Flooring system having complementary sub-panels

Abstract
Laminated flooring panels include decorative motifs, mechanically embossed-in-registration surface textures, recessed perimeters, and locking mechanisms. The locking mechanisms facilitate the alignment of adjacent flooring panels. Adjacent flooring panels substantially aligned allow embossed-in-registration patterns to be substantially continuous across adjacent flooring panels. The recessed perimeter prevents the edges of the flooring panel from prematurely wearing. Individual flooring panels within the flooring system may comprise at least one partial sub-panel having a decorative motif and/or embossed surface texture that is complementary with a decorative motif and/or embossed surface texture of a neighboring partial sub-panel.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to laminated materials. More particularly, the present invention relates to a flooring system of interlocked laminated materials having decorative motifs and surface textures that are mechanically embossed in registration with their decorative motifs.


2. Discussion of the Related Art


Because of their look and feel, traditional building and finishing flooring materials such as fine woods, slate, granite, stones, brick, and concrete are generally preferred by consumers. However, such traditional building and finishing flooring materials tend to be expensive to produce and install. For example, while a solid wood floor has a highly valued luxurious appearance, the materials and labor required to install such floors can be prohibitively expensive.


Many alternatives to traditional building and finishing flooring materials, including laminates and high-pressure laminate boards (HPL), are available. However, such alternatives typically do not possess the realistic look and texture of the traditional building and finishing flooring materials. For example, most alternatives having an outer surface with a wood motif look fake and can readily be identified as something other than authentic wood. Furthermore, while high quality HPL boards may visually look like wood, their textures readily reveal that they are not.


One problem with most alternatives to traditional building and finishing flooring materials is that their surface textures do not match their decorative motifs. For example, visual depictions of wood knots in alternative flooring materials are not matched with surface textures characteristic of the wood knots. Accordingly, the attractiveness of these alternative materials is significantly reduced.


One approach used to match the surface texture of alternative flooring materials to their decorative motifs includes a technique known as chemical embossing. In chemical embossing, the surface texture of the alternative material is developed by chemically reacting an ink that forms the decorative motif with an agent added to a sub-surface layer. While somewhat successful, the resulting surface texture tends to lack the textual sharpness and three-dimensional characteristics of traditional materials.


As an alternative to the traditional building and finishing flooring materials laminated materials may be mechanically embossed to produce a surface texture. See, for example U.S. patent application Ser. No. 09/903,807 and U.S. Pat. No. 6,401,415, which are hereby incorporated by reference. Such methods produce embossed-in-registration laminated materials having decorative motifs and matching high-quality three-dimensional textures. Embossed-in-registration laminated materials require accurate registration of mechanical embossment and the decorative motif. An advantage of embossed-in-registration laminated materials is that they can realistically reproduce the look and feel of traditional products.


No matter what type of flooring system is used, the flooring system must be easily moved to a work site while being easy and quick to install. To this end, assembly and locking mechanisms may be incorporated within flooring systems to facilitate on-site installation. One type of assembly and locking mechanism is the tongue and groove system used for connecting panels. It is understood that such tongue and groove systems are disclosed in Cherry, U.S. Pat. No. 2,057,135, and in Urbain, U.S. Pat. No. 2,046,593. For example, FIG. 1 can be interpreted to illustrate a tongue and groove system 11 that uses clips 12 to secure panels together.


Another type of assembly and locking mechanism is understood to be disclosed in Chevaux, U.S. Pat. No. 3,946,529 where a flooring system 13 appears to be connected using a tongue and groove system arranged underneath the flooring, reference FIG. 2.


Still another assembly and locking mechanism is taught in Kajiwara, U.S. Pat. No. 5,295,341. There, it is understood that laminated boards are provided with a snap-together system such as a groove-tongue joint. As a result the laminated boards can be assembled without glue. Referring to FIG. 3, the laminated boards are provided with a locking means in the form of a groove connector 16, and a tongue connector 18. The groove connector 16 has forwardly protruding grooves 20, while the tongue 18 is provided with a pair of forwardly diverging sidewalls 22 and 24 that are separated by an elongated groove 26. The sidewalls include rear locking surfaces 28 and 36. The sidewalls can be compressed together to enable locking.


Another type of assembly and locking mechanism is the snap-together joint is suggested in Märtensson, U.S. Pat. No. 6,101,778. As shown in FIG. 4, it is understood that laminated boards are provided with a locking means comprised of a groove 6 and a tongue 7 that form a tongue-groove assembly. The groove 6 and tongue 7 may be made of water tight material and snapped together with a portion 9 fitting in a slot 4.


While the aforementioned assembly and locking mechanisms have proven useful, they have not been used with embossed-in-registration laminate systems in which embossed-in-registration decorative motifs or graphics align across joints between the individual embossed-in-registration laminates. This significantly detracts from the visual and textural impression of systems comprised of embossed-in-registration laminate boards. Therefore, a new embossed-in-registration laminate system in which the visual and textural patterns cross joints while retaining the embossed-in-registration aspects would be beneficial. Even more beneficial would be an embossed-in-registration laminate system comprised of interlocking embossed-in-registration laminate boards in which the visual and textural patterns cross joints while retaining embossed-in-registration aspects.


Further, the aforementioned flooring systems have a relatively low ability to resist wear. While not wishing to be bound by any particular theory, it is hypothesized that premature aging (wear) begins at or near the perimeter edges and/or along tongue and groove lines. The aforementioned flooring systems have a substantially even (level) surface texture such that the center and perimeter of each panel contact users (e.g., pedestrians) an equal amount. The perimeter of each panel, however, is substantially weaker than the center of the panel and therefore deteriorates first.


Accordingly, there is a need for a workable method of fabricating alternative building or finishing materials where the alternatives have the realistic look and feel of traditional products and have an increased capacity to resist premature wear.


SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to embossed-in-registration flooring system that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.


An advantage of the present invention provides an embossed-in-registration flooring system including individual adjacent flooring panels having embossed-in-registration decorative motifs where at least one of a surface texture and decorative motif is substantially aligned between adjacent flooring panels.


Another advantage of the present invention provides an embossed-in-registration flooring system including interlocked flooring panels having embossed-in-registration decorative motifs where at least one of a surface texture and decorative motif is substantially aligned between adjacent flooring panels such that substantially continuous embossed-in-registration patterns are formed across the interlocked flooring panels.


Another advantage of the present invention provides an embossed-in-registration flooring system may, for example, include flooring panels wherein a surface of a perimeter of each individual flooring panel may be recessed such that an upper surface of the perimeter of the flooring panels is below a portion of an upper surface of the flooring panels surrounded by the perimeter.


Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. These and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.


In the drawings:



FIG. 1 illustrates a related art assembly and locking mechanism;



FIG. 2 illustrates another related art assembly and locking mechanism;



FIG. 3 illustrates yet another related art assembly and locking mechanism;



FIG. 4 illustrates still another related art assembly and locking mechanism;



FIG. 5 illustrates a perspective view of components in an embossed-in-registration flooring panel according to the principles of the present invention;



FIG. 6 illustrates a press machine capable of fabricating embossed-in-registration flooring panels in accordance with the principles of the present invention;



FIG. 7 illustrates an embossed-in-registration flooring panel in one aspect of the present invention;



FIG. 8 illustrates a top view of a system of embossed-in-registration flooring panels in another aspect of the present invention;



FIG. 9 illustrates a cross-sectional view along line 9-9 shown in FIG. 8;



FIG. 10 illustrates a top view of a system of embossed-in-registration flooring panels in yet another aspect of the present invention;



FIG. 11 illustrates a cross-sectional view along line 11-11 shown in FIG. 10;



FIGS. 12A and 12B illustrate schematic views including a perimeter surface portion of a flooring panel in accordance with the principles of the present invention; and



FIGS. 13A and 13B illustrate a flooring system in still another aspect of the present invention.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings.



FIG. 5 generally illustrates components of a flooring panel according to the principles of the present invention.


Referring to FIG. 5, an embossed-in-registration flooring system may, for example, include at least one flooring panel. In one aspect of the present invention each flooring panel may include a board substrate 40 made out of a substrate material (e.g., a medium or high density fiberboard, chipboard, etc.), at least one base sheet 48 (e.g., a kraft paper sheet) impregnated with predetermined resins and arranged over and/or under the board substrate 40, a decorative paper sheet 44 about 0.15 mm thick and impregnated with a polymerizable resin (e.g., phenols such as melamine) arranged over the board substrate, and at least one protective overlay sheet 46 arranged over the decorative paper sheet 44. In one aspect of the present invention, each protective overlay sheet 46 may be formed from a highly resistant paper impregnated with a melamine solution containing corundum (Al2O3), silica, etc. In another aspect of the present invention, different papers may be arranged between the decorative paper sheet 44 and the board substrate 40. In one aspect of the present invention, the at least one protective overlay sheet 46 and the base sheet 48 may be impregnated with a resin. In another aspect of the present invention the resin impregnating the at least one protective overlay sheet 46 and the base sheet 48 may be different from the melamine resin used to impregnate the decorative paper sheet 44.


In one aspect of the present invention, flooring panels within a flooring system may be fabricated from substantially the same paper, resin, etc. For example, flooring panels within a flooring system may be fabricated using paper made from substantially the same paper fibers (having, for example, substantially the same ash content, color, and orientation) on the same on the same paper making machine. Further, flooring panels within a flooring system may be fabricated using paper originating from a single, contiguous section on the manufacturing spool. All of the aforementioned paper use restrictions that may be employed in fabricating flooring panels of a flooring system ensure that impregnated papers will always have substantially the same final dimensions after they are pressed and cured. In one aspect of the present invention, the warehousing of paper used to fabricated flooring panels within a flooring system may be controlled such that the time, temperature, and humidity in which the paper is stored is maintained to facilitate consistent flooring panel dimensions. In another aspect of the present invention, flooring panels within a flooring system may be fabricated using cellulose paste made from the same manufacturer. In yet another aspect of the present invention, flooring panels within a flooring system may be fabricated using resins made from the same manufacturer. In still another aspect of the present invention, the resins may contain powder originating from substantially the same source, have substantially the same chemical and physical qualities, and be mixed in the same reactor. Further, flooring panels within a flooring system may be fabricated using resins have a substantially constant solids content. All of the aforementioned resin use restrictions that may be employed in fabricating the flooring panels ensure that impregnated papers will always have substantially the same final dimensions after they are pressed and cured. In still another aspect of the present invention, each of the flooring panels within a flooring system may be fabricated using substantially the same impregnation process. For example, when dipping the various sheets of paper into melamine resin, the paper should experience a constant, uniform melamine load. Further, a band tension and oscillation of the impregnation machine should be precisely controlled as they influence the degree to which the various paper sheets are impregnated with the resin.


According to the principles of the present invention, the aforementioned sheets and substrates may be fabricated into an embossed-in-registration flooring system including a plurality of interlocking flooring panels. To produce such a flooring system, a press machine, such as a press machine shown in FIG. 6, may be used to mechanically emboss each flooring panel in registration with a decorative motif arranged on the decorative paper sheet 44.


Referring to FIG. 6, the press machine may, for example, include a base 42, a top press 54, and an upper press plate 56. In one aspect of the present invention, the upper press plate may include an embossing pattern (e.g., a three-dimensionally textured surface). Accordingly, the embossing pattern may, for example, include elevated ridges, dots, depressions, etc., of any design capable of being aligned with a decorative motif formed on the decorative paper sheet 44.


According to the principles of the present invention, the impregnated decorative paper sheet 44 arranged on the board substrate 40 must be accurately positioned relative to the embossing pattern of the upper press plate to enable an embossed-in-registration flooring panel. In one aspect of the present invention, alignment between the embossing pattern of the press plate and the decorative motif must be ensured when the press is in a locked position and the board is under pressure. The degree of control required may vary depending on the type of decorative motif used. For example, alignment of a wood grain embossed-in-registration motif across adjacent embossed-in-registration flooring panels requires a higher degree of alignment than alignment of a wood grain embossed-in-registration motif that is not aligned with adjacent flooring panels.


Alignment between the decorative motif on the decorative paper sheet 44 and the embossing pattern on the upper press plate 56 may be achieved by removing about 2 to 3 millimeters of material around the perimeter of the board substrate 40 in a milling process thereby yielding several reference planes (e.g., board edges) and a board substrate having tightly controlled dimensions. Next, an impregnated decorative paper sheet 44 having exterior dimensions about 8 or 10 mm smaller than the board substrate 40 is arranged on the board substrate 40. In one aspect of the present invention, the impregnated decorative paper sheet 44 may be arranged on the board substrate 40 using the board edges as alignment means. In one aspect of the present invention, alignment marks may be arranged on the board substrate 40 and be alignable with alignment marks provided on the decorative paper sheet 44.


