102094 Tirri et al. Jun 2003 A1
20030108760 Haas et al. Jun 2003 A1
20030208980 Miller et al. Nov 2003 A1
20040035078 Pervan Feb 2004 A1
20040088946 Liang et al. May 2004 A1
20040123542 Grafenauer Jul 2004 A1
20040191547 Oldorff Sep 2004 A1
20040202857 Singer Oct 2004 A1
20040206036 Pervan Oct 2004 A1
20040237436 Zuber et al. Dec 2004 A1
20040250911 Vogel Dec 2004 A1
20050003099 Quist Jan 2005 A1
20050016107 Rosenthal Jan 2005 A1
20050079780 Rowe et al. Apr 2005 A1
20050136234 Hak et al. Jun 2005 A1
20050153150 Wellwood et al. Jul 2005 A1
20050166514 Pervan Aug 2005 A1
20050193677 Vogel Sep 2005 A1
20050208255 Pervan Sep 2005 A1
20050227040 Toupalik Oct 2005 A1
20050252130 Martensson Nov 2005 A1
20060008630 Thiers et al. Jan 2006 A1
20060024465 Briere Feb 2006 A1
20060032175 Chen et al. Feb 2006 A1
20060048474 Pervan et al. Mar 2006 A1
20060070321 Au Apr 2006 A1
20060070325 Magnusson Apr 2006 A1
20060145384 Singer Jul 2006 A1
20060154015 Miller et al. Jul 2006 A1
20060172118 Han et al. Aug 2006 A1
20060182938 Oldorff Aug 2006 A1
20060183853 Sczepan Aug 2006 A1
20070055012 Caldwell Mar 2007 A1
20070066176 Wenstrup et al. Mar 2007 A1
20070102108 Zheng May 2007 A1
20070148339 Wescott Jun 2007 A1
20070166516 Kim et al. Jul 2007 A1
20070184244 Doehring Aug 2007 A1
20070207296 Eisermann Sep 2007 A1
20070218260 Miclo et al. Sep 2007 A1
20070224438 Van Benthem et al. Sep 2007 A1
20070256804 Garcis Espino et al. Nov 2007 A1
20080000179 Pervan et al. Jan 2008 A1
20080000190 Hakansson Jan 2008 A1
20080000417 Pervan et al. Jan 2008 A1
20080032120 Braun Feb 2008 A1
20080090032 Perrin et al. Apr 2008 A1
20080093013 Muller Apr 2008 A1
20080152876 Magnusson Jun 2008 A1
20080176039 Chen et al. Jul 2008 A1
20080263985 Hasch et al. Oct 2008 A1
20090056257 Mollinger et al. Mar 2009 A1
20090124704 Jenkins May 2009 A1
20090135356 Ando May 2009 A1
20090145066 Pervan Jun 2009 A1
20090155612 Pervan et al. Jun 2009 A1
20090165946 Suzuki Jul 2009 A1
20090208646 Kreuder et al. Aug 2009 A1
20090294037 Oldorff Dec 2009 A1
20090311433 Wittmann Dec 2009 A1
20100092731 Pervan et al. Apr 2010 A1
20100136303 Kreuder Jun 2010 A1
20100196678 Vermeulen Aug 2010 A1
20100223881 Kalwa Sep 2010 A1
20100239820 Buhlmann Sep 2010 A1
20100291397 Pervan et al. Nov 2010 A1
20100300030 Pervan et al. Dec 2010 A1
20100304089 Magnusson Dec 2010 A1
20100307675 Buhlmann Dec 2010 A1
20100307677 Buhlmann Dec 2010 A1
20100314368 Groeke Dec 2010 A1
20100319282 Ruland Dec 2010 A1
20100323187 Kalwa Dec 2010 A1
20100330376 Trksak Dec 2010 A1
20110175251 Ziegler et al. Jul 2011 A1
20110177319 Ziegler et al. Jul 2011 A1
20110177354 Ziegler et al. Jul 2011 A1
20110189448 Lindgren et al. Aug 2011 A1
20110247748 Pervan et al. Oct 2011 A1
20110250404 Pervan et al. Oct 2011 A1
20110262720 Riebel et al. Oct 2011 A1
20110274872 Yu Nov 2011 A1
20110283642 Meirlaen et al. Nov 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20110287211 Bailey Nov 2011 A1
20110293823 Bruderer et al. Dec 2011 A1
20110293906 Jacobsson Dec 2011 A1
20120048487 Brewster Mar 2012 A1
