This application claims priority of pending Netherlands application number NL 1022235 filed on Dec. 20, 2002.
The invention relates to a device for use in retrieving an object that falls in water or in saving a person who falls in water, whereby the device is provided with means for attaching the device to the object to be retrieved or means with which the person to be saved can carry the device with him, respectively, (and provided) with a spray water-resistant holder that comprises a mechanism for opening of the holder, which holder in its closed state encompasses an empty, inflatable body of a substantially gas-impermeable matter in a folded state, and with one or more reagents which react under the influence of water that has entered the holder to form a gas, which gas serves for filling the folded inflatable body in order to exert a flotation or driving force on the object attached to the device or on the person carrying the device.
A device for use in retrieving an object that falls in water is known from the French patent publication FR-2733482. This known device is cylindrical-shaped and it comprises a disc which at one of its surfaces is provided with a tube that extends perpendicularly with respect to the disc surface. The diameter of the tube is smaller than the diameter of the disc. The assembly of the disc and tube is surrounded at the side of the free end of the tube by a cover which has a mainly cylindrical form and of which the diameter is slightly larger than that of the disc, and of which the height is greater than that of the tube. The cover at its open end facing the disc fits well around the disc, thus encompassing the tube on the inside of the cover. The disc at its circumference is attached to the cover with the aid of means that open when these come into contact with water, in this case the means are formed by plugs of sodium chloride. The disc at its side facing the interior of the cover, and thereby lying within the diameter of the tube, is provided with a number of openings which connect the inside of the tube to the outside of the disc and the device. The openings, too, are provided with closure means that open when they come into contact with water, in this case the closure means are also plugs of sodium chloride. The bottom of the tube that is provided with the openings on the side of the disc is filled with a tampon of surgical cotton, a strong and hydrophilic material. There is a reaction body at the top side of the tampon, in the interior of the tube, which consists of a matter that, when it comes into contact with water, undergoes a chemical reaction and thereby forms a gas. In the known device it is calcium carbide which reacts with water to form acetylene and calcium hyroxide. The inside of the tube at its end facing away from the disc is closed with a grating that keeps the tampon and the reaction body packed together against the bottom of the tube. There is an inflatable bag provided at the free end of the tube. The opening of the bag, which is in a closed state, is attached to the outside of the free end of the tube. In a resting state, the folded bag in the inside of the cover lies around the tube. Finally, there is also a ring on the outside of the cover for attaching the device to the object to be retrieved, in this case a key.
The operation of the known device is as follows. When the object to be retrieved in question, such as a key, falls in water, then it sinks due to its mass. Because the key has a higher density than that of the device, the key comes to hang on the underside when it sinks. During the sinking, the plugs of sodium chloride which connect the disc and the cover to each other, dissolve in the water. The plugs of sodium chloride which connect the openings between the disc and the interior of the tube provided within the cover, to each other also dissolve in the water. This allows water to enter in the tampon and the water is absorbed by the tampon. The reaction body thus comes into contact with water by means of the tampon. Gas is created through the above-mentioned reaction, with the gas escaping through the grating to the inflatable bag to thereby fill the bag. The tampon serves two functions, namely absorbing the water that comes into the tube and—especially while water is being absorbed in the tampon—restricting that the formed gas escapes from the bag or the tube through the openings in the disc to the outside. During the sinking of the object in the water, whereby the disc hangs underneath because of the key which hangs on the disc, the disc detaches from the cover, thereby also aided by the pressure exerted by the formed gas. When sufficient gas has been formed and the bag has inflated sufficiently with this gas, a flotation force arises that allows the key hanging on the disc to rise to the surface.
A disadvantage of the known device relates to the cover. The volume of the cover on the one hand should be sufficiently large to be able to contain a sufficiently large bag and on the other hand be small and lightweight since it will come to hang on the object to be retrieved.
Because the bag that is to be stored in the cover must not be too large, this aspect also lays a limit on the flotation power which can be effectuated through the known device. As such, only small, light weight objects can be floated with it.
Another disadvantage of the device relates to the speed with which the device can come into action. Under certain circumstances, such as when sailing, there is a risk that the inflatable body will be unnecessarily inflated. The openings in the disc which are closed with plugs of sodium chloride, can lose their closing function at conditions of sufficient atmospheric humidity, since sodium chloride is hygroscopic. There are also objections against the use of acetylene, the gas that provides for the flotation or driving force, with the known device. A mixture of acetylene and oxygen is explosive, acetylene is toxic and it also has an unpleasant odour. Another disadvantage relates to the durability of the operability of the device, considering that acetylene is very sensitive in regard of humidity.
