Flospinning method and device for carrying out flospinning

Information

  • Patent Grant
  • 6817219
  • Patent Number
    6,817,219
  • Date Filed
    Tuesday, January 14, 2003
    21 years ago
  • Date Issued
    Tuesday, November 16, 2004
    19 years ago
Abstract
A flow-forming method and apparatus, in which a blank is placed on a rolling mandrel of a flow-forming machine, the blank is rotated relative to at least one flow-forming roll, the at least one flow-forming roll is infed radially and/or axially relative to the blank, and the blank is axially lengthened by the flow-forming roll and flow-formed to a workpiece. The method and apparatus compensate dimensional variations of the blank by working at least one compensating area into the workpiece, determining, before and/or during flow-forming, geometrical data of the blank and/or workpiece with a measuring device, obtaining a desired final geometry of the workpiece by individually calculating the geometrical parameters of the at least one compensating area as a function of the geometrical data determined, and controlling the infeed of the flow-forming roll in accordance with the calculated geometrical parameters of the compensating area, so that a workpiece with the desired final geometry can be formed independently of dimensional variations of the blank.
Description




The invention relates to a flow-forming method according to the preamble of claim


1


and to a flow-forming apparatus according to the preamble of claim


10


.




In a flow-forming method according to the preamble a blank is placed on a rolling mandrel of a flow-forming machine, the blank is rotated relative to at least one flow-forming roll, the at least one flow-forming roll is infed relative to the blank and the blank is axially lengthened by the flow-forming roll and flow-formed to a workpiece.




A flow-forming method according to the preamble is known from DE-A-34 02 301. In said method radial, axial and tangential force components can be measured on the flow-forming or spinning roll. The measured values determined are used for regulating the flow-forming process.




A flow-forming apparatus according to the preamble has a rolling mandrel for receiving a workpiece, at least one flow-forming roll, a drive device for producing a rotation between the workpiece and the roll and a control device for controlling an infeed in relative manner between the rolling mandrel and the flow-forming roll.




The rolling mandrel can be driven in rotary manner and the flow-forming roll can be infed radially and/or axially to the workpiece. However, it is also possible for a flow-forming roll or a plurality of such rolls driven in rotary manner and arranged on a ring driven in rotary manner, to be radially and/or axially infed to a fixed or also rotating rolling mandrel.




Such flow-forming methods and apparatuses are known and are e.g. used for cylinder flow-forming of rotationally symmetrical precision tubular components.




These known methods are more particularly characterized by economic advantages, which is essentially due to the fact of the material saving as a result of non-cutting working, in the strain hardening of the material during working and in the considerably shortened manufacturing times compared with cutting methods. In addition, such methods make it possible to produce numerous outer circumferential shapes, e.g. contour offsets or shoulders, transition radii and conical areas.




In the case of cylinder flow-forming it is possible to obtain wall thickness tolerances of a few hundredths of a millimetre. However, the cylindrical blanks normally used generally have thickness tolerances of several tenths of a millimetre. As a result of the individually differing thickness of the blanks and due to the volume constancy of the material to be worked, considerable geometrical differences, particularly length differences occur on the manufactured part. It is therefore necessary to use further machining steps, particularly finishing by cutting. This leads to a considerable rise in the machine, personnel, time and material costs and therefore the costs of the finished precision components.




The object of the invention is to provide a method and an apparatus enabling the manufacture of particularly high precision workpieces.




This object is achieved by a method having the features of claim


1


and an apparatus having the features of claim


10


.




Preferred further developments of the method according to the invention and advantageous embodiments of the apparatus according to the invention are claimed in the subclaims.




According to the invention, a method of the aforementioned type is further developed in that for compensating dimensional variations of the blank at least one compensating area is formed into the workpiece, that before and/or during flow-forming geometrical data of the blank and/or workpiece are determined with a measuring device, that for obtaining a desired final geometry of the workpiece the geometrical parameters of the at least one compensating area are individually calculated as a function of the geometrical data determined and that by means of a control device the infeeding of the flow-forming roll is controlled in accordance with the calculated geometrical parameters of the compensating area, so that independently of dimensional variations of the blank it is possible to form a workpiece having the desired final geometry.




The essence of the invention is that, as a function of the specifically existing dimensional variation, each blank is individually manufactured. For this purpose, according to the invention, before and/or during flow-forming specific geometrical data of the blank and/or workpiece are determined. On the basis of said geometrical data an individual compensating area is then worked into the workpiece. This can bring about the decisive advantage that, independently of any dimensional variations of the blank, the workpiece always has a desired final geometry.




