Oceans, and other bodies of water, serve as major attractions for families and individuals across the world. Such bodies of water provide a medium for a wide variety of sports and activities, including boating, kayaking, canoeing, stand up paddle boarding, and surfing. Unfortunately, such bodies of water also pose significant risks to individuals, including treacherous surfs, strong currents, winds, etc. Upon being separated from one's vessel, an individual may have to survive in the water while contending with fatigue, hypothermia, and/or predators. Additional factors, including inclement weather, the vastness of the body of water and darkness after sunset, compound the problem for search and rescue crews.
The inventor herein has recognized that while personal flotation devices (PFDs) increase an individual's chance of surviving the separation from their vessel by helping to keep the individual afloat, such devices may not make the individual sufficiently more visible to search and rescue crews. Other devices have included elongate elements with brilliant and/or reflective coatings to address this problem. When combined with typical PFDs, however, such devices are cumbersome to set up and, when donned before entering the water, restrict movement during activities which require a high degree of mobility. A lack of laws in some regions requiring the use of PFDs, combined with their cumbersome and restrictive designs, cause individuals to eschew the use of these devices which might otherwise save their lives.
A personal flotation and locating device for increasing the survivability and visibility of an individual stranded in water is disclosed herein. In one embodiment, the flotation and locating device comprises a rescue streamer, the rescue streamer including a plurality of branching pneumatic stays structures. Each branching structure includes three pneumatic stays in fluid communication with one another. The pneumatic stays extend along different directions of the streamer, and may receive pressurized gas and provide buoyancy to the rescue streamer. As the plurality of pneumatic stays may be in fluid communication with one another, the streamer may be rapidly inflated. Further, because the stays are branched along the streamer, they may extend throughout the streamer and in different directions. In this way, the pneumatic stays also provide a supportive structure to the streamer, preventing it from folding over and in on itself in both longitudinal and lateral directions, and ensuring that the streamer surface area is made visible for fast rescue. Additionally, with the stays in a deflated condition, the streamer is flexible enough to be rolled and/or folded for convenient transport. In some embodiments, the rescue streamer may further include one or more inflation devices which are brought into fluid communication with the plurality of branching stays. Geometrically, the stays may be arranged in a variety of configurations, including monopodial, pseudomonopodial and/or sympodial configurations. Another configuration includes a central stay from which regularly-spaced branches propagate, and yet another configuration includes stays branching in irregular patterns along the streamer.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
A personal flotation and locating device is disclosed. The flotation and locating device comprises a rescue streamer which includes a plurality of branched pneumatic stays. The pneumatic stays are configured to receive pressurized gas and inflate the rescue streamer. In some embodiments, the plurality of stays is in fluid communication with one another, allowing the streamer to rapidly inflate upon reception of pressurized gas. Further, the stays may extend in different directions throughout the streamer, providing a supportive structure. Still further, the stays may reduce the potential of the streamer folding over and in on itself when deployed due to wave or other action, thus maintaining an increased visible surface area. However, the stays are flexible enough in a deflated state to allow the streamer to be rolled and/or folded for convenient transport and convenience during water activities. Thus, the streamer may be used to stay afloat while increasing one's chances of rescue.
Returning to
Streamer body 106 may have a substantially hollow interior, and may have a variety of fluid containing devices arranged therein, configured to receive pressured gas and inflate streamer 104. In some embodiments, streamer body 106 comprises a plurality of stays arranged as a plurality of branching structures (e.g., 110). The plurality of branching structures may be formed with a variety of geometries, non-limiting examples including monopodial, pseudomonopodial and sympodial geometries. The plurality of branching structures may further be regularly-spaced, as shown in
In one example, the streamer may include a plurality of repeating branching structures, each branching structure comprising a branching junction and a first, second and third stay. When inflated, the branching structures provide a supportive structure for both the center and sides of the streamer body. This allows the streamer to maintain its intended configuration and increase its surface area when inflated and deployed in water. The inflated stays also reduce the chance of the streamer folding over and in on itself, either laterally, longitudinally or directions therebetween. Thus, the streamer may provide flotation to an individual stranded in water and increase their chance of rescue. In a deflated state, however, the branching structures are flexible enough to allow the streamer to be rolled up and/or folded, facilitating easy transportation of the device.
In some embodiments, the stays are formed as hollow passageways configured to receive pressurized gas and inflate the streamer in which they are arranged. As shown in
Alternative embodiments are possible where the plurality of branching structures is not in fluid communication with one another. Instead, a plurality of branching structures may be separated at locations along their respective first stays such that the first stays are sealed at one end. Each branching structure may then be individually coupled to an inflation device. Alternatively, the branching structures may be fluidically separated from one another but commonly connected to a single inflation device. Regardless, imposing separation among the plurality of branching structures may allow the streamer to maintain buoyancy and structure in the event of a malfunction, as a failed branching structure will not cause failure in another branching structure.
As seen in
Turning now to
A head portion 206 is arranged at the distal end of tube body 202. As shown in
A first strap 208 is affixed to a surface of head portion 206. As one non-limiting example, first strap 208 is a thin, rectangular strip extending in first direction 108. First strap 208 may be permanently affixed to head portion 206 by a variety of methods (e.g., gluing or sewing), or the strap may be removably affixed to head portion 206 (e.g., by use of Velcro). A variety of materials may be used in the formation of first strap 208 (e.g., nylon). Further, first strap 208 may be adjustable so that an individual may adjust its length and ensure an appropriate fit when the FLD is put into use. Toward its distal end and arranged therein, first strap 208 includes a first O-ring 210.
