The application relates generally to the technical field of locking systems for floorboards. The application concerns on the one hand a locking system for floorboards which can be joined mechanically in different patterns and, on the other hand, floorboards provided with such a locking system, as well as methods of installation. More specifically, the application relates above all to locking systems which enable laying of mainly floating floors in advanced patterns.
The present embodiments are particularly suited for use in floating wooden floors and laminate floors, such as massive wooden floors, parquet floors, laminate floors with a surface layer of high-pressure laminate or direct laminate. Laminate floors have a surface consisting of melamine impregnated paper which is compressed under pressure and heat.
In the following text, the visible surface of the installed floorboard is called “front side”, while the opposite side of the floorboard facing the subfloor is called “rear side”. “Horizontal plane” relates to a plane which is extended parallel to the outer part of the surface layer. Directly adjoining upper parts of two neighboring joint edges of two joined floorboards together define a “vertical plane” perpendicular to the horizontal plane.
The outer parts of the floorboard at the edge of the floorboard between the front side and the rear side are called “joint edge”. As a rule, the joint edge has several “joint surfaces” which can be vertical, horizontal, angled, rounded, beveled etc. These joint surfaces exist on different materials, for instance laminate, fiberboard, wood, plastic, metal (in particular aluminum) or sealing materials. “Joint edge portion” relates to the joint edge of the floorboard and a part of the floorboard portions close to the joint edge.
By “joint”, “joint system” or “locking system” are meant cooperating connectors which interconnect the floorboards vertically and or horizontally. By “mechanical joint system” is meant that joining can take place without glue. Mechanical joint systems can in many cases also be joined by glue. By “vertical locking” is meant locking parallel to the vertical plane and by “horizontal locking” is meant locking parallel to the horizontal plane. By “groove side” is meant the side of the floorboard in which part of the horizontal locking consists of a locking groove whose opening faces to the rear side. By “locking side” is meant the side of the floorboard in which part of the horizontal locking consists of a locking element which cooperates with the locking groove. By “locking angle” is meant the angle of the locking surfaces relative to the horizontal plane. In the cases where the locking surfaces are curved, the locking angle is the tangent to the curve with the highest angle.
The following description of prior-art techniques, problems of known systems as well as the objects and features of embodiments of the invention will therefore, as non-limiting examples, be aimed mainly at the above referenced field of application. However, it should be emphasized that the embodiments disclosed herein can be used in any floorboards which are intended to be joined in different patterns by means of a mechanical joint system and, therefore, may thus also be applicable to floors with a surface of plastic, linoleum, cork, needle felt, varnished fiberboard surface and the like.
Traditional laminate and parquet floors are usually installed floating, i.e., without gluing, on an existing subfloor which does not have to be perfectly smooth or flat. Floating floors of this kind are usually joined by means of glued tongue and groove joints (i.e., joints with a tongue on one floorboard and a tongue groove on an adjoining floorboard) on the long side and the short side. In laying, the boards are brought together horizontally, a projecting tongue along the joint edge of one board being inserted into a tongue groove along the joint edge of an adjoining board. The same method is used on long side as well as on short side, and the boards are usually laid in parallel rows long side against long side and short side against short side.
In addition to such traditional floors which are joined by means of glued tongue/tongue groove joints, floorboards have been developed in recent years, which do not require the use of glue but which are instead joined mechanically by means of so-called mechanical joint systems. These systems comprise locking means which lock the boards horizontally and vertically. The mechanical joint systems can be formed by machining the core of the board. Alternatively, parts of the locking system can be made of a separate material which is integrated with the floorboard, i.e., already joined with the floorboard in connection with the manufacture thereof at the factory. The floorboards are joined, i.e., interconnected or locked together, by various combinations of angling, snapping-in and insertion along the joint edge in the locked position.
The principal advantages of floating floors with mechanical joint systems are that they can be laid quickly and easily by different combinations of inward angling and snapping-in. They can also be easily taken up again and be reused in some other place.
All currently existing mechanical joint systems and also floors intended to be joined by gluing have vertical locking means which lock the floorboards across the surface plane of the boards. The vertical locking means consist of a tongue which enters a groove in an adjoining floorboard. The boards thus cannot be joined groove against groove or tongue against tongue. Also the horizontal locking system as a rule consists of a locking element on one side which cooperates with a locking groove in the other side. Thus, the boards cannot be joined locking element against locking element or locking groove against locking groove. This means that the laying is in practice restricted to parallel rows. Using this technique, it is thus not possible to lay traditional parquet patterns where the boards are joined long side against short side in a “herringbone pattern” or in different forms of diamond patterns. It is known that floorboards can be made in formats which correspond to traditional parquet blocks and in A and B designs with mirror-inverted joint systems and that such floorboards can be joined mechanically in a herringbone pattern (WO 03/025307 owner Välinge Aluminium AB/Välinge Innovation AB) by various combinations of angling and snapping-in. Such floorboards can also, if the joint systems are designed in a suitable way, be joined in parallel rows. This is advantageous since a plurality of patterns can then be provided with the same type of floorboards.
An installation of floorboards, for example by angling of long sides and snapping of short sides, is time consuming especially when the floor consists of many small floorboards.
It would be an advantage if floorboards could be installed quickly and easily, especially in herringbone pattern but also in other patterns, with only an angling of the long sides. Such a simple laying method should be combined with joint systems having sufficient horizontal strength in the short sides when installed in parallel rows especially when the floorboards are narrow, for instance 60-120 mm, and when the small short side handles the same high shrinking forces as larger panels.
Narrow and small floorboards usually also take longer to be installed in parallel rows than traditional floorboards. It would be advantageous if the installation time could be reduced by simpler joining and less movement in connection with laying of the different parallel rows. There is thus a great need to improve the locking system and the laying methods when installing especially narrow floorboards which are laid by merely inward angling in a herringbone pattern as well as in parallel rows.
The present embodiments relate to joint systems, floorboards, floors and methods of installation which make it possible to install floating floors more quickly, more easily and with greater strength than is known today in advanced patterns long side against short side and in parallel rows by merely an angular motion towards the subfloor. Also disassembly can take place quickly and easily by a reverse method.