Another important advantage is that with the method according to the invention it is possible to manufacture workpieces with such a high precision, that there is no need for subsequent machining steps, particularly cutting finishing operations. This permits significant savings in time, personnel and machine costs.




According to a preferred development of the method, the at least one compensating area is worked into an area of the workpiece not critical for the functionality thereof. This can bring about the advantage that the functionality of workpieces is maintained, independently of how the compensating area is in each case individually formed.




As geometrical data preferably at least one axial length of the blank and/or workpiece is determined, particularly several times. As the workpiece wall thickness on rolling out is usually significantly reduced, i.e. the workpiece is significantly lengthened, the axial length is sensitively dependent on any blank dimensional variations present, so that as a result of this quantity the geometrical parameters of the compensating area can be very precisely determined.




With the aid of suitable path measuring systems, whose measured data are processed by a main frame computer, according to the invention it is possible to control wall thickness tolerances occurring during the manufacturing process.




As geometrical data it is also possible to determine a diameter and/or a wall thickness of the blank and/or workpiece. This makes it possible to increase the precision of determining the parameters of the compensating area.




Besides the geometrical data further measurements can be performed on the blank and/or workpiece. For example, before, during and/or after flow-forming a workpiece temperature can be determined.




In addition, during flow-forming, it is possible to determine a pressure in the workpiece, particularly in the axial direction.




The specific geometry of the workpiece is sensitively dependent on the pressure and temperature, so that a recording of these parameters allows a further increase in the precision of manufacture.




Preferably the temperature and/or pressure determined are supplied to the computer means and are included in the calculation of the geometrical parameters of the compensating area.




In a preferred variant of the method according to the invention, the compensating area is formed as a cylindrical area and/or as at least one bevelled area. These forms can firstly be produced in a simple manner on a flow-forming machine and in addition the geometrical parameters of these forms can be calculated particularly easily.




As a function of the workpiece design, it is possible to implement other, randomly shaped compensating areas.




If the dimensional variations of the blank are particularly large, it is possible to work several compensating areas into the workpiece. This can also be advantageous if it is desired that the variation between the geometrical parameters of a compensating area between individual workpieces is not to be too large.




The method according to the invention can be performed as down-feed and also up-feed methods.




An apparatus of the aforementioned type is inventively further developed in that at least one measuring device is provided for determining the geometrical data of the workpiece, that the measuring device is linked to a computer means, which is designed for calculating the geometrical parameters of a compensating area, which is worked into the workpiece for individually compensating dimensional variations of the blank and that by means of the control device the infeed of the flow-forming roll is controllable, so that the compensating area of the workpiece is constructed as a function of the geometrical parameters individually calculated by the computer means.




The apparatus, which can also be referred to as a flow-forming machine, can be operated in path-controlled and/or pressure-controlled manner. With the aid of NC technology, it is possible to implement path-giving flow-forming operations and the exact positioning of the flow-forming rolls in the longitudinal and transverse axis.




The measuring device preferably has at least one displacement transducer. These can be of an optical or acoustic nature and/or in the form of a sensor for determining the electrical conductivity.




In an advantageous development of the inventive apparatus several displacement transducers are provided and are in particular arranged in axially spaced manner. This advantageously allows a multiple determination, e.g. of an axial length of the workpiece during the flow-forming method.




In order to increase the information base for calculating the geometrical parameters of the compensating area, it is also possible for the measuring device to have a sensor for determining the diameter of the workpiece and/or a wall thickness of the workpiece.




In addition, measuring devices or sensors can be provided for determining further physical quantities, so that the workpiece can be even more precisely characterized and the manufacturing process can be performed under even better defined conditions.




For example, for determining a temperature of the workpiece, it is possible to provide a temperature sensor, or for determining a pressure in the workpiece, particularly in an axial direction, a pressure sensor can be provided.











Further features, characteristics and advantages of the method and apparatus according to the invention are explained hereinafter with the aid of the diagrammatic drawings, wherein show:





FIG. 1

An axial cross-sectional view of a blank.





FIGS. 2

to


4


Axial cross-sectional views of workpieces, flow-formed from blanks with different dimensional variations.





FIGS. 5

to


7


Axial cross-sectional views of workpieces with individually formed compensating areas.





FIGS. 8

to


10


Axial cross-sectional views of further workpieces with individually formed compensating areas.





FIG. 11

Diagrammatic part cross-sectional views of a blank or a workpiece and an apparatus according to the invention in different stages of the method according to the invention.





FIG. 12

Diagrammatic part cross-sectional views of a further blank or workpiece and the inventive apparatus of

FIG. 11

in different stages of the inventive method.