20120124932 Schulte et al. May 2012 A1
20120263878 Ziegler et al. Oct 2012 A1
20120263965 Persson Oct 2012 A1
20120264853 Ziegler et al. Oct 2012 A1
20120276348 Clausi et al. Nov 2012 A1
20120288689 Hansson et al. Nov 2012 A1
20120308774 Persson et al. Dec 2012 A1
20130025216 Reichwein et al. Jan 2013 A1
20130092314 Zeigler et al. Apr 2013 A1
20130095315 Pervan et al. Apr 2013 A1
20130111845 Pervan et al. May 2013 A1
20130189534 Pervan et al. Jul 2013 A1
20130196119 Dobecz Aug 2013 A1
20130269863 Pervan et al. Oct 2013 A1
20130273244 Vetter et al. Oct 2013 A1
20130273245 Ziegler et al. Oct 2013 A1
20140027020 Klaeusler et al. Jan 2014 A1
20140044872 Pervan Feb 2014 A1
20140075874 Pervan et al. Mar 2014 A1
20140147585 Smith May 2014 A1
20140171554 Ziegler et al. Jun 2014 A1
20140178630 Pervan et al. Jun 2014 A1
20140186610 Pervan Jul 2014 A1
20140199558 Pervan et al. Jul 2014 A1
20140234531 Ziegler et al. Aug 2014 A1
20140290171 Vermeulen Oct 2014 A1
20150017461 Lindgren et al. Jan 2015 A1
20150072111 Rischer et al. Mar 2015 A1
20150079280 Vetter et al. Mar 2015 A1
20150093502 Ziegler et al. Apr 2015 A1
20150111055 Persson et al. Apr 2015 A1
20150159382 Pervan Jun 2015 A1
20150197942 Pervan et al. Jul 2015 A1
20150197943 Ziegler et al. Jul 2015 A1
20150275526 Persson et al. Oct 2015 A1
20150298433 Kalwa Oct 2015 A1
20160031189 Pervan et al. Feb 2016 A1
20160114495 Pervan et al. Apr 2016 A1
20160186318 Pervan et al. Jun 2016 A1
20160230400 Pervan et al. Aug 2016 A9
20160368180 Ziegler et al. Dec 2016 A1
20160369507 Pervan et al. Dec 2016 A1
20160375674 Schulte Dec 2016 A1
20170120564 Schulte May 2017 A1
20170165936 Schulte Jun 2017 A1
20170190156 Lundblad et al. Jul 2017 A1
20170305119 Bergelin et al. Oct 2017 A1
20170348984 Pervan et al. Dec 2017 A1
20180002934 Pervan et al. Jan 2018 A1
20180291638 Pervan Oct 2018 A1
20180370278 Persson et al. Dec 2018 A1
20190010711 Pervan et al. Jan 2019 A1
Foreign Referenced Citations (172)
Number Date Country
8028475 Jun 1975 AU
2011236087 Oct 2011 AU
298894 May 1954 CH
1709717 Dec 2005 CN
102166775 Aug 2011 CN
202200608 Apr 2012 CN
104084994 Oct 2014 CN
1 815 312 Jul 1969 DE
7148789 Apr 1972 DE
29 39 828 Apr 1981 DE
33 34 921 Apr 1985 DE
36 34 885 Apr 1988 DE
42 33 050 Apr 1993 DE
42 36 266 May 1993 DE
202 14 532 Feb 2004 DE
102 45 914 Apr 2004 DE
10245914 Apr 2004 DE
103 00 247 Jul 2004 DE
103 31 657 Feb 2005 DE
20 2006 007 797 Aug 2006 DE
10 2005 046 264 Apr 2007 DE
10 2006 024 593 Dec 2007 DE
10 2006 058 244 Jun 2008 DE
10 2007 043 202 Mar 2009 DE
20 2009 008 367 Sep 2009 DE
10 2010 045 266 Mar 2012 DE
20 2013 011 776 Jul 2014 DE
20 2014 102 031 Jul 2014 DE
0 129 430 Dec 1984 EP
0 234 220 Sep 1987 EP
0 129 430 Jan 1990 EP
0 355 829 Feb 1990 EP
0 592 013 Apr 1994 EP
0 732 449 Sep 1996 EP
0 744 477 Nov 1996 EP
0 914 914 May 1999 EP
0 732 449 Aug 1999 EP
0 744 477 Jan 2000 EP
0 993 934 Apr 2000 EP
1 035 255 Sep 2000 EP
1 125 971 Aug 2001 EP
1 136 251 Sep 2001 EP
1 209 199 May 2002 EP
1 249 322 Oct 2002 EP
1 262 607 Dec 2002 EP
1 242 702 Nov 2004 EP