The terms long side and short side are used to facilitate understanding. The boards can also be square or alternately square and rectangular and optionally also exhibit different patterns or other decorative features in different directions.
A first object of some of the disclosed embodiments is to provide floorboards, joint systems, methods of installation, and methods of disassembly, which make it possible to provide a floor which consists of rectangular floorboards joined mechanically in advanced patterns long side against short side and which can be disassembled and reused. The floorboards and the locking system are characterized in that joining and disassembly can take place merely by inward angling along the long sides of the boards. The angling method is considerably simpler than snapping-in, and a locking system which is locked by inward angling can be made stronger than a locking system which is locked by snapping-in. A special object is to provide such floors with a surface layer of high-pressure laminate or direct laminate.
A second object of some of the disclosed embodiments is to provide rectangular floorboards and locking systems which satisfy at least some of the above requirements and which are characterized in that the horizontal locking systems of the long side and the short side consist of a tongue with a locking element which cooperates with a tongue groove and an undercut groove. Such locking systems can be made in one piece with the floorboard and with a geometry that reduces the waste of material.
A third object is to provide floorboards and locking systems in which the short sides have horizontal locking elements which differ from the locking elements of the long sides. Preferably, the short sides have horizontal locking systems with locking surfaces having a higher locking angle than the long sides. Joining of short side against short side in parallel rows can then take place with great strength.
A fourth object is to provide floorboards and locking systems which on the long sides and short sides have horizontal locking systems with locking surfaces which are essentially perpendicular to the horizontal plane and which allow great strength when joining long side against long side and short side against short side.
A fifth object is to provide different joint systems which are suitable for use in the above floorboards and which partly consist of separate materials which are joined to the floorboard.
A sixth object is to provide laying methods which reduce the time of laying especially in the cases where small and narrow floorboards are laid in parallel rows.
It should be particularly emphasized that the combinations of joint systems that exist in this description are only examples of suitable embodiments. All joint systems can be used separately in long sides and/or short sides as well as in different combinations on long sides and short sides. The joint systems having horizontal and vertical locking elements can be joined by angling and/or snapping-in. The geometries of the joint systems and the active horizontal and vertical locking elements can be made by machining the edges of the floorboard or by separate materials being formed or alternatively machined before or after joining to the joint edge portion of the floorboard.
According to a first aspect, some of the presently disclosed embodiments comprise a flooring system comprising rectangular floorboards which are mechanically lockable. In the flooring system, each individual floorboard along its long sides has a pair of opposing connectors for locking together said floorboard with similar, adjoining floorboards both vertically and horizontally and along its short sides has a pair of opposing connectors. Furthermore, the connectors of the floorboards are designed so as to allow locking-together of the long sides by angling along an upper joint edge. The floorings system is distinguished in that said pair of opposing connectors of said short sides are adapted for locking the floorboards only horizontally, the system comprises two different types of floorboard, and the connectors of one type of floorboard along one pair of opposite edge portions being arranged in a mirror-inverted manner relative to the corresponding connectors along the same pair of opposite edge portions of the other type of floorboard.
In one embodiment, the connectors of the floorboards are designed so as to allow locking-together of the long sides by angling along the upper joint edge and of the short sides by a substantially vertical motion, and wherein a first short side is lockable to a first long side vertically and horizontally, and a second short side is lockable to a second long side only horizontally by a substantially vertical motion, and the horizontal connectors on the short sides having cooperating locking surfaces which are formed differently from the cooperating locking surfaces of the horizontal connectors of the long sides.
By being designed differently is meant, for instance, differences with respect to:
As an example of item c) above, it may be mentioned that different designs of the locking element, especially with respect to its horizontal extent, may have a considerable effect on the strength of the locking surface when subjected to tension load. Different plays or the non-existence of play between the locking surfaces may give the joint system different properties.
According to a second aspect, some of the presently disclosed embodiments provide methods for laying a floor with two types of floorboards A and B which have mirror-inverted joint systems.
In one embodiment, laying takes place in a herringbone pattern by locking together two long sides of at least two floorboards of the first type of floorboard by angling towards two similar floorboards of the same type, and locking together another floorboard of the second type of floorboard by inward angling towards a similar floorboard of the same type.
According to another embodiment, laying takes place in parallel rows by angling in such a manner that a first B board in a new row is joined to the last laid A board in a preceding row.
There is also provided a flooring system comprising rectangular floorboards with long sides which have pairs of opposing connectors which at least allow locking-together both horizontally and vertically by inward angling. This flooring system is distinguished in that the system comprises floorboards with a surface layer of laminate, said floorboards being joined in a herringbone pattern, and that joining and disconnecting is achievable by an angular motion.
Finally, there is provided a flooring system, which comprises rectangular floorboards joined in a herringbone pattern, with a surface layer of high pressure laminate or direct laminate, in which system the individual floorboards along their long sides have pairs of opposing mechanical connectors for locking together similar, adjoining floorboards both vertically and horizontally by inward angling. In this embodiment, the short sides have merely horizontal locking elements. Since the floorboards are narrow and the short sides are held together by the long sides, this is sufficient when the boards are installed in a herringbone pattern.
a-b show embodiments of floorboards.
a-2f show joint systems on long side and short side.
a-3d show joining in a herringbone pattern.
a-4c show joining by downward angling.
a-5g show joining in a herringbone pattern.
a-6d show embodiments of joint systems.
a-7d show embodiments of joint systems.
a-8d show embodiments of joint systems.
a-9e show embodiments of joint systems.
a-10d show machining of joint systems.
a-11j show embodiments of joint systems.
a-12j show embodiments of joint systems.
a-13f show joining in parallel rows.
a-14d show joining in parallel rows.