In one aspect of the present invention, the decorative paper sheet 44 may be attached to the board substrate 40 via static electricity. After they are attached, the decorative paper sheet 44 and the board substrate 40 are arranged on a carriage feeding into the press machine. The static electricity may substantially prevent the decorative paper sheet 44 from being accidentally displaced as the board substrate 40 is moved with the carriage. In one aspect of the present invention, the carriage may be stopped just before it enters into the press machine such that the decorative paper sheet 44 may be precisely arranged over the board substrate 40 using, for example, tweezers (not shown). In another aspect of the present invention, the tweezers may be used to precisely arrange the decorative paper sheet 44 over the board substrate 40 arranged on the lower press plate. In one aspect of the present invention, the decorative paper sheet 44, the at least one protective overlay sheet 46, and the optional base sheet 48 may be arranged over the board substrate 40 prior to being arranged within the press machine. After the decorative paper sheet 44 is arranged over the board substrate 40, the carriage may be moved out of the press machine. Next, an alignment system substantially aligns the decorative paper sheet 44/board substrate 40 system with the embossing pattern in the upper press plate 56. In one aspect of the present invention, the alignment system may use the board edges to substantially align the decorative motif 44 with the embossing pattern on the upper press plate 56. The press machine may be operated after the alignment is complete.


In one aspect of the present invention, after the components illustrated in FIG. 5 are arranged within the press machine and aligned with the embossing pattern, the various sheets and substrate may be pressed and cured for predetermined amount of time until the resins set, yielding an extremely hard and wear resistant flooring panel. For example, after being inserted into the press machine and aligned with the embossing pattern, the board substrate 40, decorative paper sheet 44, protective overlay sheet 46, and optional base sheet 48 may be heated at a temperature of about 160-220° C. and pressed together under a pressure of about 20-40 Kg/cm2 for about 20 to 60 seconds. Accordingly, the top press 54 presses the embossing pattern of the upper press plate 56 into the decorative paper sheet 44 and board substrate 40 structure. The combination of the applied heat and pressure fuses the decorative paper sheet 44 and the board substrate 40 together. The alignment system ensures that the decorative paper sheet 44 is substantially aligned with the embossing pattern in the upper press plate 56. Accordingly, melamine resin within the various sheets may be cured and an embossed-in-registration panel may be produced.


In one aspect of the present invention, porosity within the fused piece may be minimized by slowly curing the resins (e.g., the melamine). Accordingly, as the operating temperature is reduced, the time during which the various sheets within the press machine are pressed is increased. In another aspect of the present invention, as the press plate 56 is heated to about 160-220° C. the embossing pattern included within the press plate may expand. Accordingly, the embossing pattern on the press plate 56 may be provided so as to compensate for the expansion of the pattern. Therefore, the dimensions of the embossing pattern are provided such that they substantially correspond to the design of the decorative motif when the resins within the components of FIG. 5 are cured.


According to the principles of the present invention, a mechanically embossed surface texture may be imparted to an individual flooring panel having a decorative motif. In one aspect of the present invention, the mechanically embossed surface texture may be provided in registration with the decorative motif. Accordingly, an embossed-in-registration flooring panel may be fabricated. In another aspect of the present invention, a plurality of embossed-in-registration flooring panels may be joined together to form an embossed-in-registration flooring system. In yet another aspect of the present invention, at least a portion of embossed-in-registration patterns of adjacent flooring panels may be substantially aligned with each other to form substantially contiguous embossed-in-registration patterns across adjacent flooring panels within the flooring system.


While the embossed-in-registration process described above is suitable for embossed surface textures that are less than about 0.2 mm deep, deeper surface textures may be problematic. Embossing patterns capable of imparting deep surface textures, for example, require relatively large press plate protrusions that tend to disturb the pressure homogeneity applied across the board surface. This pressure disturbance can cause distortions in the final product. In one aspect of the present invention, embossed surface textures may be formed greater than about 0.2 mm deep by hollowing out the board substrate 40 at locations where deep surface textures are desired. In one aspect of the present invention, the hollowing out process may be performed before, during, or after the perimeter of the board substrate 40 is milled as described above. In another aspect of the present invention, the board edges may be used to locate the boundaries of the hollowed out portions of the board substrate 40.


Referring to FIG. 7, an embossed-in-registration flooring panel 60, fabricated according to the process described above may optionally include a protective padding layer 50 on one side. The mechanically embossed surface texture is registered with the decorative motif 68 of the decorative paper sheet 44. By registration, it is meant that the embossed surface texture is substantially aligned with the decorative motif of the decorative paper sheet 44. By providing an embossed-in-registration flooring panel, a realistic representation of a natural material may provided to individual flooring panels. While the decorative motif illustrated in FIG. 7 realistically represents the image and texture of a wood grain, it should be appreciated that other embossed-in-registration designs such as ceramic tiles, concrete, marble, etc., may be produced.


According to the principles of the present invention, each of the individual flooring panels may, for example, include at least one locking mechanism.


In one aspect of the present invention, locking mechanisms may be incorporated within the board substrate 40 before the embossing pattern is imparted to the surface of the board substrate 40 in registration with the decorative motif. Accordingly, locking mechanisms may be fabricated within individual board substrates 40. Next, the locking mechanisms may be used to join individual board substrates together to form a panel structure. The panel structure may then be inserted into the press 54. After the embossing pattern is imparted to the panel structure and the fused components are fused together, the panel structure is removed from the press 54. Next, embossed-in-registration flooring panels 60 within the fused panel structure are separated by unlocking the locking mechanisms. In one aspect of the present invention, cutting tools may be used to assist in the separation and to ensure the decorative motif is not damaged.


In another aspect of the present invention, the locking mechanisms may be incorporated within the board substrate 40 after the embossing pattern is imparted to the surface of the board substrate 40 in registration with the decorative motif. Accordingly, a board substrate 40 having relatively large dimensions of, for example, 4′×8′, may be embossed by the press 54. Next, the resulting embossed-in-registration substrate may be cut into a plurality of individual embossed-in-registration flooring panels 60. In one aspect of the present invention, edges of the individual embossed-in-registration flooring panels 60 may have smooth edges and precise dimensions. In one aspect of the present invention, the cutting may be performed using shaping tools, milling tools, cutting tools, breaking tools, etc. In one aspect of the present invention, the board substrate may be cut by the press machine. Accordingly, the board substrate 40 may be cut into units (e.g., strips) having dimensions of, for example, 300×300 mm, 400×400 mm, 600×600 mm, 1,200×300 mm, 1,200×400 mm, etc. Next, the locking mechanisms may be incorporated within the individual embossed-in-registration flooring panels 60. In one aspect of the present invention, the locking mechanisms may be hidden beneath the surface of the flooring panels or they may be visible.