Another disadvantage of the known device relates to the valve function with which entry of water in the cover is regulated. This valve function is provided by a number of parts, namely the plugs of sodium chloride with which the openings have been closed and the tampon on the inside of the tube which absorbs the water entering through the openings. If the tampon for whatever reason is drenched insufficiently by which the entering water does not or not sufficiently reach the reaction body, then the reaction will not start or propagate, respectively, so that the intended operation will not occur. The tampon acts as a water barrier when water is taken up in it. So some of the formed gas always diffuses through the tampon and through the openings to the outside. If the tampon thus does not absorb sufficient water across the whole of its breadth, then the eventually formed gas will escape along the tampon and the openings in the disc on to the outside.
It is an objective of the invention to provide for an improved device of the type described in the pre-amble that is compact and lightweight.
It is another objective of the invention to provide for an improved device that can be made in different shapes.
It is also an objective of the invention to provide for an improved device which during operation can be inflated very rapidly.
It is still another objective of the invention to provide for an improved device which can exert a large flotation force that is sufficient for floating heavy objects or persons.
It is further another objective to provide for an improved device which in its uninflated state can retain its potential working during a long period of time.
It is further yet another objective to provide for an improved device which in its inflated state can maintain the flotation force exerted by it during a long period of time.
It is also an objective of the invention to provide for an improved device which can be manufactured by a quick and cheap method.
According to an aspect of the invention of or more of the stated objectives are achieved by a device of the type described in the pre-amble, characterized in that, the reagents which under the influence of water form gas are comprised within the substantially gas-impermeable inflatable body itself and (that) the inflatable body comprises a water-permeable substance. The large surface area of the inflatable body available with the device itself can thus be utilized for a rapid uptake of water required for the gas formation. This is accompanied by the advantage, that first after the water-permeable substance of the inflatable body is in a state whereby water is taken up, it begets substantially closed pores and thus becomes impermeable in regard of the gas that is to be formed within the device. The inflatable body thereby retains its main function, namely that of containing the formed gas.
Some examples of water-permeable substances that are suitable for application according to the invention, are—non-limitatively—: paper types that are strong when wet, fine-woven linen, substances comprising cellulose fibres or polyester fibres such as used for cleaning tissues. Also so-called “non-woven” matter is generally suitable for application according to the invention. “Non-woven” matter should understood to include fibre-comprising matter, that is not shaped in threads, and of which the fibres are mutually orientated in a particular direction, or otherwise are orientated at random, and which are bound to each other, such as by means of friction and/or cohesion and/or adhesion.
In a preferred embodiment, the water-permeable substance of the substantially gas-impermeable inflatable body is water-absorbing. The advantage hereof is, that water entering the inflatable body can be quickly spread across the interior of the inflatable body.
In a preferred embodiment the water-permeable substance of the substantially gas-impermeable inflatable body has a predetermined-overpressure releasing function. This offers the advantage, that through choice of a suitable water-permeable substance for the inflatable body, when the device falls in water, entry of water can continue till a predetermined counter pressure due to the then therein present gas arises. Another advantage hereof relates to the development that when the device sinks deeply in water and it thereby takes up sufficient water so that the gas-forming reaction occurs, as the propagating gas-forming reaction takes place a growing flotation force is exerted. During the ascent of the device or the person in question towards the surface as a result thereof, the pressure within the then inflated body will keep increasing. A possible explosion of the inflated body is thus prevented by appropriate choice of the pressure value below which the inflated body needs to be kept.
In a further preferred embodiment the water-permeable substance of the inflatable body is provided with a swelling agent. This swelling agent serves to enhance that after entry of sufficient water in the inflatable body the pores of the water-permeable substance are closed better.
In a still further preferred embodiment the water-permeable substance of the inflatable body comprises the substance which is commonly available under the trade name Sontara®. Sontara® is a plastic, supplied by Dupont, which also fulfills the two above-mentioned requirements in regard of absorbing water quickly and well and, when water has been absorbed, gaining closed pores in a substantial measure. In further embodiments, the substantially gas-impermeable inflatable body can comprise combinations of different water-permeable substances, either with or not in combination with plastics such as polypropene and polyethene.
It shall be clear that in principle every substance that can allow water through well and quickly is suitable for use in the device according to the invention. A desirable property of the water-permeable substance relates to the absorbability of water: when water has been taken up in the water-permeable substance, then the substance must obtain substantially closed pores. Other further desirable properties of the water-permeable substance are that the substance, when wet, has sufficient mechanical strength, and that it can be folded or rolled compactly when in a dry state, and that it can be provided with a good sealing of a seam.
