Various protocols in biological and/or chemical research involve performing a large number of controlled reactions on local support surfaces or within predefined reaction chambers. The designated reactions may then be observed or detected and subsequent analysis may help identify or reveal properties of substances involved in the reaction. For example, in some multiplex assays, an unknown analyte having an identifiable label (e.g., fluorescent label) may be exposed to thousands of known probes under controlled conditions. Each known probe may be deposited into a corresponding well of a microplate. Observing any chemical reactions that occur between the known probes and the unknown analyte within the wells may help identify or reveal properties of the analyte. Other examples of such protocols include known DNA sequencing processes, such as sequencing-by-synthesis (SBS) or cyclic-array sequencing.
In some conventional fluorescent-detection protocols, an optical system is used to direct an excitation light onto fluorescently-labeled analytes and to also detect the fluorescent signals that may be emitted from the analytes. However, such optical systems can be relatively expensive and involve a relatively large benchtop footprint. For example, such optical systems may include an arrangement of lenses, filters, and light sources.
In other proposed detection systems, the controlled reactions occur on local support surfaces or within predefined reaction chambers of a flow cell that does not involve a large optical assembly to detect the fluorescent emissions. The flow cell includes an electronic solid-state light detector device or imager (e.g., a complementary metal-oxide-semiconductor (CMOS) light detector device or a charged-coupled device (CCD) light detector device) positioned adjacent (e.g., beneath) the support surfaces/chambers to detect light emissions from the reactions. However, such proposed solid-state imaging systems may have some limitations. For example, flow cells of such systems may be designed as single use consumable items. Accordingly, it may be beneficial for the flow cell to be a small and inexpensive device. It may therefore be beneficial to reduce the size of the flow cell, such as by reducing the package footprint size of the flow cell and/or the number and/or size of components of the package of the flow cell.
In one aspect of the present disclosure, a flow cell is provided. The flow cell system comprises a socket and a flow cell device. The socket comprises a base portion, a plurality of electrical contacts, and a cover portion coupled with the base portion comprising at least one first port. The base portion and the cover portion cooperatively form an enclosure. The electrical contacts extend between the enclosure and an exterior side of the base portion, and the at least one first port extends between the enclosure and an exterior side of the cover portion. The flow cell device is secured within the enclosure of the socket. The flow cell device comprises a frameless light detection device and a lid. The flow cell device comprises a base wafer portion, a plurality of dielectric layers extending over the base wafer portion, a reaction structure extending over the dielectric layers that comprises a detector surface, a plurality of light sensors, device circuitry extending through the dielectric layers electrically coupled to the light sensors to transmit data signals based on photons detected by the light sensors, and a plurality of light guides associated with the light sensors. The lid extends over the detector surface and forms a flow channel therebetween. The lid comprises at least one second port in communication with the flow channel and the at least one first port of the socket. The device circuitry of the light detection device of the flow cell device is electrically coupled to the electrical contacts of the socket.
In some examples, the cover portion and the base portion are removably coupled, and the flow cell device is removably secured within the enclosure. In some examples, the cover portion engages the lid of the flow cell device, and one or both of the base portion and the electrical contacts engage a back side of the flow cell device. In some such examples, the cover portion and one or both of the base portion and the electrical contacts apply a compressive force to the flow cell device to secure the flow cell device within the enclosure.
In some examples, the flow cell device further comprises a plurality of contact pads extending over the base wafer portion that are electrically coupled to the device circuitry and define exposed back surfaces that comprise portions of the back side of the flow cell device, the electrical contacts engaging the contact pads. In some such examples, the contact pads are electrically coupled to vias of the device circuitry that extend through the base wafer portion. In some such examples, the flow cell device further comprises a support layer extending over the base wafer portion, the support layer extending past the exposed back surfaces of the contact pads.