According to the principles of the present invention, the locking mechanisms may be incorporated within the individual embossed-in-registration flooring panels 60 by aligning the at least one of the board edges, alignment marks, decorative motifs, and surface textures of the flooring panel with a milling tool. By aligning the milling tool with any of the aforementioned alignable features, locking mechanisms may be milled into the sides of the board substrates 40 such that, when flooring panels 60 are joined together the at least a portion of the decorative motifs form a continuous pattern and at least a portion of the embossed-in-registration patterns form a substantially continuous surface texture across adjacent flooring panels.


According to the principles of the present invention, the embossed-in-registration flooring panel 60 may include a locking mechanism 64 (e.g., at least one of a tongue and groove locking system, a snap-together locking system, etc.) extending along all four sides of the embossed-in-registration laminate 60. For example, a snap-together locking system may be added to all four sides of the embossed-in-registration flooring panel 60 and used to connect multiple embossed-in-registration flooring panels 60 into an embossed-in-registration flooring system 300 (as shown in FIG. 8). The number and location of locking mechanisms may depend on the desired configuration of the embossed-in-registration flooring system. For example, when an embossed-in-registration flooring system abuts a corner, only two locking mechanisms are required (along the sides).


Referring to FIG. 8, the embossed-in-registration flooring panels A and B may, for example, include locking mechanisms along four sides (e.g., along joints J1, J2, J3, and J4). Embossed-in-registration flooring panels C and D may, for example, include locking mechanisms along four sides (e.g., along joints J1, J2, J3, and another joint not shown).


Embossed-in-registration flooring panels including the aforementioned locking mechanisms may be securely attached together with or without glue to form an embossed-in-registration laminate system 300. Multiple embossed-in-registration flooring panels may be joined together to obtain any desired shape for flooring, paneling, or the like. The embossed-in-registration flooring panels may be joined to each other such that at least portions of embossed-in-registration patterns of adjacent flooring panels are substantially aligned with each other and form a substantially continuous image and embossed surface texture across flooring panels within a flooring system.



FIGS. 8 and 9 illustrate an exemplary embossed-in-registration flooring system 300 incorporating one type of locking mechanism on each of the individual embossed-in-registration flooring panels 60. FIG. 9 illustrates an exemplary embossed-in-registration flooring system including flooring panels incorporating a snap-type tongue and groove locking mechanism. In one aspect of the present invention, the snap-type tongue and groove locking mechanism may be integrated into the sidewalls of each embossed-in-registration laminate 60 so as to ensure that embossed-in-registration patterns of adjacent flooring panels are substantially aligned with each other and substantially continuous within the flooring system.



FIG. 9 illustrates a cross sectional view of FIG. 8 taken along line 9-9. As shown, the locking mechanism may be fabricated by forming a groove 230, a tongue 200, a channel 210, and a lip 220 along the edges of the embossed-in-registration flooring panels 60. The locking mechanisms on the embossed-in-registration flooring panels 60 may be joined together by inserting the tongue 200 into the groove 230 of an adjacent embossed-in-registration flooring panel 60. Subsequently, the lip 220 is secured within channel 210, thereby joining adjacent embossed-in-registration flooring panels 60 into an embossed-in-registration flooring system 300. In one aspect of the present invention, the embossed-in-registration flooring panels 60 labeled A, B, C and D may be joined together with or without glue. It should is appreciated that other types of locking mechanisms may be incorporated within the sides of the individual embossed-in-registration flooring panels 60.


Referring back to FIG. 8, each of the embossed-in-registration flooring panels 60 may, for example, exhibit an embossed-in-registration ceramic tile motif G1. The ceramic tile motif may comprise a plurality of tiles in the shape of squares, rectangles, triangles, circles, ovals, any other shape or design that are separated by grout lines. In one aspect of the present invention, widths of grout lines Wh, Wv, and the intraboard grout width W may be substantially equal. When incorporating the snap-type tongue and groove locking mechanism into the embossed-in-registration flooring panels 60 the grout width adjacent the joints J1, J2, J3, and J4 on each embossed-in-registration laminate A, B, C, and D are approximately one-half the intraboard grout width W. For example, the vertical tile grout width (Wv) across joint J1 is made up of grout lines on embossed-in-registration laminates A, B, C and D, such that when the embossed-in-registration laminates A, B, C, and D are joined at J1 the vertical grout width (Wv) is approximately equal to (W). Accordingly, the grout width on any individual embossed-in-registration flooring panel 60 adjacent a joint is one-half of intraboard grout width (W). In another aspect of the present invention, the horizontal and vertical grout widths Wh and Wv may be controlled such they are substantially equal to the dimensions of the intraboard grout width W. It should be appreciated, however, that the dimensions of the grout widths in the embossed-in-registration flooring panels depend on the type of locking mechanism incorporated and the decorative motif exhibited.


In addition to grout lines, many other decorative motifs may be used in the embossed-in-registration flooring system of the present invention. Referring to FIGS. 10 and 11, a decorative motif exhibiting, for example, a wood grain surface G2 substantially aligned across joints J5 and J6 of adjacent flooring panels may be provided. According to the principles of the present invention, wood grain patterns generally include more elements (e.g., wood grain lines, wood knot 423, etc.) that extend to the perimeters of the flooring panels that need to be aligned than ceramic tile motifs. Accordingly, aligning the wood grain motif is generally more difficult than aligning grout line portions of the ceramic tile motifs. For example, aligning a first portion of a wood knot 423 on embossed-in-registration flooring panel E with a second portion of the wood knot 423 on embossed-in-registration flooring panel F is generally more complex than aligning grout line widths across joints of adjacent flooring panels. Accordingly, when fabricating a locking mechanism, consideration of all the graphic elements (e.g., wood grains lines and wood knots 423) must be considered to ensure a realistic embossed-in-registration flooring system 400. In one aspect of the present invention, at least one portion of the decorative motif may be used as an alignment marks ensuring consistent alignment of adjacent flooring panels.


In another aspect of the present invention, individual flooring panels within the embossed-in-registration flooring system 400 may be joined together with a snap-type mechanical system as illustrated in FIG. 11 depicting a cross sectional view of FIG. 10 along line 11-11. Again, alignment techniques used in the fabrication of the locking mechanism such that the embossed-in-registration laminate system 400 has a surface texture surface 423 that is substantially continuous across joints, J5 and J6. Optionally, the embossed-in-registration laminates 60 have a protective padding layer 70 under the base sheet 48.



FIGS. 12A and 12B illustrate schematic views of a flooring panel in accordance with the principles of the present invention.