FIG. 13

Diagrammatic part cross-sectional views of a further blank or workpiece and the inventive apparatus of

FIG. 11

in different stages of the inventive method.












FIG. 1

shows an axial cross-sectional view of a tubular blank


12


with an axial length Lo, an internal diameter di, an external diameter da and a wall thickness So. The dimensions in the drawings are in millimetres.




The wall thickness So of the blank


12


has a tolerance of ±0.12 mm.




As shown in

FIGS. 2

to


4


, the tolerance has a drastic effect on an axial length L


1


of a finished workpiece


14


.





FIG. 2

shows in an axial cross-sectional view a workpiece


14


rolled out of a blank


12


in an axial direction Z. The wall thickness So of the thus used blank


12


was at the lower limit of the tolerance range of FIG.


1


.





FIGS. 3 and 4

show in axial cross-sectional views further workpieces


14


, in which the wall thickness So of the blanks


12


used were in the middle or upper limit of the tolerance range of FIG.


1


.




It can be clearly gathered from

FIGS. 2

to


4


that individually present dimensional variations of the blanks


12


, in the presently shown case the fluctuation in the wall thickness So, have a very pronounced effect on the geometry, such as on the axial length L


1


of the rolled out workpieces


14


. For example, the axial length L


1


of workpiece


14


in

FIG. 2

compared with the workpiece of

FIG. 4

differs by 8%.





FIGS. 5

to


7


show axial cross-sectional views of workpieces


14


, in which in an area uncritical for the functionality of the workpiece


14


are individually worked compensating areas


26


according to the invention.




The compensating areas


26


in each case have a cylindrical area A, as well as a bevelled area constructed as a runout bevel X


1


, X


2


, X


3


. All the workpieces


14


of

FIGS. 5

to


7


have an identically constructed cylindrical area L between the right-hand end of the workpiece


14


in

FIGS. 5

to


7


and the compensating area


26


. In the case of the workpieces


14


of

FIGS. 5

to


7


, there is also a cylindrical area A with an identical axial length and an identical wall thickness S


2


.




For compensating dimensional variations of the blank


12


used, the runout bevels X


1


, X


2


, X


3


starting from point Y and connected to the cylindrical area A are individually constructed.




For the workpiece


14


in

FIG. 6

use has been made of a blank


12


, in which the wall thickness So was in the middle of the tolerance range of FIG.


1


. However, the workpieces


14


in

FIGS. 5 and 6

were flow-formed from blanks


12


with wall thicknesses So at the upper/lower end of the tolerance range of FIG.


1


.




In accordance with the wall thickness So of the blank


12


used above the mean value, compared with the axial extension of the runout bevel X


2


of

FIG. 6

, the workpiece


14


in

FIG. 5

has a shortened runout bevel X


1


. In the same way the runout bevel X


3


of workpiece


14


, for which use was made of a blank with a wall thickness So below the mean value, is lengthened compared with X


2


.




So that, despite the dimensional variations of the blanks


12


, to keep constant the final manufactured length L


1


of the workpieces


14


, in the manufacture or design of the workpieces


14


or the manufactured parts account was taken of the inventive compensating areas


26


, which can also be called tolerance compensating areas. In these compensating areas


26


account is taken of tolerance differences in accordance with the effect thereof on the final manufactured length L


1


by measurements during the working or forming process.




A subsequent mechanical machining on the opening diameters can be precisely taken into account in the overall axial length L


1


.




With the runout bevels X


1


, X


2


, X


3


shown in

FIGS. 5

,


6


and


7


, at point Y, which always has the same spacing from the right-hand opening diameter, a measurement is carried out on the flow-formed part. Whilst taking account of the displacement path of a spindle in the Z-direction, by means of a volume equation a computer calculates the actual variation and therefore establishes the axial extension of the runout bevels X


1


, X


2


, X


3


.




The volume equation used is based on the volume constancy of the worked material and the constancy of the internal diameter of the workpiece.




Thus, as a result of the inventive working in of individually formed compensating areas


26


, workpieces


14


with identical axial lengths L


1


are obtained.




Further examples of individually adapted compensating areas


26


are shown in

FIGS. 8

to


10


. Once again workpieces


14


are shown in axial cross-sectional views which, starting from blanks


12


with different wall thicknesses So, have been manufactured using the method according to the invention.




As in

FIGS. 5

to


7


, the workpieces


14


each have identical cylindrical areas L to which are in each case connected individually constructed compensating areas


26


. Once again the compensating areas


26


comprise a cylindrical area A


1


, A


2


, A


3


as well as a runout bevel X


1


, X


2


, X


3


connected thereto after point Y.