a-b illustrate embodiments of floorboards which are of a first type A and a second type B and whose long sides 4a and 4b in this embodiment have a length which is 3 times the length of the short sides 5a, 5b. The long sides 4a, 4b of the floorboards have vertical and horizontal connectors, and the short sides 5a, 5b of the floorboards have horizontal connectors. In this embodiment, the two types are identical except that the location of the locking elements is mirror-inverted. The locking elements allow joining of long side 4a to long side 4b by at least inward angling and long side 4a to short side 5a by inward angling, and also short side 5b to long side 4b by a vertical motion. Joining of both long sides 4a, 4b and short sides 5a, 5b in a herringbone pattern can in this embodiment take place merely by an angular motion along the long sides 4a, 4b. The long sides 4a, 4b of the floorboards have connectors which in this embodiment consist of a strip 6, a groove 9 and a tongue 10. The short sides 5a also have a strip 6 and a tongue groove 9 whereas the short sides 5b have no tongue 10. There may be a plurality of variants. The two types of floorboards need not be of the same format and the locking elements can also have different shapes, provided that as stated above they can be joined long side against short side. The connectors can be made of the same material, or of different materials, or be made of the same material but with different material properties. For instance, the connectors can be made of plastic or metal. They can also be made of the same material as the floorboard, but be subjected to a treatment modifying their properties, such as impregnation or the like.
a-2e show the connectors of two boards 1, 1′ which are joined to each other.
b shows the connectors on the short side. They consist of a strip 6 with a locking element 8 which cooperates with a locking groove 12 and provides horizontal locking of the floorboards 1, 1′. The short side 5a has a groove 9 which is adapted to cooperate with the tongue 10 of the long side 4a when long sides and short sides are locked to each other. However, the short side 5b has no tongue 10.
a-3e show installation of a floor in a herringbone pattern which can be provided by merely inward angling. The floorboards can also be disengaged from each other in reverse order by upward angling.
a shows how a type B floorboard is joined to a type A floorboard by angling long side 4a against short side 5a. Since the floorboard B2 has no tongue on the short side 5b, it can be angled down towards the floorboard A3. The numerals 1-3 indicate a suitable order of installation. The first row R1, seen transversely of the laying direction ID, can be joined by inward angling, insertion along the joint edge etc. according to
The next row,
Floorboards that are adapted to be laid in a herringbone pattern can also, if the joint system is designed in a convenient manner, be joined in parallel rows. This is advantageous since more patterns can be provided with the same type of floorboards and this facilitates production and stock-keeping.
a shows a tongue lock in the form of a joint system which consists of a tongue 10 having a locking element 8 in its outer and upper part close to the floor surface in one joint edge of the floorboard 1. The joint system also has a tongue groove 9 with an upper lip 21 and a lower lip 22 as well as an undercut groove 12 in the other joint edge of the floorboard 1′. Such a joint system can be made compact and this reduces the waste of material since the tongue 10 is made by machining the joint edge of the floorboard. The waste of material is important since the floorboards are narrow and short.
a-6d show how the tongue lock can be modified so as to be easily joined by an angular motion long side against long side and long side against short side while at the same time having great strength when one short side is joined to another short side by an angular motion towards the floor. The locking element on the long side 4b and on the short side 5a in
a-7d show how the strip lock, with a protruding strip 6 which supports a locking element 8, can be modified in the same way as the tongue lock so that a locking angle with locking short side 5a to short side 5b can take place with a higher locking angle than in the case when the long side is locked to the long side or the short side. The locking element on both long side and short side has an upper locking surface 15 which has a lower locking angle than a lower locking surface 14. The locking element 8 of the short side 5a has a longer extent horizontally than the short side. This improves the strength of the short side while at the same time the waste of material increases only marginally. All locking elements 8 which are preferred can in this manner be made greater on the short side, and the locking groove of the long side can be adjusted so that it can be joined to the locking element 8 of the short side.
a-8b show a strip lock with a locking element on long sides and short sides which has a locking surface 14 which is essentially perpendicular to the horizontal plane. The contact surface KS 1 between the locking element 8 and the locking groove 12 is on the long side greater than the contact surface KS 2 on the short side. As a non-limiting example, it may be mentioned that the contact surface KS 1 of the long side can give sufficient strength with a vertical extent which is only 0.1-0.3 mm. Material compression and strip bending allow inward angling and upward angling in spite of the high locking angle. Such a joint system on the long side can be combined with a joint system on the short side which has a high locking angle and a contact surface KS 2 of, for instance, 0.5-1.0 mm. A small play on the long side of for instance 0.01-0.10 mm, which arises between the locking surfaces when the boards are pressed together horizontally, additionally facilitates upward angling and makes manufacture easy. Such a play causes no visible joint gaps between the upper joint edges. The joint system can be made with locking angles exceeding 90 degrees. If this is done merely on the short sides, the boards can easily be released from each other by being pulled out parallel to the joint edge after the long sides have been, for instance, released by upward angling.
a-9d show a strip lock which consists of a separate material, for example a fiberboard-based material such as HDF or the like. Such a joint system can be less expensive than one that is made in one piece with the floorboard. Moreover, strip materials can be used, that have other and better properties than the floorboard and that are specially adjusted to the function of the joint system. The strip 6 in
b shows an embodiment which is convenient for e.g., wooden floors. Upward bending is prevented by the portions Ub1 and Ub2 and also by the fact that the locking angle LA is higher than the tangent to the circular arc C1 with is center in the point of rotation Ub2.
d shows how the short side can be formed. All these embodiments can be combined with the locking angles and joint geometries that have been described above. A number of combinations are feasible. The long side may have, for example, a joint system with a separate strip, and a short side may be formed in one piece according to, for example, some of the previously preferred embodiments.
a-d show how the lower lip 22 can be formed by large rotary tools. The joint system according to
a-11j show embodiments in which the strip 6 is made of a metal sheet, preferably aluminum. The design has been chosen so that the strip 6 can be formed by merely bending. This can be done with great accuracy and at low cost. Sufficient strength can be achieved with 0.4-0.6 mm metal sheet thickness. All embodiments allow inner (IP) and outer (OP) positioning and they also counteract the angular motion of the strip 6 upwards (Ub1, Ub2) and downwards (Db1 and Db2). The joint edge portions can also be manufactured rationally by large rotary tools.
a-12i show short sides.