1 498 241 Jan 2005 EP
1 657 055 May 2006 EP
1 808 311 Jul 2007 EP
1 847 385 Oct 2007 EP
1 961 556 Aug 2008 EP
1 997 623 Dec 2008 EP
2 025 484 Feb 2009 EP
2 119 550 Nov 2009 EP
2 246 500 Nov 2010 EP
2 263 867 Dec 2010 EP
2 264 259 Dec 2010 EP
2 272 667 Jan 2011 EP
2 272 668 Jan 2011 EP
2 305 462 Apr 2011 EP
1 847 385 Sep 2011 EP
2 263 867 Mar 2012 EP
2 902 196 Aug 2015 EP
2 902 196 Aug 2016 EP
801 433 Aug 1936 FR
984 170 Feb 1965 GB
1090450 Nov 1967 GB
1 561 820 Mar 1980 GB
2 238 983 Jun 1991 GB
2 248 246 Apr 1992 GB
2 464 541 Apr 2010 GB
S51-128409 Nov 1976 JP
S52-087212 Jul 1977 JP
S56-049259 May 1981 JP
S56-151564 Nov 1981 JP
S58-084761 May 1983 JP
S59-101312 Jun 1984 JP
S64-062108 Mar 1989 JP
H02-198801 Aug 1990 JP
H02-229002 Sep 1990 JP
H03-030905 Feb 1991 JP
H03-211047 Sep 1991 JP
H03-267174 Nov 1991 JP
H04-107101 Apr 1992 JP
H04-247901 Sep 1992 JP
H04-269506 Sep 1992 JP
H05-077362 Mar 1993 JP
H05-237809 Sep 1993 JP
H06-312406 Nov 1994 JP
H08-207012 Aug 1996 JP
H09-164651 Jun 1997 JP
H10-002098 Jan 1998 JP
H10-18562 Jan 1998 JP
11-291203 Oct 1999 JP
2000-226931 Aug 2000 JP
2000-263520 Sep 2000 JP
2001-287208 Oct 2001 JP
2001-329681 Nov 2001 JP
2003-311717 Nov 2003 JP
2003-311718 Nov 2003 JP
2004-068512 Mar 2004 JP
2004-076476 Mar 2004 JP
2005-034815 Feb 2005 JP
2005-074682 Mar 2005 JP
2005-170016 Jun 2005 JP
2005-219215 Aug 2005 JP
3705482 Oct 2005 JP
2005-307582 Nov 2005 JP
2007-098755 Apr 2007 JP
2007-216692 Aug 2007 JP
2007-268843 Oct 2007 JP
2008-188826 Aug 2008 JP
2010-017963 Jan 2010 JP
2011-110768 Jun 2011 JP
225556 Feb 1992 NZ
469 326 Jun 1993 SE
WO 9206832 Apr 1992 WO
WO 9324295 Dec 1993 WO
WO 9324296 Dec 1993 WO
WO 9400280 Jan 1994 WO
WO 9506568 Mar 1995 WO
WO 0022225 Apr 2000 WO
WO 0044576 Aug 2000 WO
WO 0164408 Sep 2001 WO
WO 0168367 Sep 2001 WO
WO 0192037 Dec 2001 WO
WO 0242167 May 2002 WO
WO 0242373 May 2002 WO
WO03078761 Sep 2003 WO
WO 2004042168 May 2004 WO
WO 2004050359 Jun 2004 WO
WO 2004067874 Aug 2004 WO
WO 2005035209 Apr 2005 WO
WO 2005035209 Apr 2005 WO
WO 2005035209 Apr 2005 WO
WO2005054599 Jun 2005 WO
WO 2005054600 Jun 2005 WO
WO 2005066431 Jul 2005 WO
WO 2005097874 Oct 2005 WO
WO 2006007413 Jan 2006 WO
WO 2006013469 Feb 2006 WO
WO 2006043893 Apr 2006 WO
WO 2006066776 Jun 2006 WO
WO 2006126930 Nov 2006 WO
WO 2007042258 Apr 2007 WO
WO 2007059294 May 2007 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2009050565 Apr 2009 WO
WO 2009065768 May 2009 WO
WO 2009065769 May 2009 WO
WO 2009065769 May 2009 WO
WO 2009116926 Sep 2009 WO
WO 2009124704 Oct 2009 WO
WO 2010046698 Apr 2010 WO
WO 2010087752 Aug 2010 WO
WO 2011129755 Oct 2011 WO
WO 2011129757 Oct 2011 WO
WO 2011141851 Nov 2011 WO
WO 2012004699 Jan 2012 WO
WO 2012154113 Nov 2012 WO
WO 2013056745 Apr 2013 WO
WO 2013079950 Jun 2013 WO
WO 2013182191 Dec 2013 WO
WO 2013182191 Dec 2013 WO
WO 2014017972 Jan 2014 WO
WO 2014109699 Jul 2014 WO
WO 2015078444 Jun 2015 WO
WO 2015105455 Jul 2015 WO
WO 2015105456 Jul 2015 WO
WO 2015174909 Nov 2015 WO
Non-Patent Literature Citations (18)
Entry
EPO Translation of DE 10254914 (Year: 2018).