In some examples, the flow cell device further comprises a substrate portion coupled to and extending over the base wafer portion that defines the back side of the flow cell device, the substrate portion comprising a plurality of electrical leads extending therethrough from the back side of the flow cell device. In some such examples, the substrate portion and the electrical leads comprise a printed circuit board. In some other such examples, the flow cell system further comprises side wall portions extending from the substrate portion, the substrate portion and the side wall portions forming a cavity, and the light detection device being positioned within the cavity. In some such examples, the substrate portion and the side wall portions comprise a ceramic land chip carrier or an organic land chip carrier. In some other such examples, the electrical contacts engage the electrical leads at the back side of the flow cell device. In some such examples, the leads are electrically coupled to exposed contact surfaces of the device circuitry at the detector surface or a lateral side of the flow cell device. In some such examples, the flow cell device further comprises a plurality of electrically conductive wires electrically coupled between the leads and the exposed contact surfaces of the device circuitry.
In some examples, the open portion of the enclosure extends about exposed lateral sides of the flow cell device. In some such examples, the exposed lateral sides of the flow cell device are defined by the base wafer portion, the dielectric layers, the reaction structure, the device circuitry of the light detection device, or combinations thereof. In some examples, the light detection device comprises a complementary metal-oxide semiconductor (CMOS) light sensor.
In another aspect of the present disclosure, a system is provided. The system comprises a flow cell system and an instrument. The flow cell system comprises any of the flow cell systems discussed above. The being instrument coupled with the flow cell system and comprising at least one third port and a plurality instrument electrical contacts. The at least one third port of the instrument is in communication with the at least one first port of the socket to deliver a flow of reaction solution into the flow channel to form a plurality of reaction sites on the detector surface. The instrument electrical contacts are in engagement with the electrical contacts of the socket to transmit data signals between the device circuitry of the light detection device and the instrument.
In another aspect of the present disclosure, a method is provided. The method comprises separating a flow cell device from a wafer level flow cell structure, the wafer level flow cell structure comprising a plurality of integral flow cell devices positioned on/over a common base wafer. The flow cell device comprises a portion of the base wafer, a plurality of dielectric layers extending over the portion of the base wafer, a reaction structure extending over the dielectric layers that comprises a detector surface, a plurality of light sensors positioned within the dielectric layers, device circuitry extending through the dielectric layers electrically coupled to the light sensors to transmit data signals based on photons detected by the light sensors, a plurality of light guides positioned within the dielectric layers between the detector surface and the light sensors, and a lid extending over the detector surface with a flow channel therebetween. The lid comprises at least one first port in communication with the flow channel. The method also comprises positioning the separated flow cell device within a portion of an enclosure of a socket over a base portion thereof such that the device circuitry is electrically coupled to electrical contacts of the socket that are positioned within the enclosure and extend through a portion of the base portion. The method further comprises coupling a cover portion of the socket with the base portion thereof to secure the separated flow cell device within the enclosure of the socket and couple at least one second port of the cover portion in communication with the at least one port of the flow cell device.
In some examples, separating the flow cell device from the wafer level flow cell structure comprises dicing the wafer level flow cell structure. In some such examples, dicing the flow cell device from the wafer level flow cell structure forms lateral side surfaces of the separated flow cell device comprised of least one of the base wafer, the dielectric layers, the reaction structure, the device circuitry and the lid, the lateral side surfaces of flow cell device being exposed within the enclosure.
In some examples, the flow cell devices further comprise contact pads extending over a back side of the base wafer electrically coupled to vias of the device circuitry that extend through the base wafer, and positioning the separated flow cell device within a portion of the enclosure of the socket comprises engaging an exposed surface of the contact pads of the separated flow cell device with the electrical contacts within the enclosure. In some examples, the method further comprises coupling the base wafer portion of the separated flow cell device with a substrate, and electrically coupling the device circuitry of the separated flow cell device with electrical leads of the substrate, and positioning the separated flow cell device within a portion of the enclosure of the socket comprises positioning the separated flow cell device and the substrate within the portion of the enclosure of the socket and engaging an exposed surface of the leads of the substrate with the electrical contacts within the enclosure.
It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein and may be used to achieve the benefits and advantages described herein.
These and other objects, features and advantages of this disclosure will become apparent from the following detailed description of the various aspects of the disclosure taken in conjunction with the accompanying drawings.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings, which are not necessarily drawn to scale and in which like reference numerals represent like aspects throughout the drawings, wherein:
Aspects of the present disclosure and certain examples, features, advantages, and details thereof, are explained more fully below with reference to the non-limiting examples illustrated in the accompanying drawings. Descriptions of well-known materials, fabrication tools, processing techniques, etc., are omitted so as not to unnecessarily obscure the relevant details. It should be understood, however, that the detailed description and the specific examples, while indicating aspects of the disclosure, are given by way of illustration only, and are not by way of limitation. Various substitutions, modifications, additions, and/or arrangements, within the spirit and/or scope of the underlying inventive concepts will be apparent to those skilled in the art from this disclosure.