Arranged at its extreme distal end, tube 102 further comprises a clip 212. Clip 212 includes a first lockingly engageable portion 214. First portion 214 is configured such that it allows clip 212 to permanently and lockingly engage first O-ring 210 of first strap 208, providing a secure fixture between clip 212 and first strap 208. Clip 212 further comprises a second lockingly engageable portion 216, configured to engage a second O-ring as discussed below. A variety of clips may be used to meet the stated requirements, one non-limiting example being an eye hook. A variety of durable materials may be used to form clip 212, non-limiting examples including metal or plastic. Plastic, for instance, may help reduce the overall weight of the FLD.
Tube 102 includes at its proximal end a second strap 218, affixed to the surface of tube body 202. In one non-limiting example, second strap 218 is a thin, rectangular strip much like first strap 208, affixed either permanently or removably to the surface of tube body 202. Unlike first strap 208, second strap 218 extends in a direction substantially perpendicular to first direction 108 and along lateral direction 109. Second strap 218 includes a second O-ring 220, which is configured to lockingly engage the second portion 216 of clip 212. In particular, tube body 202 is flexible, allowing an individual to bend tube 102 into a circular shape. Such a shape brings clip 212 and second strap 218 close together. The second portion 216 of clip 212 can then be slid through and lockingly engaged to second O-ring 220, maintaining tube 102 in a circular shape and securing the FLD to a part of an individual (e.g., the torso).
Toward the distal end of tube body 202 is included a hole 222 through which a one-way valve stem 224 may be inserted. Valve 224 may be a manual one-way valve that an individual may use to transfer pressurized air via breath into the FLD. In one non-limiting example, hole 222 is circular and valve 224 is cylindrical, wherein the diameter of valve 224 is larger than the diameter of hole 222. With the possible addition of a sealant (e.g., water-proof caulking), valve 224 is sealingly inserted into hole 222, ensuring that valve 224 will transfer pressurized gas into the interior of tube body 202 without leakage occurring through hole 222.
In some embodiments, the interior of tube body 202 may be substantially hollow and include one or more bladder inserts (e.g., 226). The bladder inserts may be made of a flexible material that can withstand significant pressure, and are configured to inflate the tube body 202 upon reception of pressurized gas. If more than one bladder insert is included in tube body 202, they may or may not be in fluid communication with one another. Like the branching junctions in streamer 104, each bladder insert may be fluidically separated from one another but individually connected to one or more inflation devices (e.g., valve 224). Imposing separation among the bladder inserts may allow the tube to maintain buoyancy even in the event of bladder failure.
The bladder inserts may be in fluid communication with the plurality of branching structures in streamer 104. In such an embodiment, the plurality of bladder inserts is connected by a common pneumatic passageway, which may be similar to a pneumatic stay, or may be a common passageway formed by the plurality of first stays extending longitudinally. The passageway then puts the plurality of branching structures in fluid communication with the bladder inserts and the one or more inflation devices providing inflation via pressurized gas. The one or more inflation devices may include one-way valve 224 and other devices discussed below.
Alternatively, tube body 202 may not include one or more bladder inserts. Instead, tube body 202 may have a substantially hollow interior itself configured to receive pressurized gas. As discussed above, the interior of tube body 202 in this embodiment may be in fluid communication with one or more inflation devices and the plurality of branching structures in streamer 104. Such a configuration may reduce the cost and complexity required to manufacture the FLD.
In some embodiments, the one or more inflation devices of the FLD 100 may include one or more gas cartridges (e.g., 228 in
A variety of mechanisms may be included to activate the one or more cartridges, including a push button or draw string included in the tube or streamer, depending on which element includes the one or more cartridges. If tube 102 is included in the FLD, the one or more gas cartridges may be in fluid communication with the interior of tube 102, or may be in fluid communication with the one or more bladder inserts if they are provided. Further, the one or more gas cartridges may be in fluid communication with the plurality of branching structures—either through a single, common passageway or through individual passageways, depending on the configuration of the branching structures. If, on the other hand, only the streamer 104 is to be used, the gas cartridges may be arranged within streamer body 106 and placed in fluid communication, either commonly or individually, with the plurality of branching structures.
Turning now to
Referring now to
A plurality of small LED lights (not shown) may also be included on the surface of the sheath, which both increase an individual's spatial awareness of the sheath and improve the chances of locating the individual in the event they become stranded. The plurality of LED lights may be arranged randomly on the surface of the sheath or in a coordinated pattern, including a pattern corresponding to a distress signal. In one embodiment, the plurality of LED lights may be configured to emit uniform, monochromatic green light radially outward. The plurality of LED lights may be powered by one or more batteries arranged in the sheath. Alternatively or additionally, a plurality of LED lights may be arranged on the surface of the streamer/and or tube. In this case, batteries may be provided in the streamer and/or tube, depending on which element includes the LED lights.
Individuals may thus use the FLD, comprising a tube and/or streamer in the configurations disclosed, to improve their chance of survival and rescue in the event of being separated from their vessel, without restricting their abilities during activity. In certain embodiments, the FLD may be inflated manually or automatically, while the plurality of branching junctions arranged in the streamer ensure that the streamer will not fold over and in on itself and that its surface area is maximized when deployed. When deflated, the branching structures maintain a degree of flexibility such that the streamer may be rolled, folded and stored in a sheath. Further, a surface of the streamer may have one or more distress signals (e.g., 302 in
It will be appreciated that the configurations disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various configurations, and other features, functions, and/or properties disclosed herein.
The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and subcombinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application.
Such claims, whether broader, narrower, equal or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/622,986, filed Apr. 11, 2012 and entitled “Flotation and Locating Device,” the entirety of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61622986 | Apr 2012 | US |