Unlike in the case of the workpieces


14


of

FIGS. 5

to


7


, with the workpieces


14


of

FIGS. 8

to


10


both the runout bevels X


1


, X


2


, X


3


and the cylindrical areas A


1


, A


2


, A


3


of the compensating areas


26


are individually adapted to the existing dimensional variation of the blank


12


used.




Once again identical axial lengths L


1


of the finished workpieces


14


are obtained.




The invention is further illustrated in

FIGS. 11

,


12


and


13


in connection with examples of the manufacture of weight-optimized wheels produced in the up-feed flow-forming method.




In up-feed flow-forming a blank


12


, which can be a bush or a pipe section, is engaged over a rolling mandrel


16


up to a clamping point and is engaged there by a driving ring


42


, which can be provided with hardened teeth.




An axial force of one or more flow-forming rolls


18


presses the blank


12


onto a toothed segment and thus gives it a rotary movement. During the working the material flows under the flow-forming rolls


18


in the direction of the free rolling mandrel and into a free working area of the machine. Thus, the longitudinal feed and flow direction oppose one another.




The invention can also be used for spinning and other flow-forming operations. As a function of the particular application, combinations of length, diameter, pressure and temperature measurements are possible.




In

FIGS. 11

,


12


and


13


are shown parts of an apparatus according to the invention and in part cross-sectional views blanks


12


and workpieces


14


in different stages of the method according to the invention. The blanks


12


of

FIGS. 11

,


12


and


13


in each case have different wall thicknesses.




Identical components are in each case given the same reference numerals.




The part cross-sectional views regarding method step


1


in each case show a blank


12


located on a rolling mandrel


16


and which can engage with a driving ring


42


. The rolling mandrel


16


is then rotated and several flow-forming rolls


18


, whereof one is shown in exemplified manner, are radially infed to the blank


12


.




Axial infeeding takes place by displacing the rolling mandrel in the Z-direction.




To determine the axial length of the workpiece in different stages of the method according to the invention, on the apparatus are provided several displacement transducers


46


,


48


,


50


,


52


. These displacement transducers


46


,


48


,


50


,


52


, which can be optical sensors, are arranged in axially spaced manner at positions Z


1


, Z


2


, Z


3


and Z


4


.




Firstly with the aid of the flow-forming rolls


18


an area


28


with a reduced wall thickness is worked into the workpiece


14


. Through this area


28


, together with a compensating area


26


to be subsequently formed, in the finished workpiece


14


an approximately symmetrical weight distribution is obtained.




On the basis of the axial lengths of the workpiece


14


determined by the displacement transducers


46


,


48


,


50


,


52


during flow-forming, according to the invention the geometrical parameters of a compensating area


26


are individually calculated and the flow-forming rolls


18


are axially and radially infed to the workpiece


14


in accordance with the calculated parameters.




During the rolling out of the blank


12


to the finished workpiece


14


, the driving ring


42


is infed by a total displacement path in the Z-direction


44


with respect to the flow-forming roll


18


.




In method step


1


the flow-forming roll


18


is placed at a distance of 32.3 mm from the right-hand opening diameter. In step


2


a first approach bevel of the area


28


is formed.




In step


3


the flow-forming roll


18


is in a cylindrical portion of the area


28


, the displacement transducer


46


as the first measuring point being located at a distance of 63.87 mm from the flow-forming roll


18


at position Z


1


. A runout bevel of the area


28


is then worked into the workpiece


14


.




In step


4


a runout bevel with a length of 8.18 mm is completely worked in. In step


5


the workpiece


14


has reached the second displacement transducer


48


located at position Z


2


. With a distance of 98.7 mm a first approach bevel of a compensating area


26


starts up to a wall thickness cross-section of 1.92 mm.




In step


6


the workpiece


14


has reached the third displacement transducer


50


at position Z


3


, which is located at a distance of 167.9 mm from the flow-forming roll


18


. Based on the measured distance travelled in the Z-direction and taking account of the measured data of the displacement transducer


50


at position Z


3


by means of the volume equation, determination takes place by means of a computer of the parameters for a runout bevel of the compensating area


26


, in order to reach a total workpiece length of 204.5 mm. Simultaneously, from the determined data, the position Z


4


of a fourth, variably positionable displacement transducer


52


is set.




With the aid of the fourth displacement transducer


52


at position Z


4


it is possible to verify a desired axial final length of the finished workpiece


14


.