Referring to FIGS. 12A and 12B, an upper surface at the perimeter, P, of each embossed-in-registration flooring panel may be recessed below an upper surface at the portions of the flooring panel surrounded by the perimeter. An object O (e.g., a users shoe, a wheel, etc.) contacting the major surface, Ms, of a flooring panel does not generally contact the surface of the perimeter, Ps, due to the perimeter's recessed surface. In one aspect of the present invention, the perimeter may include a portion of the flooring panel extending from the edge of the flooring panel approximately 3.175 mm toward the center of the flooring panel. In another aspect of the present invention, the depth to which the surface of the perimeter of the flooring panel is recessed is approximately 0.794 mm. In another aspect of the present invention, the surface of at least one portion of the perimeter of a flooring panel may not be recessed, as will be discussed in greater detail below with reference to FIG. 13.


Accordingly, the embossed-in-registration pattern may be provided to the edges of the flooring panel and may be aligned with embossed-in-registration patterns formed on adjacent flooring panels while the edges of each individual flooring panel may be prevented from prematurely wearing.


Although it has been shown in FIGS. 8 and 10 that individual flooring panels within a flooring system are substantially the same size and shape and are joined to each other such that each side of each flooring panel is joined to only one adjacent flooring panel, it should be appreciated that individual flooring panels within a flooring system may vary in size (e.g., width and/or length) and shape (e.g., rectangular, square, triangular, hexagonal, etc.). In one aspect of the present invention, individual flooring panels may have complementary shapes capable of being assembled similar to a puzzle or mosaic. Further, one aspect of the present invention contemplates that sides of individual flooring panels may contact more than one adjacent flooring panel.


In accordance with the principles of the present invention, flooring tiles within a flooring system may be arranged such that at least one side of each flooring panel includes at least one flooring sub-panel adjacent at least two other flooring sub-panels. In another aspect of the present invention, each flooring panel may include, either entirely or partially, at least one partial sub-panel, as will be described in greater detail below.


In FIG. 13A, for example, partial sub-panel 134A of flooring panel 130A may be a complementary sub-panel to neighboring partial sub-panel 136B of flooring panel 130B, adjacent flooring panel 130A. With this arrangement, it appears that partial sub-panels 134A and 136B are one unitary panel.


Still referring to FIG. 13A, each of the flooring panels 130A-F may comprise at least three sub-panels wherein at least one of the sub-panels is a unitary sub-panel and at least two of the sub-panels are partial sub-panels. For example, 132A is a unitary sub-panel and 134A and 136A are partial sub-panels.


In one aspect of the present invention, the unitary sub-panel 132A may provide a complete decorative motif. In another aspect of the present invention, the partial sub-panels 134A and 136A may provide separated, incomplete decorative motifs. In one aspect of the present invention, neighboring partial sub-panels of adjacent flooring panels may be complementary to each other such that they may provide a complete decorative motif and appear as a continuous unitary sub-panel. In one aspect of the present invention, complementary partial sub-panels may have complementary decorative motifs and/or embossed surface textures. Accordingly, when complementary partial sub-panels of adjacent flooring panels are properly aligned, a substantially continuous (i.e., complete) decorative motif and/or embossed surface texture may be formed across neighboring partial sub-panels. In one aspect of the present invention, sub-panels within a flooring panel may or may not comprise substantially the same decorative motif and/or embossed surface texture.



FIG. 13B illustrates a schematic view of an exemplary flooring panel 130 such as that shown in FIG. 13A.


Referring to FIG. 13B, portions of the upper surface of the perimeter “P” of each of the flooring panels 130 indicated by reference numeral 138 may be slightly recessed compared to the major surface of each of the flooring panels (see also FIG. 12B) to prevent premature wear of each of the flooring panels. In one aspect of the present invention, portions of the perimeter surface may be recessed at locations where neighboring sub-panels are not complementary. Forming portions of the perimeter surface of each of the flooring panels to be substantially unrecessed at positions corresponding to an abutment of decorative motifs and/or embossed surface textures of neighboring partial sub-panels allows complementary partial sub-panels appear as a unitary sub-panel while not significantly detracting from the overall durability of each of the flooring panels.


The motif and/or surface texture present at the recessed surface of the perimeter of each flooring panel may or may not correspond to the motif/surface texture present at the main surface of a corresponding flooring panel. Thus, a substantially continuous motif and/or surface texture may or may not be present across the surfaces of the perimeter and the interior of any individual flooring panel. Alignment marks or markings (not shown) can be used to self-align a decorative motif on the flooring panels. In one aspect of the present invention, the embossed in-registration pattern may be a free form or custom design. It is to be understood that substantially any embossed-in-registration pattern and any decorative motif may be realized by applying the principles of the present invention. In one aspect of the present invention, alignment of the flooring panels may be done visually upon joining them together. Accordingly, alignment of the flooring panels 130 may be performed using the decorative motif and/or embossed surface texture of each of the flooring panels.


Still referring to FIG. 13, while it is illustrated that each flooring panel is substantially rectangular, the principles of the present invention allow the flooring panels within the flooring system to have other shapes and sizes (e.g., geometric, freeform, etc.) or different or similar dimensions such that the flooring panels may be assembled in a “mosaic”-type arrangement or other regular, semi-repetitious, or random arrangement of panels. Further, while it is illustrated that each flooring panel comprises an identical sub-panel layout, the principles of the present invention allow the flooring panels within the flooring system to have other sub-panel layouts (e.g., other sub-panel shapes, sizes, etc.) The individual flooring panels within the flooring system may be cut from a board such that joints between the flooring panels of the flooring system are not visible. Further, the flooring panels within the flooring system illustrated in FIG. 13 may be joined together with or without glue. Still further, while it has been discussed that the embossed surface texture is substantially aligned with an underlying decorative motif, it is to be understood that substantially any embossed surface texture may be imparted to the flooring panels of the present invention, regardless of the underlying decorative motif. Still further, the decorative motifs and/or the embossed surface texture of one flooring panel may not be aligned or even be remotely similar in appearance and/or texture to decorative motifs and/or embossed surface textures of adjacent flooring panels.