Approximating language, as used herein throughout disclosure, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “terms “substantially”, “approximately”, “about”, “relatively,” or other such similar terms is not limited to the precise value specified, and is used to describe and account for small fluctuations, such as due to variations in processing, from a reference or parameter. Such small fluctuations include a zero fluctuation from the reference or parameter as well. For example, these terms can refer to less than or equal to ±5%, such as less than or equal to ±2%, such as less than or equal to ±1%, such as less than or equal to ±0.5%, such as less than or equal to ±0.2%, such as less than or equal to ±0.1%, such as less than or equal to ±0.05%. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value.
Terminology used herein is for the purpose of describing particular examples only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, references to “one example” are not intended to be interpreted as excluding the existence of additional examples that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, the terms “comprising” (and any form of “comprise,” such as “comprises” and “comprising”), “have” (and any form of “have,” such as “has” and “having”), “include” (and any form of “include,” such as “includes” and “including”), and “contain” (and any form of “contain,” such as “contains” and “containing”) are used as open-ended linking verbs. As a result, any examples that “comprises,” “has,” “includes” or “contains” one or more step or element possesses such one or more step or element, but is not limited to possessing only such one or more step or element. As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable or suitable. For example, in some circumstances, an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
As used herein and unless otherwise indicated, the term “entirety” (and any other form of “entire”) means at least a substantial portion, such as at least 95% or at least 99%. The term “entirety” (and any other form of “entire”), as used herein, is thereby not limited to 100%, unless otherwise indicated. As used herein, the term “layer” is not limited to a single continuous body of material unless otherwise noted. A “layer” may include multiple sub-layers that may be the same or differing materials, and/or may include coatings, adhesives, and the like. Furthermore, one or more of the layers of the flow cells discoed herein (or sub-layers) may be modified (e.g., etched, deposited with material, etc.) to provide the features described herein.
The terms “connect,” “connected,” “contact,” “coupled” and/or the like are broadly defined herein to encompass a variety of divergent arrangements and assembly techniques. These arrangements and techniques include, but are not limited to (1) the direct joining of one component and another component with no intervening components therebetween (i.e., the components are in direct physical contact); and (2) the joining of one component and another component with one or more components therebetween, provided that the one component being “connected to,” “contacting” or ‘coupled to” the other component is somehow in operative communication (e.g., electrically, fluidly, physically, optically, etc.) with the other component (notwithstanding the presence of one or more additional components therebetween). It is to be understood that some components that are in direct physical contact with one another may or may not be in electrical contact and/or fluid contact with one another. Moreover, two components that are electrically connected, electrically coupled, optically connected, optically coupled, fluidly connected or fluidly coupled may or may not be in direct physical contact, and one or more other components may be positioned therebetween.
Flow cells described herein may be used in various biological and/or chemical processes and systems for academic or commercial analysis. More specifically, the flow cells described herein may be used in various processes and systems where it is desired to detect an event, property, quality, or characteristic that is indicative of a designated reaction. For example, flow cells described herein may include or be integrated with light detection devices, biosensors, and their components, as well as bioassay systems that operate with biosensors.
The flow cells may be configured to facilitate a plurality of designated reactions that may be detected individually or collectively. The flow cells may be configured to perform numerous cycles in which the plurality of designated reactions occurs in parallel. For example, the flow cells may be used to sequence a dense array of DNA features through iterative cycles of enzymatic manipulation and light or image detection/acquisition. The flow cells may be coupled in communication with one or more microfluidic channel that delivers reagents or other reaction components in a reaction solution to a reaction site of the flow cells. The reaction sites may be provided or spaced apart in a predetermined manner, such as in a uniform or repeating pattern. Alternatively, the reaction sites may be randomly distributed. Each of the reaction sites may be associated with one or more light guides and one or more light sensors that detect light from the associated reaction site. In some flow cells, the reaction sites may be located in reaction recesses or chambers, which may at least partially compartmentalize the designated reactions therein.