The floorboards can on one side, for instance the long side, have one type of joint system formed according to a preferred embodiment and made in one piece, of fiberboard-based material or of metal. The other side may have another type. It is also obvious that many variants can be provided by changing angles, radii and dimensions. Strips can also be made by extrusion of metals, plastics and various combinations of materials. The joint systems can also be used to join other products, for instance wall panels and ceilings, but also components for furniture. Mechanical joint systems that are used in floors can also be used for mounting, for instance, kitchen cupboards on walls.
a-f show laying methods for joining of floors.
c and d show that B boards should be installed from the opposite direction since their locking systems on the short side are mirror-inverted relative to the A boards.
e shows that installation can take place alternately from left to right if A and B boards are used. This reduces the time of laying.
f shows that installation can also be made backwards in the direction of installation ID.
a-d show a rational installation in parallel rows using A and B boards with mirror-inverted joint systems. According to
Installation according to the above-preferred method can also be made by angling and snapping-in and with only one type of floorboards if they have short sides that can be joined in both directions parallel to the long sides.
Although only preferred embodiments are specifically illustrated and described herein, it will be appreciated that many modifications and variations of the present invention are possible in light of the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
0300626 | Mar 2003 | SE | national |
0302865 | Oct 2003 | SE | national |
The present application is a continuation-in-part of PCT Application No PCT/SE04/00327 filed on Mar. 8, 2004, and claims the benefit of U.S. Application No. 60/456,956 filed on Mar. 25, 2003. The contents of PCT/SE04/00327 and U.S. 60/456,956 are incorporated herein by reference. This application also claims the priority of Swedish Application No. 0300626-9 filed on Mar. 6, 2003 and Swedish Application No. 0302865-1 filed on Oct. 29, 2003, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
168672 | Reed | Oct 1875 | A |
213740 | Conner | Apr 1879 | A |
714987 | Wolfe | Dec 1902 | A |
753791 | Fulghum | Mar 1904 | A |
1124228 | Houston | Jan 1915 | A |
1194636 | Joy | Aug 1916 | A |
1371856 | Cade | Mar 1921 | A |
1407679 | Ruthrauff | Feb 1922 | A |
1454250 | Parsons | May 1923 | A |
1468288 | Een | Sep 1923 | A |
1477813 | Daniels et al. | Dec 1923 | A |
1510924 | Daniels et al. | Oct 1924 | A |
1540128 | Houston | Jun 1925 | A |
1575821 | Daniels | Mar 1926 | A |
1602256 | Sellin | Oct 1926 | A |
1602267 | Karwisch | Oct 1926 | A |
1615096 | Meyers | Jan 1927 | A |
1622103 | Fulton | Mar 1927 | A |
1622104 | Fulton | Mar 1927 | A |
1637634 | Carter | Aug 1927 | A |
1644710 | Crooks | Oct 1927 | A |
1660480 | Daniels | Feb 1928 | A |
1714738 | Smith | May 1929 | A |
1718702 | Pfiester | Jun 1929 | A |
1723306 | Sipe | Aug 1929 | A |
1734826 | Pick | Nov 1929 | A |
1743492 | Sipe | Jan 1930 | A |
1764331 | Moratz | Jun 1930 | A |
1778069 | Fetz | Oct 1930 | A |
1787027 | Wasleff | Dec 1930 | A |
1790178 | Sutherland, Jr. | Jan 1931 | A |
1809393 | Rockwell | Jun 1931 | A |
1823039 | Gruner | Sep 1931 | A |
1859667 | Gruner | May 1932 | A |
1898364 | Gynn | Feb 1933 | A |
1906411 | Potvin | May 1933 | A |
1925070 | Livezey | Aug 1933 | A |
1929871 | Jones | Oct 1933 | A |
1940377 | Storm | Dec 1933 | A |
1953306 | Moratz | Apr 1934 | A |
1986739 | Mitte | Jan 1935 | A |
1988201 | Hall | Jan 1935 | A |
2015813 | Nielsen | Oct 1935 | A |
2026511 | Storm | Dec 1935 | A |
2044216 | Klages | Jun 1936 | A |
2088238 | Greenway, Jr. | Jul 1937 | A |
2089075 | Siebs | Aug 1937 | A |
2266464 | Kraft | Dec 1941 | A |
2276071 | Scull | Mar 1942 | A |
2303745 | Karreman | Dec 1942 | A |
2324628 | Kähr | Jul 1943 | A |
2398632 | Frost et al. | Apr 1946 | A |
2430200 | Wilson | Nov 1947 | A |
2495862 | Osborn | Jan 1950 | A |
2497837 | Nelson | Feb 1950 | A |
2740167 | Rowley | Apr 1956 | A |
2780253 | Joa | Feb 1957 | A |