It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A flooring system, comprising: at least two flooring panels, each flooring panel comprising: a plurality of side surfaces; a first upper surface adjacent at least a portion of the plurality of side surfaces; a second upper surface adjacent at least a portion of the plurality of side surfaces, wherein the first upper surface is lower than the second upper surface and;at least one partial sub-panel, wherein neighboring partial sub-panels of adjacent flooring panels are complementary such that at least a portion of at least one decorative motif and a corresponding portion of at least one embossed surface texture are substantially continuous across adjacent portions of the neighboring sub-panels.
  • 2. The flooring system according to claim 1, further comprising at least one locking mechanism arranged on at least one of the plurality of side surfaces.
  • 3. The flooring system according to claim 2, wherein the at least one locking mechanism is not visible from the surface of the at least one flooring panel.
  • 4. The flooring system according to claim 1, wherein the embossed surface comprises at least one depression less than about 0.2 mm in depth.
  • 5. The flooring system according to claim 1, wherein the first upper surface is about 0.794 mm below the second upper surface.
  • 6. The flooring system according to claim 1, wherein the first upper surface has a width of about 3.175 mm.
  • 7. The flooring system according to claim 1, wherein the at least one decorative motif comprises one decorative motif viewable from the first and second upper surfaces.
  • 8. The flooring system according to claim 1, wherein at least one of the at least two flooring panels further comprises at least one unitary sub-panel, wherein at least one of a decorative motif and an embossed surface texture of the at one least unitary sub-panel is substantially discontinuous across adjacent flooring panels.
  • 9. The flooring system according to claim 1, wherein at least a portion of the at least one embossed surface is substantially aligned with the at least one decorative motif.
  • 10. The flooring system according to claim 1, wherein flooring panels within the flooring system are substantially the same shape.
  • 11. The flooring system according to claim 1, wherein at least one flooring panel within the flooring system has a unique shape.
  • 12. The flooring system according to claim 1, wherein adjacent flooring panels are joined together with glue.
  • 13. The flooring system according to claim 1, wherein adjacent flooring panels are joined together without glue.
  • 14. The flooring system according to claim 1, wherein at least one of the plurality of side surfaces of at least one flooring panel contacts more than one adjacent flooring panel.
  • 15. The flooring system according to claim 1, wherein at least one flooring panel visually depicts wood.
  • 16. The flooring system according to claim 1, wherein flooring panels having identical sub-panel layouts have identical arrangements of first and second surfaces.
  • 17. The flooring system according to claim 1, wherein the second surface is present at a location corresponding to the portion of the flooring panel occupied by the at least one partial sub-panel.
  • 18. The flooring system according to claim 1, wherein the first surface is present at a location corresponding to the portion of the flooring panel occupied by the at least one partial sub-panel.
  • 19. The flooring system according to claim 1, wherein the first and second surfaces are present at locations corresponding to the portion of the flooring panel occupied by the at least one partial sub-panel.
  • 20. The flooring system according to claim 1, wherein said second upper surface is present where neighboring partial sub-panels are complementary, so as to allow said complementary partial sub-panels to appear as a unitary sub-panel.
  • 21. The flooring system according to claim 20, wherein said first upper surface is present at location where neighboring sub panels are not complementary.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 10/352,248, filed on Jan. 28, 2003, scheduled to issue on Nov. 23, 2010, as U.S. Pat. No. 7,836,648, which is a Continuation-in-Part of application Ser. No. 10/137,319, filed on May 3, 2002, entitled “EMBOSSED-IN-REGISTER PANEL SYSTEM”, now U.S. Pat. No. 6,691,480, all of which are hereby incorporated by reference for all purposes as if fully set forth herein. This application also incorporates by reference application Ser. No. 09/903,807, filed on Jul. 31, 2001, entitled “EMBOSSED-IN-REGISTER MANUFACTURING PROCESS”, now U.S. Pat. No. 6,638,387 and U.S. Pat. No. 6,401,415, filed on Dec. 13, 1999, entitled “DIRECT LAMINATED FLOOR”, for all purposes as if fully set forth herein.