As used herein, a “designated reaction” includes a change in one or more of a chemical, electrical, physical, or optical property (or quality) of a chemical or biological substance of interest, such as an analyte-of-interest. In particular flow cells, a designated reaction is a positive binding event, such as incorporation of a fluorescently labeled biomolecule with an analyte-of-interest, for example. More generally, a designated reaction may be a chemical transformation, chemical change, or chemical interaction. A designated reaction may also be a change in electrical properties. In particular flow cells, a designated reaction includes the incorporation of a fluorescently-labeled molecule with an analyte. The analyte may be an oligonucleotide and the fluorescently-labeled molecule may be a nucleotide. A designated reaction may be detected when an excitation light is directed toward the oligonucleotide having the labeled nucleotide, and the fluorophore emits a detectable fluorescent signal. In alternative flow cells, the detected fluorescence is a result of chemiluminescence or bioluminescence. A designated reaction may also increase fluorescence (or Förster) resonance energy transfer (FRET), for example, by bringing a donor fluorophore in proximity to an acceptor fluorophore, decrease FRET by separating donor and acceptor fluorophores, increase fluorescence by separating a quencher from a fluorophore, or decrease fluorescence by co-locating a quencher and fluorophore.
As used herein, a “reaction solution,” “reaction component” or “reactant” includes any substance that may be used to obtain one or more designated reactions. For example, potential reaction components include reagents, enzymes, samples, other biomolecules, and buffer solutions, for example. The reaction components may be delivered to a reaction site in the flow cells disclosed herein in a solution and/or immobilized at a reaction site. The reaction components may interact directly or indirectly with another substance, such as an analyte-of-interest immobilized at a reaction site of the flow cell.
As used herein, the term “reaction site” is a localized region where at least one designated reaction may occur. A reaction site may include support surfaces of a reaction structure or substrate where a substance may be immobilized thereon. For example, a reaction site may include a surface of a reaction structure (which may be positioned in a channel of a flow cell) that has a reaction component thereon, such as a colony of nucleic acids thereon. In some flow cells, the nucleic acids in the colony have the same sequence, being for example, clonal copies of a single stranded or double stranded template. However, in some flow cells a reaction site may contain only a single nucleic acid molecule, for example, in a single stranded or double stranded form.
A plurality of reaction sites may be randomly distributed along the reaction structure of the flow cells, or may be arranged in a predetermined manner (e.g., side-by-side in a matrix, such as in microarrays). A reaction site can also include a reaction chamber or recess that at least partially defines a spatial region or volume configured to compartmentalize the designated reaction. As used herein, the term “reaction chamber” or “reaction recess” includes a defined spatial region of the support structure (which is often in fluid communication with a flow channel). A reaction recess may be at least partially separated from the surrounding environment or other spatial regions. For example, a plurality of reaction recesses may be separated from each other by shared walls. As a more specific example, the reaction recesses may be nanowells formed by an indent, pit, well, groove, cavity or depression defined by interior surfaces of a detection surface and have an opening or aperture (i.e., be open-sided) so that the nanowells can be in fluid communication with a flow channel.
In some flow cells, the reaction recesses of the reaction structure of the flow cells are sized and shaped relative to solids (including semi-solids) so that the solids may be inserted, fully or partially, therein. For example, the reaction recesses may be sized and shaped to accommodate a capture bead. The capture bead may have clonally amplified DNA or other substances thereon. Alternatively, the reaction recesses may be sized and shaped to receive an approximate number of beads or solid substrates. As another example, the reaction recesses may be filled with a porous gel or substance that is configured to control diffusion or filter fluids that may flow into the reaction recesses.
Light sensors (e.g., photodiodes) of one or more light detection devices of the flow cells may be associated with corresponding reaction sites. A light sensor that is associated with a reaction site detects light emissions from the associated reaction site via at least one light guide when a designated reaction has occurred at the associated reaction site. In some flow cells, a plurality of light sensors (e.g., several pixels of a light detection or camera device) may be associated with a single reaction site. In other flow cells, a single light sensor (e.g. a single pixel) may be associated with a single reaction site or with a group of reaction sites. The light sensor, the reaction site, and other features of the flow cells may be configured so that at least some of the light is directly detected by the light sensor without being reflected.