2851740 | Baker | Sep 1958 | A |
2865058 | Andersson et al. | Dec 1958 | A |
2894292 | Gramelspacher | Jul 1959 | A |
2947040 | Schultz | Aug 1960 | A |
3045294 | Livezey, Jr. | Jul 1962 | A |
3100556 | De Ridder | Aug 1963 | A |
3120083 | Dahlberg et al. | Feb 1964 | A |
3125138 | Bolenbach | Mar 1964 | A |
3182769 | De Ridder | May 1965 | A |
3200553 | Frashour et al. | Aug 1965 | A |
3203149 | Soddy | Aug 1965 | A |
3247638 | Gay, Jr. | Apr 1966 | A |
3267630 | Omholt | Aug 1966 | A |
3282010 | King, Jr. | Nov 1966 | A |
3301147 | Clayton et al. | Jan 1967 | A |
3310919 | Bue et al. | Mar 1967 | A |
3347048 | Brown et al. | Oct 1967 | A |
3377931 | Hilton | Apr 1968 | A |
3387422 | Wanzer | Jun 1968 | A |
3436888 | Ottosson | Apr 1969 | A |
3460304 | Braeuninger et al. | Aug 1969 | A |
3481810 | Waite | Dec 1969 | A |
3508523 | De Meerleer et al. | Apr 1970 | A |
3526420 | Brancalcone | Sep 1970 | A |
3538665 | Gohner | Nov 1970 | A |
3548559 | Levine | Dec 1970 | A |
3553919 | Omholt | Jan 1971 | A |
3554850 | Kuhle | Jan 1971 | A |
3555762 | Costanzo, Jr. | Jan 1971 | A |
3579941 | Tibbals | May 1971 | A |
3694983 | Couquet | Oct 1972 | A |
3714747 | Curran | Feb 1973 | A |
3731445 | Hoffmann et al. | May 1973 | A |
3759007 | Thiele | Sep 1973 | A |
3768846 | Hensley et al. | Oct 1973 | A |
3786608 | Boettcher | Jan 1974 | A |
3842562 | Daigle | Oct 1974 | A |
3857749 | Yoshida | Dec 1974 | A |
3859000 | Webster | Jan 1975 | A |
3902293 | Witt et al. | Sep 1975 | A |
3908053 | Hettich | Sep 1975 | A |
3936551 | Elmendorf et al. | Feb 1976 | A |
3988187 | Witt et al. | Oct 1976 | A |
4037377 | Howell et al. | Jul 1977 | A |
4084996 | Wheeler | Apr 1978 | A |
4090338 | Bourgade | May 1978 | A |
4099358 | Compaan | Jul 1978 | A |
4100710 | Kowallik | Jul 1978 | A |
4169688 | Toshio | Oct 1979 | A |
4227430 | Jansson et al. | Oct 1980 | A |
4242390 | Nemeth | Dec 1980 | A |
4299070 | Oltmanns et al. | Nov 1981 | A |
4304083 | Anderson | Dec 1981 | A |
4426820 | Terbrack et al. | Jan 1984 | A |
4471012 | Maxwell | Sep 1984 | A |
4489115 | Layman et al. | Dec 1984 | A |
4501102 | Knowles | Feb 1985 | A |
4512131 | Laramore | Apr 1985 | A |
4561233 | Harter et al. | Dec 1985 | A |
4567706 | Wendt | Feb 1986 | A |
4599841 | Haid | Jul 1986 | A |
4612074 | Smith et al. | Sep 1986 | A |
4612745 | Hovde | Sep 1986 | A |
4641469 | Wood | Feb 1987 | A |
4643237 | Rosa | Feb 1987 | A |
4646494 | Saarinen et al. | Mar 1987 | A |
4648165 | Whitehorne | Mar 1987 | A |
4653242 | Ezard | Mar 1987 | A |
4703597 | Eggemar | Nov 1987 | A |
4715162 | Brightwell | Dec 1987 | A |
4716700 | Hagemeyer | Jan 1988 | A |
4738071 | Ezard | Apr 1988 | A |
4769963 | Meyerson | Sep 1988 | A |
4819932 | Trotter, Jr. | Apr 1989 | A |
4822440 | Hsu et al. | Apr 1989 | A |
4831806 | Niese et al. | May 1989 | A |
4845907 | Meek | Jul 1989 | A |
4905442 | Daniels | Mar 1990 | A |
5029425 | Bogataj | Jul 1991 | A |
5113632 | Hanson | May 1992 | A |
5117603 | Weintraub | Jun 1992 | A |
5148850 | Urbanick | Sep 1992 | A |
5165816 | Parasin | Nov 1992 | A |
5179812 | Hill | Jan 1993 | A |
5213861 | Severson et al. | May 1993 | A |
5216861 | Meyerson | Jun 1993 | A |
5253464 | Nilsen | Oct 1993 | A |
5271564 | Smith | Dec 1993 | A |
5286545 | Simmons, Jr. | Feb 1994 | A |
5295341 | Kajiwara | Mar 1994 | A |
5349796 | Meyerson | Sep 1994 | A |
5390457 | Sjölander | Feb 1995 | A |
5425986 | Guyette | Jun 1995 | A |
5433806 | Pasquali et al. | Jul 1995 | A |
5474831 | Nystrom | Dec 1995 | A |
5497589 | Porter | Mar 1996 | A |
5502939 | Zadok et al. | Apr 1996 | A |
5540025 | Takehara et al. | Jul 1996 | A |
5560569 | Schmidt | Oct 1996 | A |
5567497 | Zegler et al. | Oct 1996 | A |
5570554 | Searer | Nov 1996 | A |
5597024 | Bolyard et al. | Jan 1997 | A |
5613894 | Delle Vedove | Mar 1997 | A |
5618602 | Nelson | Apr 1997 | A |
5630304 | Austin | May 1997 | A |
5653099 | MacKenzie | Aug 1997 | A |
5671575 | Wu | Sep 1997 | A |
5695875 | Larsson et al. | Dec 1997 | A |
5706621 | Pervan | Jan 1998 | A |
5755068 | Ormiston | May 1998 | A |
5768850 | Chen | Jun 1998 | A |
5797237 | Finkell, Jr. | Aug 1998 | A |
5823240 | Bolyard et al. | Oct 1998 | A |
5827592 | Van Gulik et al. | Oct 1998 | A |