US Referenced Citations (233)
Number Name Date Kind
D16458 Mankey Jan 1886 S
669445 Morey Mar 1901 A
800655 Kitsee Oct 1905 A
1479647 Carroll Jan 1924 A
RE16473 Humphreys Nov 1926 E
1697426 Humphreys Jan 1929 A
1825877 Loetscher Oct 1931 A
1854933 Hartman et al. Apr 1932 A
1869864 Phillips Aug 1932 A
1996834 Schleicher Apr 1935 A
1998526 Schubert Apr 1935 A
2027292 Rockwell Jan 1936 A
2037465 Gibson et al. Apr 1936 A
2046593 Urbain Jul 1936 A
2054458 Arge at al. Sep 1936 A
2057135 Cherry Oct 1936 A
2063935 Kirschbraun Dec 1936 A
2108226 Johnston Feb 1938 A
2137238 Collins Nov 1938 A
2246377 Mattes Jun 1941 A
2311156 Casto Feb 1943 A
2491498 Gustaf Dec 1949 A
2619681 Baker at al. Dec 1952 A
2715289 Gale Aug 1955 A
3002309 Snyder Oct 1961 A
3025626 Schumacher Mar 1962 A
3204380 Smith et al. Sep 1965 A
3293108 Naim at al. Dec 1966 A
3345234 Jecker et al. Oct 1967 A
3373068 Grosheim et al. Mar 1968 A
3387422 Wanzer Jun 1968 A
3414194 Seitzinger Dec 1968 A
3421277 Frischmuth Jan 1969 A
3459400 Rothermel Aug 1969 A
3515620 Mcpherson Jun 1970 A
3551177 Hechtman et al. Dec 1970 A
3592474 O'Neil Jul 1971 A
3627861 Timke Dec 1971 A
3648358 Cannady et al. Mar 1972 A
3654044 Hirota Apr 1972 A
3698978 McQuade Oct 1972 A
3732137 Scher May 1973 A
3740914 Arnaiz Diez Jun 1973 A
3740915 Mollman Jun 1973 A
3802947 McQuade, Jr. Apr 1974 A
3808024 Witman Apr 1974 A
3810774 Pittman May 1974 A
3814647 Scher et al. Jun 1974 A
3846219 Kunz Nov 1974 A
3857915 Crowley Dec 1974 A
3875716 Eusemann Apr 1975 A
3878030 Cook Apr 1975 A
3880687 Elmendorf et al. Apr 1975 A
3912569 Kapral Oct 1975 A
3953639 Lewicki, Jr. Apr 1976 A
3962009 Minami et al. Jun 1976 A
3997696 Jaisle et al. Dec 1976 A
4062992 Power et al. Dec 1977 A
4092198 Scher et al. May 1978 A
4092199 Ungar et al. May 1978 A
4093766 Scher et al. Jun 1978 A
4112189 Terwilliger Sep 1978 A
4114877 Goldfarb et al. Sep 1978 A
4118533 Hipchen et al. Oct 1978 A
4125263 Hamilton Nov 1978 A
4126727 Kaminski Nov 1978 A
4131705 Kubinsky Dec 1978 A
4143496 Destito Mar 1979 A
4154882 Ungar et al. May 1979 A
4163818 Wernli Aug 1979 A
4177305 Feingold et al. Dec 1979 A
4210693 McCann et al. Jul 1980 A
4239797 Sachs Dec 1980 A
4241554 Infantino Dec 1980 A
4243367 Renoux Jan 1981 A
4248922 Shortway et al. Feb 1981 A
4284453 Endrizzi Aug 1981 A
4290248 Kemerer et al. Sep 1981 A
4299069 Neumann Nov 1981 A
4367110 Yoshikawa Jan 1983 A
4374886 Raghava Feb 1983 A
4376812 West Mar 1983 A
4396448 Ohta et al. Aug 1983 A
4409280 Wiley et al. Oct 1983 A
4420351 Lussi et al. Dec 1983 A
D273527 Pota Apr 1984 S
4490503 Goring Dec 1984 A
4500373 Kubota Feb 1985 A
4517236 Meeker et al. May 1985 A
4546025 Vaisman Oct 1985 A
4557779 Bower et al. Dec 1985 A
4568082 Musolino Feb 1986 A
4571353 Gable, Jr. Feb 1986 A
4579767 Coggan et al. Apr 1986 A
4581255 Coggan et al. Apr 1986 A
4585685 Forry et al. Apr 1986 A
4599127 Cannady, Jr. et al. Jul 1986 A
4625491 Gibson Dec 1986 A
4676510 Agam Jun 1987 A
4678528 Smith et al. Jul 1987 A
4689102 Prawdzik et al. Aug 1987 A
4693924 Kuper et al. Sep 1987 A
4702870 Setterholm Oct 1987 A
4791015 Becker et al. Dec 1988 A
4816319 Dees, Jr. et al. Mar 1989 A
4844849 Miller et al. Jul 1989 A
4860506 Yoshimi et al. Aug 1989 A
4864790 Liardet Sep 1989 A
4912850 Gray Apr 1990 A
4940503 Lindgren et al. Jul 1990 A
4950500 Kauffman et al. Aug 1990 A
4953786 Arsenault Sep 1990 A
5011411 Loewy et al. Apr 1991 A
5034272 Lindgren et al. Jul 1991 A
5052160 Gentsch et al. Oct 1991 A
5053274 Jonas Oct 1991 A
5112671 Diamond et al. May 1992 A
5113632 Hanson May 1992 A
5136823 Pellegrino Aug 1992 A
5167991 Lowe Dec 1992 A
5225134 Nasvik et al. Jul 1993 A
5226273 Burke Jul 1993 A
5234340 Hambright Aug 1993 A
5283102 Sweet et al. Feb 1994 A
5295341 Kajiwara Mar 1994 A
5304272 Rohrbacker et al. Apr 1994 A
5314554 Owens May 1994 A
5335473 Chase Aug 1994 A
5391340 Mirous et al. Feb 1995 A
5413834 Hunter et al. May 1995 A
5425986 Guyette Jun 1995 A
5437934 Witt et al. Aug 1995 A
5468323 McNeil Nov 1995 A
5487217 Richardson et al. Jan 1996 A
5496129 Dube Mar 1996 A
5525394 Clark et al. Jun 1996 A
5536551 Woosley Jul 1996 A
5554429 Iwata et al. Sep 1996 A
5558933 Anthony Sep 1996 A
5570554 Searer Nov 1996 A
5587218 Betz Dec 1996 A
5632922 Nasvik et al. May 1997 A
5637236 Lowe Jun 1997 A
5681428 Nakajima et al. Oct 1997 A
5692749 Vogeler Dec 1997 A
5713173 Von Langsdorff et al. Feb 1998 A
5723221 Brooker et al. Mar 1998 A
5736227 Sweet et al. Apr 1998 A
5744220 Ringö Apr 1998 A
5755068 Ormiston May 1998 A
5766752 Cox et al. Jun 1998 A
5774236 Blazey Jun 1998 A
5815995 Adam Oct 1998 A
5830529 Ross Nov 1998 A
5853637 Bryant Dec 1998 A
5858160 Piacente et al. Jan 1999 A
5862643 Schilham Jan 1999 A
5884445 Woolfard Mar 1999 A
5894700 Sweet Apr 1999 A
5961903 Eby et al. Oct 1999 A
5985397 Witt et al. Nov 1999 A
5992106 Carling et al. Nov 1999 A
6032425 Gugliotti et al. Mar 2000 A
6099782 Holmes Aug 2000 A
6101778 Martensson Aug 2000 A
6103352 Takahashi Aug 2000 A
6114008 Eby et al. Sep 2000 A
6131355 Groh et al. Oct 2000 A
6134854 Stanchfield Oct 2000 A
6146252 Mårtensson Nov 2000 A
6156402 Smith Dec 2000 A
6182410 Pervan Feb 2001 B1
6182413 Magnusson Feb 2001 B1
6189283 Bentley et al. Feb 2001 B1
6203879 Desai Mar 2001 B1
6224698 Endo May 2001 B1
6247285 Moebus Jun 2001 B1
6300279 Macedo Oct 2001 B1
6375777 Sjölin et al. Apr 2002 B1
6397544 Desai Jun 2002 B1
6401415 Garcia Jun 2002 B1