International Search Report issued by the European Patent Office in International Application PCT/DE2014/100398 dated Nov. 11, 2014.
U.S. Appl. No. 16/132,977, Pervan, et al.
Parquet International, “Digital Printing is still an expensive process,” Mar. 2008, cover page/pp. 78-79, www.parkettmagazin.com.
Floor Daily, “Shaw Laminates: Green by Design,” Aug. 13, 2007, 1 pg, Dalton, GA.
BTLSR Toledo, Inc. website. http://www.btlresins.com/more.html. “Advantages to Using Powdered Resins,” May 26, 2007, 2 pages, per the Internet Archive WayBackMachine.
Nimz, H.H., “Wood,” Ullmann's Encyclopedia of Industrial Chemistry, published online Jun. 15, 2000, pp. 453-505, vol. 39, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, DE.
Le Fur, X., et al., “Recycling melamine-impregnated paper waste as board adhesives,” published online Oct. 26, 2004, pp. 419-423, vol. 62, Springer-Verlag, DE, XP055332791.
Odian, George, “Principles of Polymerization,” 1991, 3rd Edition, 5 pages incl. pp. 122-123, John Wiley & Sons, Inc., New York, NY, USA.
Engstrand, Ola (Contact)/Valinge Innovation, Technical Disclosure entitled “Fibre Based Panels With a Wear Resistance Surface,” Nov. 17, 2008, IP.com No. IPCOM000176590D, IP.com PriorArtDatabase, 76 pages.
Engstrand, Ola (Contact)/Valinge Innovation, Technical Disclosure entitled “WFF Embossing,” May 15, 2009, IP.com No. IPCOM000183105D, IP.com PriorArtDatabase, 36 pages.
Engstrand, Ola (Contact)/Valinge Innovation, Technical Disclosure entitled “VA063 VA064 Scattering and Powder Backing,” Nov. 11, 2011, IP.com No. IPCOM000212422D, IP.com PriorArtDatabase, 34 pages.
Lstiburek, Joseph, “BSD-106: Understanding Vapor Barriers,” Apr. 15, 2011, Building Science Corporation, pp. 1-18; (retrieved Sep. 26, 2018 https://buildingscience.com/documents/digests/bsd-106-understanding-vapor-barriers).
Pervan, Darko, et al., U.S. Appl. No. 16/132,977 entitled “Wood Fibre Based Panel with a Surface Layer,” filed Sep. 17, 2018.
Ziegler, Göran, U.S. Appl. No. 16/223,708 entitled “A Method to Produce a Veneered Element and a Veneered Element,” filed Dec. 18, 2018.
Ziegler, Göran, U.S. Appl. No. 16/223,833 entitled “A Method to Produce a Veneered Element and a Veneered Element,” filed Dec. 18, 2018.
Ziegler, Göran, U.S. Appl. No. 16/325,543 entitled “A Method to Coat Building Panel and Such a Coated Building Panel,” filed Feb. 14, 2019.
Lundblad, Christer, et al. U.S. Appl. No. 16/365,764 entitled “A Method of Producing a Veneered Element and Such a Veneered Element,” filed in the U.S. Patent and Trademark Office on Mar. 27, 2019.
Related Publications (1)
Number Date Country
20170165936 A1 Jun 2017 US