As used herein, a “biological and/or chemical substance” includes biomolecules, samples-of-interest, analytes-of-interest, and other chemical compound(s). A biological and/or chemical substance may be used to detect, identify, or analyze other chemical compound(s), or function as intermediaries to study or analyze other chemical compound(s). In particular flow cells, the biological and/or chemical substances include a biomolecule. As used herein, a “biomolecule” includes one or more of a biopolymer, nucleoside, nucleic acid, polynucleotide, oligonucleotide, protein, enzyme, polypeptide, antibody, antigen, ligand, receptor, polysaccharide, carbohydrate, polyphosphate, cell, tissue, organism, or fragment thereof or any other biologically active chemical compound(s) such as analogs or mimetics of the aforementioned species. In a further example, a biological and/or chemical substance or a biomolecule includes an enzyme or reagent used in a coupled reaction to detect the product of another reaction such as an enzyme or reagent, such as an enzyme or reagent used to detect pyrophosphate in a pyrosequencing reaction.
Biomolecules, samples, and biological and/or chemical substances may be naturally occurring or synthetic and may be suspended in a solution or mixture within a reaction recess or region. Biomolecules, samples, and biological and/or chemical substances may also be bound to a solid phase or gel material. Biomolecules, samples, and biological and/or chemical substances may also include a pharmaceutical composition. In some cases, biomolecules, samples, and biological and/or chemical substances of interest may be referred to as targets, probes, or analytes.
As used herein, a “flow cell” includes a device that includes a lid extending over a reaction structure that cooperatively form at least one flow channel therebetween that is in communication with a plurality of reaction sites of the reaction structure, and includes at least one light detection device that is configured to detect designated reactions that occur at or proximate to the reaction sites. A flow cell may include a solid-state light detection or “imaging” device (e.g., CCD, CMOS light detection device, etc.). As one specific example, a flow cell may be configured to fluidically and electrically couple to a biosensor cartridge with an integrated pump, which may be configured to fluidically and/or electrically couple to a bioassay system. A biosensor and/or bioassay system may deliver a reaction solution to reaction sites of a flow cell according to a predetermined protocol (e.g., sequencing-by-synthesis), and perform a plurality of imaging events. For example, a biosensor and/or bioassay system may direct one or more reaction solutions through the flow channel of the flow cell, and thereby along the reaction sites. One or more of the reaction solutions may include four types of nucleotides having the same or different fluorescent labels. The nucleotides may bind to the reaction sites of the flow cell, such as to corresponding oligonucleotides at the reaction sites. The biosensor and/or bioassay system may then illuminate the reaction sites using an excitation light source (e.g., solid-state light sources, such as light-emitting diodes (LEDs)). The excitation light may have a predetermined wavelength or wavelengths, including a range of wavelengths. The fluorescent labels excited by the incident excitation light may provide emission signals (e.g., light of a wavelength or wavelengths that differ from the excitation light and, potentially, each other) that may be detected by the light sensors of the flow cell.
As used herein, the term “immobilized,” when used with respect to a biomolecule or biological and/or chemical substance, includes attaching the biomolecule or biological and/or chemical substance at a molecular level to a surface, such as to a detection surface of a reaction structure over the light detection device of the flow cell. For example, a biomolecule or biological and/or chemical substance may be immobilized to a detection surface of the reaction structure of the flow cell using adsorption techniques including non-covalent interactions (e.g., electrostatic forces, van der Waals, and dehydration of hydrophobic interfaces) and covalent binding techniques where functional groups or linkers facilitate attaching the biomolecules to the detection surface. Immobilizing biomolecules or biological and/or chemical substances to the detection surface of the reaction structure of the flow cell may be based upon the properties of the surface, the liquid medium carrying the biomolecule or biological and/or chemical substance, and the properties of the biomolecules or biological and/or chemical substances themselves. In some cases, the detection surface may be functionalized (e.g., chemically or physically modified) to facilitate immobilizing the biomolecules (or biological and/or chemical substances) thereto.