5860267 | Pervan | Jan 1999 | A |
5899038 | Stroppiana | May 1999 | A |
5899251 | Turner | May 1999 | A |
5900099 | Sweet et al. | May 1999 | A |
5925211 | Rakauskas | Jul 1999 | A |
5935668 | Smith | Aug 1999 | A |
5943239 | Shamblin et al. | Aug 1999 | A |
5950389 | Porter | Sep 1999 | A |
5968625 | Hudson | Oct 1999 | A |
5987839 | Hamar et al. | Nov 1999 | A |
6006486 | Moriau et al. | Dec 1999 | A |
6023907 | Pervan | Feb 2000 | A |
6029416 | Andersson | Feb 2000 | A |
6094882 | Pervan | Aug 2000 | A |
6101778 | Martensson | Aug 2000 | A |
6119423 | Costantino | Sep 2000 | A |
6134854 | Stanchfield | Oct 2000 | A |
6148884 | Bolyard et al. | Nov 2000 | A |
6173548 | Hamar et al. | Jan 2001 | B1 |
6182410 | Pervan | Feb 2001 | B1 |
6189283 | Bentley et al. | Feb 2001 | B1 |
6203653 | Seidner | Mar 2001 | B1 |
6205639 | Pervan | Mar 2001 | B1 |
6209278 | Tychsen | Apr 2001 | B1 |
6216403 | Belbeoc'h | Apr 2001 | B1 |
6216409 | Roy et al. | Apr 2001 | B1 |
6226951 | Azar | May 2001 | B1 |
6247285 | Moebus | Jun 2001 | B1 |
6314701 | Meyerson | Nov 2001 | B1 |
6324803 | Pervan | Dec 2001 | B1 |
6332733 | Hamberger et al. | Dec 2001 | B1 |
6339908 | Chuang | Jan 2002 | B1 |
6345481 | Nelson | Feb 2002 | B1 |
6363677 | Chen et al. | Apr 2002 | B1 |
6385936 | Schneider | May 2002 | B1 |
6397547 | Martensson | Jun 2002 | B1 |
6418683 | Martensson et al. | Jul 2002 | B1 |
6421970 | Martensson et al. | Jul 2002 | B1 |
6438919 | Knauseder | Aug 2002 | B1 |
6446405 | Pervan | Sep 2002 | B1 |
6490836 | Moriau et al. | Dec 2002 | B1 |
6497079 | Pletzer et al. | Dec 2002 | B1 |
6505452 | Hannig et al. | Jan 2003 | B1 |
6510665 | Pervan | Jan 2003 | B2 |
6516579 | Pervan | Feb 2003 | B1 |
6526719 | Pletzer et al. | Mar 2003 | B2 |
6532709 | Pervan | Mar 2003 | B2 |
6536178 | Palsson et al. | Mar 2003 | B1 |
6584747 | Kettler et al. | Jul 2003 | B2 |
6591568 | Palsson | Jul 2003 | B1 |
6601359 | Olofsson | Aug 2003 | B2 |
6606834 | Martensson et al. | Aug 2003 | B2 |
6647689 | Pletzer et al. | Nov 2003 | B2 |
6647690 | Martensson | Nov 2003 | B1 |
6670019 | Andersson | Dec 2003 | B2 |
6672030 | Schulte | Jan 2004 | B2 |
6684592 | Martin | Feb 2004 | B2 |
6711869 | Tychsen | Mar 2004 | B2 |
6715253 | Pervan | Apr 2004 | B2 |
6722809 | Hamberger et al. | Apr 2004 | B2 |
6729091 | Martensson | May 2004 | B1 |
6763643 | Martensson | Jul 2004 | B1 |
6769218 | Pervan | Aug 2004 | B2 |
6769219 | Schwitte et al. | Aug 2004 | B2 |
6786019 | Thiers | Sep 2004 | B2 |
6851241 | Pervan | Feb 2005 | B2 |
6874292 | Moriau et al. | Apr 2005 | B2 |
6933043 | Son et al. | Aug 2005 | B1 |
7022189 | Delle Vedove | Apr 2006 | B2 |
7040068 | Moriau et al. | May 2006 | B2 |
7127860 | Pervan et al. | Oct 2006 | B2 |
7275350 | Pervan et al. | Oct 2007 | B2 |
7328536 | Moriau et al. | Feb 2008 | B2 |
20010029720 | Pervan | Oct 2001 | A1 |
20020014047 | Thiers | Feb 2002 | A1 |
20020020127 | Thiers et al. | Feb 2002 | A1 |
20020031646 | Chen et al. | Mar 2002 | A1 |
20020046528 | Pervan et al. | Apr 2002 | A1 |
20020056245 | Thiers | May 2002 | A1 |
20020069611 | Leopolder | Jun 2002 | A1 |
20020083673 | Kettler et al. | Jul 2002 | A1 |
20020092263 | Schulte | Jul 2002 | A1 |
20020100231 | Miller et al. | Aug 2002 | A1 |
20020112429 | Niese et al. | Aug 2002 | A1 |
20020112433 | Pervan | Aug 2002 | A1 |
20020170257 | McLain et al. | Nov 2002 | A1 |
20020178673 | Pervan | Dec 2002 | A1 |
20020178674 | Pervan | Dec 2002 | A1 |
20020178682 | Pervan | Dec 2002 | A1 |
20030009972 | Pervan et al. | Jan 2003 | A1 |
20030024199 | Pervan et al. | Feb 2003 | A1 |
20030024200 | Moriau et al. | Feb 2003 | A1 |
20030033777 | Thiers et al. | Feb 2003 | A1 |
20030033784 | Pervan | Feb 2003 | A1 |
20030041545 | Stanchfield | Mar 2003 | A1 |
20030084636 | Pervan | May 2003 | A1 |
20030101674 | Pervan et al. | Jun 2003 | A1 |
20030101681 | Tychsen | Jun 2003 | A1 |
20030115812 | Pervan | Jun 2003 | A1 |
20030115821 | Pervan | Jun 2003 | A1 |
20030196397 | Niese et al. | Oct 2003 | A1 |
20030196405 | Pervan | Oct 2003 | A1 |
20030221387 | Shah | Dec 2003 | A1 |
20030233809 | Pervan | Dec 2003 | A1 |
20040016196 | Pervan | Jan 2004 | A1 |
20040035078 | Pervan | Feb 2004 | A1 |
20040035079 | Evjen | Feb 2004 | A1 |