In a further embodiment the inflatable body as in its folded state can be provided with means for enhancing the eventual unfolding of the inflatable body, such as a string or a spring. This offers the advantage, that at propagation of the gas-forming reaction the body can unfold faster and the body therefore can be inflated faster.
According to another aspect of the invention, the inflatable compartment is divided into compartments and it is provided in one or several of these compartments with one or more reagents that react under the influence of water that has entered the holder to form the gas that causes a flotation or driving force. This offers the advantage, that the gas-forming reaction can occur in different places simultaneously and that gas can be formed. This development enhances that the folded inflatable body can unfold faster. Another advantage is that it does not make any difference from which side water enters the inflatable body, since the gas-forming reaction shall occur anyhow.
According to still another aspect of the invention, the one or more reagents that react under the influence of water to form the gas that brings about a flotation or driving force, are mutually separated within the compartment in which they have been provided. This offers the advantage, that the durability of the reaction potency is retained for a long period of time, since the gas-forming reaction will occur then and only then when all reagents required for the gas formation come into contact with each other. Another advantage hereof is, that in particular with an endothermic gas-forming reaction, freezing of the reaction in part of the inflatable body can be prevented. Application of this measure increases the certainty of operation of the device according to the invention.
In a preferred embodiment the mutual separation of the reagents comprises a water-soluble substance such as a polyvinyalcohol, for example in the form of a separation layer. The advantage hereof is that all reagents required for the formation of gas will come into contact with each other then and only then after sufficient water has entered the inflatable body for dissolving the separation layer. If the object concerned falls in shallow water and it is collected quickly again, or if the person concerned can quickly find his feet again in the water, then there will be little opportunity for sufficient water entering the holder. Under these circumstances the device, or at least a part of the device, does not need to be inflated. Conversely, if the object concerned or the person concerned falls in deep water, then sufficient water will enter the holder by which the required flotation force will be exerted sufficiently quickly.
According to another aspect of the invention, the arrangement of the compartments, and within the compartments (the arrangement of) the one or more reagents which react under the influence of water entering the inflatable body to form the gas that causes a flotation or driving force is such, that the gas formed at the start of the reaction can fill the body partly and thereby bring about a draught or “chimney” effect by which the reaction can propagate. The advantage hereof is that a draught can be created so that the reaction can propagate instead of dousing as well as that the first formed gas can be utilized for the further unfolding of the inflatable body. The achievable draught effect is dependent on inter alia the shape and the size of the inflatable body, the manner of folding and enclosure thereof in the spray water-resistant holder and on the eventual application of mechanical ancillary means such as a string or spring for enhancing that a body that is partly inflated by the formed gas unfolds faster.
According to yet another aspect of the invention the mechanism for the opening of the spray water-resistant holder comprises at the outer surface of the holder a substance that is not soluble in humidity and soluble in water, such as e.g. a polyvinylalcohol. This substance can be in the form of, for example, an attachment layer that keeps two co-operating halves of an elongate device that are provided along its longitudinal direction, together till the device falls in water. This offers the advantage that the holder does not open due to the first (spats of) spray water, but that it opens first after the water-soluble attachment has dissolved along a sufficient length thereof and it releases the inflatable body encompassed in the holder.
In a preferred embodiment the layer of the substance that is not soluble in humidity and soluble in water comprises a substantial part of the outer surface of the spray water-resistant holder. This offers the advantage that when, after a fall in water, the holder is required to open, dissolution of the attachment layer can occur at several places simultaneously, by which the inflatable body encompassed within the holder is released all the faster for it. In extension, there is also the advantage that the faster the inflatable body is released, the faster it can be inflated with the gas to be formed and the faster the required flotation force can be exerted.
In yet another embodiment the spray water-resistant holder comprises a water-soluble plastic foil, preferably a printable and bio-degradable plastic foil. This offers the advantage that the holder can be given a visually attractive appearance and that the holder can be made environment-friendly.