On reaching the fourth displacement transducer


52


at position Z


4


in step


7


the flow-forming process is ended and the workpiece


14


has reached its desired length of 204.5 mm.





FIGS. 12 and 13

show the method of the invention in the same way as in

FIG. 11

for blanks


12


with different dimensional variations. The method steps


1


to


8


of

FIGS. 12 and 13

correspond to those of

FIG. 11

, so that a detailed description is not provided here.




For the different blanks


12


of

FIGS. 11

,


12


and


13


, which in each case have different starting dimensions, once again workpieces


14


with an identical axial length are obtained.



Claims
  • 1. Flow-forming method, comprising:placing a blank on a rolling mandrel of a flow-forming machine; rotating the blank relative to at least one flow-forming roll; infeeding the at least one flow-fanning roll relative to the blank; and lengthening the blank axially by the flow-forming roll and flow-formed to a workpiece, wherein for compensating dimensional variations of the blank at least one compensating area is worked into the workpiece; at least one of before and during flow-forming a measuring device determines geometrical data of at least one of the blank and the workpiece; for obtaining a desired final geometry of the workpiece, geometrical parameters of the at least one compensating area are individually calculated as a function of the determined geometrical data; and by a control device the infeeding of the flow-forming roll is controlled in accordance with the calculated geometrical parameters of the at least one compensating area, so that a workpiece with a desired final geometry can be formed independently of dimensional variations of the blank.
  • 2. Method according to claim 1, wherein the at least one compensating area is worked into an area of the workpiece that is non-critical for functionality of the workpiece.
  • 3. Method according to claim 1, wherein as the geometrical data a determination of at least one axial length of at least one of the blank and workpiece is determined, at least one time.
  • 4. Method according to claim 1, wherein as the geometrical data a determination of at least one of a diameter and a wall thickness of at least one of the blank and workpiece is determined.
  • 5. Method according to claim 1, wherein at least one of before, during, and after flow-forming a temperature of the workpiece is determined.
  • 6. Method according to claim 1, wherein during flow-forming a pressure is determined in the workpiece.
  • 7. Method according to claim 5, wherein during flow-forming a pressure is determined in the workpiece.
  • 8. Method according to claim 7, wherein at least one of the determined temperature and pressure is used in the calculating of the geometrical parameters of the at least one compensating area.
  • 9. Method according to claim 1, wherein the at least one compensating area is formed as at least one of a cylindrical area and a bevelled area.
  • 10. Method according to claim 1, wherein plural compensating areas are worked into the workpiece.
  • 11. Apparatus for flow-forming comprising:a rolling mandrel for receiving a workpiece; at least one flow-forming roll; a driving device configured to produce a rotation between the workpiece and the at least one flow-forming roll; and a control device configured to control an infeed of relative nature between the rolling mandrel and the at least one flow-forming roll; wherein at least one measuring device is provided for determining geometrical data of the workpiece; the at least one measuring device is connected to the control device further configured to calculate geometrical parameters of a compensating area worked into the workpiece for individually compensating dimensional variations of the blank; and by the control device the infeed of the at least one flow-forming roll is controlled, so that the compensating area of the workpiece is constructed as a function of the geometrical parameters individually calculated by the control device.
  • 12. Apparatus according to claim 11, wherein the at least one measuring device includes at least one displacement transducer.
  • 13. Apparatus according to claim 12, wherein the at least one measuring device includes plural displacement transducers arranged in an axially spaced manner.
  • 14. Apparatus according to claim 11, wherein the at least one measuring device includes a sensor configured to determine at least one of a diameter of the workpiece and a wall thickness of the workpiece.
  • 15. Apparatus according to claim 11, further comprising a temperature sensor configured to determine a temperature of the workpiece.
  • 16. Apparatus according to claim 11, further comprising a pressure sensor configured to determine a pressure in the workpiece.
Priority Claims (2)
Number Date Country Kind
101 00 200 Jan 2001 DE
101 15 815 Mar 2001 DE
Parent Case Info

This application is a 35 USC 371 of PCT/EP01/12946 filed Nov. 08, 2001.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP01/12946 WO 00
Publishing Document Publishing Date Country Kind
WO02/05330 7/11/2002 WO A
US Referenced Citations (5)
Number Name Date Kind
3839892 Andriessen Oct 1974 A
3992911 Connell et al. Nov 1976 A
5323630 Wenzel et al. Jun 1994 A
5699690 Furugen et al. Dec 1997 A
5775151 Massee Jul 1998 A
Foreign Referenced Citations (2)
Number Date Country
152 491 Dec 1981 DE
34 02 301 Aug 1985 DE