20040045254 | Van der Heijden | Mar 2004 | A1 |
20040068954 | Martensson | Apr 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040241374 | Thiers et al. | Dec 2004 | A1 |
20040255541 | Thiers | Dec 2004 | A1 |
20050034404 | Pervan | Feb 2005 | A1 |
20050034405 | Pervan | Feb 2005 | A1 |
20050055943 | Pervan | Mar 2005 | A1 |
20050102937 | Pervan | May 2005 | A1 |
20050108970 | Liu | May 2005 | A1 |
20050138881 | Pervan | Jun 2005 | A1 |
20050161468 | Wagner | Jul 2005 | A1 |
20050193675 | Smart et al. | Sep 2005 | A1 |
20050193677 | Vogel | Sep 2005 | A1 |
20050208255 | Pervan | Sep 2005 | A1 |
20050210810 | Pervan | Sep 2005 | A1 |
20050235593 | Hecht | Oct 2005 | A1 |
20060032168 | Thiers et al. | Feb 2006 | A1 |
20060117696 | Pervan | Jun 2006 | A1 |
20060196139 | Pervan et al. | Sep 2006 | A1 |
20060283127 | Pervan | Dec 2006 | A1 |
20070119110 | Pervan | May 2007 | A1 |
20070159814 | Jacobsson | Jul 2007 | A1 |
20080000179 | Pervan et al. | Jan 2008 | A1 |
20080000180 | Pervan | Jan 2008 | A1 |
20080000182 | Pervan | Jan 2008 | A1 |
20080000186 | Pervan | Jan 2008 | A1 |
20080000187 | Pervan | Jan 2008 | A1 |
20080000188 | Pervan | Jan 2008 | A1 |
20080000189 | Pervan et al. | Jan 2008 | A1 |
20080000194 | Pervan et al. | Jan 2008 | A1 |
20080000417 | Pervan et al. | Jan 2008 | A1 |
20080005989 | Pervan et al. | Jan 2008 | A1 |
20080005992 | Pervan | Jan 2008 | A1 |
20080005997 | Pervan | Jan 2008 | A1 |
20080005998 | Pervan | Jan 2008 | A1 |
20080005999 | Pervan | Jan 2008 | A1 |
20080008871 | Pervan | Jan 2008 | A1 |
20080010931 | Pervan et al. | Jan 2008 | A1 |
20080010937 | Pervan et al. | Jan 2008 | A1 |
20080028713 | Pervan et al. | Feb 2008 | A1 |
20080034701 | Pervan | Feb 2008 | A1 |
20080034708 | Pervan | Feb 2008 | A1 |
20080041007 | Pervan et al. | Feb 2008 | A1 |
20080041008 | Pervan | Feb 2008 | A1 |
20080060308 | Pervan | Mar 2008 | A1 |
20080066415 | Pervan et al. | Mar 2008 | A1 |
20080110125 | Pervan | May 2008 | A1 |
20080134613 | Pervan | Jun 2008 | A1 |
20080134614 | Pervan et al. | Jun 2008 | A1 |
20080168730 | Pervan et al. | Jul 2008 | A1 |
20080168736 | Pervan | Jul 2008 | A1 |
20080209837 | Pervan | Sep 2008 | A1 |
20080209838 | Pervan | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
218725 | Dec 1961 | AT |
713628 | Jan 1998 | AU |
200020703 | Jun 2000 | AU |
417526 | Sep 1936 | BE |
0557844 | Jun 1957 | BE |
1010339 | Jun 1998 | BE |
1010487 | Oct 1998 | BE |
0991373 | Jun 1976 | CA |
2226286 | Dec 1997 | CA |
2252791 | May 1999 | CA |
2289309 | Jul 2000 | CA |
2 363 184 | Jul 2001 | CA |
200949 | Jan 1939 | CH |
211877 | Jan 1941 | CH |
690242 | Jun 2000 | CH |
1 212 275 | Mar 1966 | DE |
7102476 | Jan 1971 | DE |
1 534 278 | Nov 1971 | DE |
2 159 042 | Jun 1973 | DE |
2 205 232 | Aug 1973 | DE |
7402354 | Jan 1974 | DE |
2 238 660 | Feb 1974 | DE |
2 252 643 | May 1974 | DE |
2 502 992 | Jul 1976 | DE |
2 616 077 | Oct 1977 | DE |
2 917 025 | Nov 1980 | DE |
30 41781 | Jun 1982 | DE |
32 14 207 | Nov 1982 | DE |
32 46 376 | Jun 1984 | DE |
33 43 601 | Jun 1985 | DE |
35 38 538 | Oct 1985 | DE |
86 04 004 | Jun 1986 | DE |
35 12 204 | Oct 1986 | DE |
35 44 845 | Jun 1987 | DE |
36 31 390 | Dec 1987 | DE |
40 02 547 | Aug 1991 | DE |
41 30 115 | Sep 1991 | DE |
41 34 452 | Apr 1993 | DE |
42 15 273 | Nov 1993 | DE |
42 42 530 | Jun 1994 | DE |
43 13 037 | Aug 1994 | DE |
93 17 191 | Mar 1995 | DE |
296 10 462 | Oct 1996 | DE |
196 01 322 | May 1997 | DE |
296 18 318 | May 1997 | DE |
297 10 175 | Sep 1997 | DE |
196 51 149 | Jun 1998 | DE |
197 09 641 | Sep 1998 | DE |
197 18 319 | Nov 1998 | DE |
197 18 812 | Nov 1998 | DE |
299 22 649 | Apr 2000 | DE |
200 01 225 | Aug 2000 | DE |
200 02 744 | Sep 2000 | DE |
199 25 248 | Dec 2000 | DE |
200 13 380 | Dec 2000 | DE |
200 17 461 | Mar 2001 | DE |
200 18 284 | Mar 2001 | DE |
100 01 248 | Jul 2001 | DE |
100 32 204 | Jul 2001 | DE |
100 44 016 | Mar 2002 | DE |
202 05 774 | Sep 2002 | DE |
203 07 580 | Jul 2003 | DE |
203 17 527 | Feb 2004 | DE |
20 2004 001 038 | May 2004 | DE |
20 2005 006 300 | Aug 2005 | DE |
10 2004 054 368 | May 2006 | DE |
0 248 127 | Dec 1987 | EP |
0 487 925 | Jun 1992 | EP |
0 623 724 | Nov 1994 | EP |
0 652 340 | May 1995 | EP |
0 665 347 | Aug 1995 | EP |