In a number of preferred embodiments the device has an elongate shape or a folded shape such as a zig-zagged shape, so that it can be attached to e.g. an arm of a pair of spectacles or to a key ring. In principle, the device can be provided in any choice of shape that allows a large inflatable body to be provided in a folded shape in the holder. For use of the device for saving a person, the device can be embodied in the form of a life jacket or another item of clothing, such as a T-shirt, shirt or pair of trousers. Here too the device can be provided in sections of the item of clothing, such as e.g. only in the collar. The advantage of providing the device in a life jacket or an item of clothing is that as long as the person is not in water, the life jacket or item of clothing stays un-inflated and thin and that it thus can be worn with a certain measure of freedom of movement and (measure of comfort. An item of clothing hereby does not necessarily have to be provided with the device according to the invention on the whole of its surface. Under certain circumstances it could suffice to provide a number of parts with the device, such as the collar and/or the sleeves of a shirt.
The device according to the invention can of course also be used for vehicles and vessels, for example in the form of a number of holder which are released from a cluster only under certain circumstances and which can be inflated only thereafter in order to keep the vehicle or vessel afloat.
Finally, according to another aspect the invention also relates to a method of manufacturing a device for use in retrieving an object that falls in water or in saving a person who falls in water, whereby the method comprises the following steps:
This offers the production-related advantage that the device can be produced in large numbers and at small cost.
The inventive concept will now be described in detail and further embodiments will be described with reference to an example and its related drawings. The drawings depict the following:
a-e show an embodiment of the device according to the invention, which has been provided on a pair of spectacles, at the start and at later stages of the activation of the device.
a-b show a view of a cross-section of the pair of spectacles and the device according to
a-b show an embodiment of the device whereby the inflatable body comprises the substance Sontara®;
a-b show an embodiment of the device whereby the inflatable body comprises a combination of the substance Sontara® and low-density polyethene;
a-b depict two instances during the execution of a method of manufacturing the device according to the invention;
a shows a side view of a device in its closed state, and
The drawings are schematic and are not drawn to scale. In the drawings the same numbers refer to corresponding parts of the depicted embodiments of the device.
a-e show an embodiment of the device according to the invention, which has been provided on a pair of spectacles, at the start and at later stages of the activation of the device.
a-b show a view of a cross-section of the pair of spectacles and the device according to
a-b show an embodiment of the device whereby the inflatable body comprises the substance Sontara®.
a-b show an embodiment of the device whereby the inflatable body comprises a combination of the substance Sontara® and low-density polyethene. This combination provides the advantage that when most of the water that is required to enter the inflatable body has entered through the Sontarag®-comprising part, the manner of gas formation and the rate of gas formation and the unfolding of the inflatable body during propagation of the gas formation can be directed. Such a combination whereby, after activation of the device, the Sontara®-comprising part 26 of the inflatable body 11 which lies partly in water, ensures directed entry of the water, and the polyethene-comprising part 27 ensures good gas-impermeability, provides the advantage of a long-lasting floating power. According to
a-b depict two instances during the execution of a method of manufacturing the device according to the invention.
a shows a side view of yet another device in its closed state. In depiction are the two halves 112 and 114 of the holder 102, are shown, the seam 116 between the two halves and also an eye 110 through which for example a ring or strap can be fed for attaching the device 100 tot an object that is to be retrieved (not shown).
When the outer housing 120 is closed, as shown, then the two halves 126 and 128 form a seam that resistant in regard of spray water and humidity, in between them. The shape of the seam is indicated at 138. An element is also provided for on the outer housing with which the holder can be attached to an object that is to be retrieved. In the shown example this attachment element is a brace 140 that encompasses an opening 142 between itself and the rest of the holder. For example, a connecting ring (not shown) can be led through the opening to which the object that is eventually to be retrieved, can be attached.
The holder 102 further comprises a second housing 144 (“inner housing”). In the shown embodiment the inner housing has an elongate shape, such as e.g. that of a vase which widens from its closed end 146 in the direction towards its open end 148. The inner housing 144 is connected to the outer housing 120, in this example by means of a sliding member 150 that co-operates with ribs 152 and 154 and that can be secured by a click fastening, for example. The inner housing at-its open end 148 is connected to a substantially gas-impermeable inflatable body 156. This inflatable body 156 has a water-permeability property. This inflatable body comprises one or more reagents which when under the influence of water undergo a reaction to form a gas for the purpose of filling the inflatable body. Further, there is an opening 158 provided on the one longitudinal side of the inner housing 144 so that water can enter in the interior of the inner housing. Preferably, the opening 158 is in the shape of a grating 160. The grating is preferably also water-absorbing. After absorption of water, the pores of the matter of which the grating is made, can close so that the grating becomes air-tight to the extent of a pre-determined value (pressure). When, for example, reagents that are gas-forming under the influence of water are present at or near the grating, then gas formation can already begin at this point. Preferably, a seal 162 is provided between the side of the grating 160 that faces away from the inner housing and the inside of the part of the outer housing 120 that lies opposite to it. This seal 162 can e.g. be in the shape of a ring which can encompass the grating within its circumference. The surface of the inlet grating 160 can thus also be made resistant in regard of humidity. Preferably, the other longitudinal side of the inner housing is provided with biasing means 164. When the holder 102 is in its closed state, then the means 164 press the inner housing 144 against the seal 162, by which the resistance of the inner housing in respect of humidity can be further enhanced. The big advantage hereof is that the reaction potency of the gas-forming reagents, which are present in the interior of the inner housing, is sustained over a longer period of time.