6418683 Martensson et al. Jul 2002 B1
6421970 Martensson et al. Jul 2002 B1
6449913 Shelton Sep 2002 B1
6460306 Nelson Oct 2002 B1
6465046 Hansson et al. Oct 2002 B1
6494982 Mueller et al. Dec 2002 B1
6519912 Eckmann et al. Feb 2003 B1
6536178 Palsson et al. Mar 2003 B1
6551678 O'Brien et al. Apr 2003 B1
6558754 Velin et al. May 2003 B1
6565919 Hansson et al. May 2003 B1
6588163 Wang et al. Jul 2003 B2
6609348 Desai Aug 2003 B2
6617009 Chen et al. Sep 2003 B1
6627029 Mueller et al. Sep 2003 B1
6638387 Cruz Oct 2003 B2
6688061 Garcia Feb 2004 B2
6691480 Garcia Feb 2004 B2
6709764 Perrin Mar 2004 B1
6786019 Thiers Sep 2004 B2
6790042 Worth Sep 2004 B2
6803110 Drees et al. Oct 2004 B2
6874292 Moriau et al. Apr 2005 B2
6880307 Schwitte et al. Apr 2005 B2
6884493 Magee et al. Apr 2005 B2
6918220 Pervan Jul 2005 B2
6925764 Hrovath et al. Aug 2005 B2
6966161 Palsson et al. Nov 2005 B2
7836648 Garcia et al. Nov 2010 B2
20020014047 Thiers Feb 2002 A1
20020046526 Knauseder Apr 2002 A1
20020046527 Nelson Apr 2002 A1
20020046528 Pervan et al. Apr 2002 A1
20020046542 Tychsen Apr 2002 A1
20020056245 Thiers May 2002 A1
20020059765 Nogueira et al. May 2002 A1
20020100231 Miller et al. Aug 2002 A1
20020100242 Olofsson Aug 2002 A1
20020110669 Garcia Aug 2002 A1
20020160680 Laurence et al. Oct 2002 A1
20020189183 Ricciardelli Dec 2002 A1
20030108717 Sjoberg et al. Jun 2003 A1
20030167717 Garcia Sep 2003 A1
20030205012 Garcia Nov 2003 A1
20030205316 Kai Nov 2003 A1
20030208980 Miller et al. Nov 2003 A1
20040074191 Garcia Apr 2004 A1
20050079323 Miller et al. Apr 2005 A1
20060032168 Thiers et al. Feb 2006 A1
20060191222 Sabater et al. Aug 2006 A1
20070298209 Kohlman et al. Dec 2007 A1
20080193698 Oakey et al. Aug 2008 A1
Foreign Referenced Citations (92)
Number Date Country
33432 Aug 1979 AU
519917 Jan 1992 AU
645301 Sep 1994 CH
2122896 Nov 1992 CN
1068775 Feb 1993 CN
2144677 Oct 1993 CN
1086282 May 1994 CN
1093657 Oct 1994 CN
2178751 Oct 1994 CN
1111316 Nov 1995 CN
1124814 Jun 1996 CN
1139143 Jan 1997 CN
1140646 Jan 1997 CN
1161013 Oct 1997 CN
2276875 Mar 1998 CN
2312287 Mar 1999 CN
2323056 Jun 1999 CN
1223931 Jul 1999 CN
1240167 Jan 2000 CN
1256200 Jun 2000 CN
1278484 Jan 2001 CN
1282654 Feb 2001 CN
1285449 Feb 2001 CN
2428285 May 2001 CN
1376230 Oct 2002 CN
1426880 Jul 2003 CN
2111772 Sep 1971 DE
02239352 Feb 1974 DE
2657809 Jun 1978 DE
2752864 May 1979 DE
30 07 979 Oct 1981 DE
3634764 Apr 1988 DE
19610669 Mar 1997 DE
197 22 339 Dec 1998 DE
19901377 Jul 2000 DE
20008837 Aug 2000 DE
20100320 Apr 2001 DE
20300412 Mar 2003 DE
10204154 Aug 2003 DE
20311569 Oct 2003 DE
20313350 Dec 2003 DE
571542 May 1924 FR
976356 Mar 1951 FR
1 489 710 Jul 1967 FR
2 409 867 Jun 1979 FR
2 530 274 Jan 1984 FR
2 536 337 May 1984 FR
1202324 Aug 1970 GB
1 215 971 Dec 1970 GB
1 262 850 Feb 1972 GB
2 054 458 Feb 1981 GB
1 590 540 Jun 1981 GB
2 088 280 Jun 1982 GB
2 145 421 Mar 1985 GB
2 191 953 Dec 1987 GB
55-100154 Jul 1980 JP
63-040055 Feb 1988 JP
01-010847 Jan 1989 JP
H1(1989)-087315 Mar 1989 JP
2-143846 Jun 1990 JP
H3(1991)-028257 Feb 1991 JP
6-010482 Jan 1994 JP
6-508897 Oct 1994 JP
7-88992 Apr 1995 JP
7-266305 Oct 1995 JP
9-011259 Jan 1997 JP
H-10-183964 Jul 1998 JP
2000-265652 Sep 2000 JP
2004-84285 Mar 2004 JP
2004-225456 Aug 2004 JP
2005-503502 Feb 2005 JP
2005-523394 Aug 2005 JP
10-0430315 May 1999 KR
2077640 Apr 1997 RU
2123094 Dec 1998 RU
1271955 Nov 1986 SU
1716040 Feb 1992 SU
WO 7900629 Sep 1979 WO
WO 9106427 May 1991 WO
WO 9426999 Nov 1994 WO
WO 9719232 May 1997 WO
WO 9731775 Sep 1997 WO
WO 9731776 Sep 1997 WO
WO 9747834 Dec 1997 WO
WO 0133011 May 2001 WO
WO 0148333 Jul 2001 WO
WO 0196689 Dec 2001 WO
WO 02055809 Jul 2002 WO
WO 02058924 Aug 2002 WO
WO 03006232 Jan 2003 WO
WO 03047858 Jun 2003 WO
WO 03078761 Sep 2003 WO
Non-Patent Literature Citations (8)
Entry
Faus Group Inc. and Industrias Auxiliares Faus, S.L. v. Berry Floor N.V., Berry Finance N.V., Alloc Inc., and Beaulieu International Group N.V., 1:08-cv-00315-TWT, Defendants' Opening Claim Construction Brief filed in N.D. Ga. on Dec. 11, 2008, pp. 1-45, Exhibits 1-5.
Faus Group Inc. and Industries Auxiliares Faus, S.L. v. Berry Floor N.V., Berry Finance N.V., Alloc Inc., and Beaulieu International Group N.V., 1:08-cv-00315-TWT, Declaration of Matthew T. Bailey in Support of Plaintiffs Faus Group, Inc. and Industries Auxiliares Faus S.L.'s Memorandum in Support of their Proposed Claim Constructions, filed in N.D. Ga. Dec. 11, 2008, pp. 1-9, Exhibits 1-14.
Faus Group Inc. and Industries Auxiliares Faus, S.L. v. Berry Floor N.V., Berry Finance N.V., Alloc Inc., and Beaulieu International Group N.V., 1:08-cv-00315-TWT, Memorandum in Support of their Proposed Claim Constructions filed in N.D. Ga. Dec. 11, 2008, pp. 1-47.
Letter from Paul Oakley to Tarkett Distributor Sales Representatives; “Ceramique Tile Introduction”, Jul. 29, 1999, one page.
Letter from Paul Oakley to Tarkett Distributor Sales Representatives; “Ceramique Tile Introduction”, Jul. 29, 1999, three pages.
“Surface Decoration of Artificial Board”.
“Resin Impregnated Paper for Overlaying”.
“The Practical Manual for Intensified Wood Floor Board”.
Related Publications (1)
Number Date Country
20110203207 A1 Aug 2011 US
Continuations (1)
Number Date Country
Parent 10352248 Jan 2003 US
Child 12950895 US
Continuation in Parts (1)
Number Date Country
Parent 10137319 May 2002 US
Child 10352248 US