0 690 185 | Jan 1996 | EP |
0 698 162 | Feb 1996 | EP |
0 843 763 | May 1998 | EP |
0 849 416 | Jun 1998 | EP |
0 855 482 | Jul 1998 | EP |
0 877 130 | Nov 1998 | EP |
0 958 441 | Nov 1998 | EP |
0 661 135 | Dec 1998 | EP |
0 903 451 | Mar 1999 | EP |
0 969 163 | Jan 2000 | EP |
0 969 163 | Jan 2000 | EP |
0 969 164 | Jan 2000 | EP |
0 969 164 | Jan 2000 | EP |
0 974 713 | Jan 2000 | EP |
0 976 889 | Feb 2000 | EP |
1 048 423 | Nov 2000 | EP |
1 120 515 | Aug 2001 | EP |
1 146 182 | Oct 2001 | EP |
1 165 906 | Jan 2002 | EP |
1 223 265 | Jul 2002 | EP |
1 251 219 | Oct 2002 | EP |
1 262 609 | Dec 2002 | EP |
1 317 983 | Jun 2003 | EP |
1 338 344 | Aug 2003 | EP |
843060 | Aug 1984 | FI |
1 293 043 | Apr 1962 | FR |
2 568 295 | Jan 1986 | FR |
2 630 149 | Oct 1989 | FR |
2 637 932 | Apr 1990 | FR |
2 675 174 | Oct 1992 | FR |
2 691 491 | Nov 1993 | FR |
2 697 275 | Apr 1994 | FR |
2 712 329 | May 1995 | FR |
2 781 513 | Jan 2000 | FR |
2 785 633 | May 2000 | FR |
2 810 060 | Dec 2001 | FR |
2 810 060 | Dec 2001 | FR |
2 846 023 | Apr 2004 | FR |
240629 | Oct 1925 | GB |
424057 | Feb 1935 | GB |
585205 | Jan 1947 | GB |
599793 | Mar 1948 | GB |
636423 | Apr 1950 | GB |
812671 | Apr 1959 | GB |
1127915 | Oct 1968 | GB |
1171337 | Nov 1969 | GB |
1237744 | Jun 1971 | GB |
1275511 | May 1972 | GB |
1 394 621 | May 1975 | GB |
1430423 | Mar 1976 | GB |
2117813 | Oct 1983 | GB |
2126106 | Mar 1984 | GB |
2243381 | Oct 1991 | GB |
2256023 | Nov 1992 | GB |
54-65528 | May 1979 | JP |
57-119056 | Jul 1982 | JP |
57-185110 | Nov 1982 | JP |
59-186336 | Nov 1984 | JP |
3-169967 | Jul 1991 | JP |
4-106264 | Apr 1992 | JP |
4-191001 | Jul 1992 | JP |
5-148984 | Jun 1993 | JP |
6-56310 | May 1994 | JP |
6-146553 | May 1994 | JP |
6-320510 | Nov 1994 | JP |
7-076923 | Mar 1995 | JP |
7-180333 | Jul 1995 | JP |
7-300979 | Nov 1995 | JP |
7-310426 | Nov 1995 | JP |
8-109734 | Apr 1996 | JP |
9-38906 | Feb 1997 | JP |
9-88315 | Mar 1997 | JP |
10-219975 | Aug 1998 | JP |
2000-179137 | Jun 2000 | JP |
P2000226932 | Aug 2000 | JP |
2001-173213 | Jun 2001 | JP |
2001-179710 | Jul 2001 | JP |
2001-254503 | Sep 2001 | JP |
2001-260107 | Sep 2001 | JP |
P2001329681 | Nov 2001 | JP |
7601773 | Aug 1976 | NL |
157871 | Jul 1984 | NO |
305614 | May 1995 | NO |
24931 | Nov 1974 | PL |
372 051 | May 1973 | SE |
450 141 | Jun 1984 | SE |
501 014 | Oct 1994 | SE |
502 994 | Mar 1996 | SE |
506 254 | Nov 1997 | SE |
509 059 | Jun 1998 | SE |
509 060 | Jun 1998 | SE |
512 290 | Dec 1999 | SE |
512 313 | Dec 1999 | SE |
0000200-6 | Jul 2001 | SE |
363795 | Nov 1973 | SU |
1680359 | Sep 1991 | SU |
WO 8402155 | Jun 1984 | WO |
WO 8703839 | Jul 1987 | WO |
WO 9217657 | Oct 1992 | WO |
WO 9313280 | Jul 1993 | WO |
WO 9401628 | Jan 1994 | WO |
WO 9426999 | Nov 1994 | WO |
WO 9627719 | Sep 1996 | WO |
WO 9627721 | Sep 1996 | WO |
WO 9630177 | Oct 1996 | WO |
9719232 | May 1997 | WO |
WO 9747834 | Dec 1997 | WO |
WO 9822677 | May 1998 | WO |
WO 9824994 | Jun 1998 | WO |
WO 9824995 | Jun 1998 | WO |
WO 9838401 | Sep 1998 | WO |
WO 9940273 | Aug 1999 | WO |
WO 9966151 | Dec 1999 | WO |
WO 9966152 | Dec 1999 | WO |
WO 0006854 | Jan 2000 | WO |
WO 0020705 | Apr 2000 | WO |
WO 0020706 | Apr 2000 | WO |
WO 0066856 | Nov 2000 | WO |
0102669 | Jan 2001 | WO |
WO 0102672 | Jan 2001 | WO |
0107729 | Feb 2001 | WO |
0151733 | Jul 2001 | WO |
WO 0166876 | Sep 2001 | WO |
WO 0166877 | Sep 2001 | WO |
WO 0175247 | Oct 2001 | WO |
WO 0177461 | Oct 2001 | WO |
0196688 | Dec 2001 | WO |
0198603 | Dec 2001 | WO |
WO 0198604 | Dec 2001 | WO |
02050810 | Jul 2002 | WO |
02055809 | Jul 2002 | WO |
02055810 | Jul 2002 | WO |
02060691 | Aug 2002 | WO |
03016654 | Feb 2003 | WO |
WO 03025307 | Mar 2003 | WO |
03070384 | Aug 2003 | WO |
03078761 | Sep 2003 | WO |
WO 03074814 | Sep 2003 | WO |
WO 03089736 | Oct 2003 | WO |
03099461 | Dec 2003 | WO |
WO 2004083557 | Sep 2004 | WO |
2005077625 | Aug 2005 | WO |
2005110677 | Nov 2005 | WO |
2006008578 | Jan 2006 | WO |
2006111437 | Oct 2006 | WO |
2006113757 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20040177584 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60456956 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/SE2004/000327 | Mar 2004 | US |
Child | 10808455 | US |