The inflatable body 156 is depicted schematically in this drawing. In this example, it comprises a compartment 166 in which chemicals that react to form gas when under the influence of water, are provided. The compartment 166 is preferably made of a material that can disintegrate when under the influence of water so that the reagents within the compartment 166 can be freed. This provides for multiple reaction hearths so that faster gas formation occurs. When in action, with the shown embodiment finding itself lying in or submerged in water, then the object which is to be retrieved makes for the holder to direct itself such that the inner housing 144 finds itself below the reagent-comprising compartment 166. During disintegration of the compartment the reagents fall freely in the inner housing.
The compartment 166 itself can be divided in (sub-)compartments (not shown), whereby the reagents also are mutually separated, i.e. they can be provided in different compartments. This feature, too, enhances the spreading of the reagents so that the rate of gas formation can be regulated.
A number of other features are shown too, such as ribs and rounded sections 170 and 172 on the inside of the outer housing 120, which serve to prevent that when the holder 102 has fallen in water, that the reagent-comprising compartment 166 falls in the inner housing or, e.g. when at a further stage, that it gets stuck behind a part of the closure mechanism 130 so that the inflatable body 156 cannot unroll or unfold itself in full.
The member 174 is also pointed out. When the holder halves 126 and 128 are not kept together any longer by the closure mechanism 130, then the end 176 of the hook 178 points at an angle in the direction of the longitudinal centre-axis (the horizontal broken line) of the device. This end 176 also ensures that the inflatable body 156 stays in the free space 180 between the dishes 126 and 128. Also the rounded sections 168 and 170 provided on the inside of the outer housing ensure that the inflatable body 156 cannot adhere to the inside of the outer housing.
Further, a mechanism 180 is also shown that ensures opening of the holder 102 when sufficient water has entered the holder. This exemplary mechanism comprises a water-absorbing member 182 such as a sponge. The sponge 182 is enclosed between the ribs 184, 186 and 188 and it lies adjacent to the member 174 with respect to its side that faces the interior of the inner housing. The function of the sponge 182 is directed towards the enhancement of opening of the closure mechanism 130 when a certain threshold amount of water has come into the holder and subsequently has been absorbed by the sponge. The action of this opening mechanism will be described later.
The operating action of the embodiments according to
Incidentally, the reagent-comprising compartment 166 can be provided outside the inflatable body 156 and inside the inner housing 144. The compartment 166 thereby may be optionally attached to the inner housing 144 such embodiments will also work provided the material of which the compartment 166 can dissolve or disintegrate in water.
The invention offers solutions for floating a diversity of objects, varying from lightweight pairs of spectacles to heavy vehicles. Three particularly important insights on which the above-described invention is based, are the fast release of an inflatable body provided in a compact state when a certain threshold value of wetting of the device is exceeded, use of the inflatable body itself for a fast activation of a gas-forming reaction that is required for the flotation or driving force which is to be exerted, and keeping the reagents required for gas formation separated in a stable manner. There are numerous possible uses and embodiments imaginable which are considered to fall within the framework of the above-described invention.
Number | Date | Country | Kind |
---|---|---|---|
1022235 | Dec 2002 | NL | national |
Number | Name | Date | Kind |
---|---|---|---|
650976 | Lavery | Jun 1900 | A |
3004269 | Dillier | Oct 1961 | A |
3084357 | Gaumer | Apr 1963 | A |
3786590 | Weeks | Jan 1974 | A |
3902425 | Kutzemann | Sep 1975 | A |
4929214 | Liebermann | May 1990 | A |
5030152 | Carr et al. | Jul 1991 | A |
5941752 | Liebermann | Aug 1999 | A |
Number | Date | Country |
---|---|---|
2551420 | Mar 1985 | FR |
2733482 | Oct 1996 | FR |
Number | Date | Country | |
---|---|---|---|
20040137810 A1 | Jul 2004 | US |