In some examples, nucleic acids can be immobilized to the reaction structure of the flow cell, such as to surfaces of reaction recesses or nanowells thereof. Natural nucleotides and enzymes that are configured to interact with the natural nucleotides maybe utilized. Natural nucleotides include, for example, ribonucleotides or deoxyribonucleotides. Natural nucleotides can be in the mono-, di-, or tri-phosphate form and can have a base selected from adenine (A), Thymine (T), uracil (U), guanine (G) or cytosine (C). It will be understood, however, that non-natural nucleotides, modified nucleotides or analogs of the aforementioned nucleotides can be utilized.
As noted above, a biomolecule or biological and/or chemical substance may be immobilized at a reaction site in a nanowell of a reaction structure of the flow cell. Such a biomolecule or biological substance may be physically held or immobilized within the reaction recesses through an interference fit, adhesion, covalent bond, or entrapment. Items or solids may be disposed within the reaction recesses, such as include polymer beads, pellets, agarose gel, powders, quantum dots, or other solids that may be compressed and/or held within the nanowell. In certain implementations, the nanowells may be coated or filled with a hydrogel layer capable of covalently binding DNA oligonucleotides. A nucleic acid superstructure, such as a DNA ball, can be disposed in or at a nanowell, for example, by attachment to an interior surface of the nanowells or by residence in a liquid within the nanowells. A DNA ball or other nucleic acid superstructure can be performed and then disposed in or at a nanowell. Alternatively, a DNA ball can be synthesized in situ at a nanowell. A substance that is immobilized in a nanowell can be in a solid, liquid, or gaseous state.
The disclosed flow cells may be configured for biological and/or chemical analysis to obtain any information or data that relates thereto. Particular flow cells may comprise part of a nucleic acid sequencing system (or sequencer) configured for various applications, including but not limited to de novo sequencing, resequencing of whole genomes or target genomic regions, and metagenomics. The sequencing system may be configured to perform DNA or RNA analysis. The flow cells may be configured to perform a large number of parallel reactions on the active surface thereof to obtain information relating to the reactions.
The flow cells may include one or more flow channels that direct a solution to or toward reaction sites on the active area/surface of the reaction structure over one or more light detection devices, as explained further below. In use, the flow cells may thereby be in fluid communication with a fluid storage system (not shown) that may store various reaction components or reactants that are used to conduct the designated reactions in the flow cell, for example. The fluid storage system may also store fluids for washing or cleaning the or more flow channel of the flow cell and/or for diluting the reactants. For example, the fluid storage system may include various reservoirs to store samples, reagents, enzymes, other biomolecules, buffer solutions, aqueous, and non-polar solutions, and the like. Furthermore, the fluid storage system may also include waste reservoirs for receiving waste products from the flow cell.
The base portion 52 may include an exterior bottom surface 64 an interior bottom surface 62 opposing the exterior bottom surface 64. The interior bottom surface 62 may form a bottom boundary of the enclosure 56. In some examples, the base portion 52 may further include a plurality of opposing interior side walls 58 that extend upwardly from the interior bottom surface 62, as shown in
As shown in
The electrical contacts 60 may comprise any configuration that is effective to electrically couple (e.g., contact or directly abut) with the circuitry of the at least one light detection device of the flow cell 2. For example, the electrical contacts 60 may comprise leads, static pins, pogo pins (or other dynamic pins or leads), balls (e.g., solder balls), bare lands, one or more conductive film (e.g., an anisotropic conductive film), or any other configuration that provides for surface mounting of the flow cell 2 on the electrical contacts 60 within the enclosure 56. The electrical contacts 60 may be arranged in an array that corresponds or is compatible with one or more flow cells 2 such that the electrical contacts 60 electrically couple with the circuitry of the flow cells 2 when at least one of the flow cells 2 is positioned within the enclosure 56 and the base portion 52 and the top cover portion 54 are in engagement, as shown in
The electrical contacts 60 may be exposed or otherwise accessible at the exterior bottom surface 64 of the base portion 52 of the socket 80, as shown in
The cover portion 54 may include an exterior top surface 66 an interior top surface 68 opposing the exterior top surface 66, as shown in
The cover portion 54 may be configured such that the at least one port 70 thereof is in communication (e.g., at least partially aligned and engaged) with at least one corresponding port of the flow cell 2 positioned within the enclosure 56, as shown in
In some examples, the instrument 82 may provide a flow of reaction solution to the flow cell 2 within the enclosure 56 of the socket 50 that reacts with a biological and/or chemical substance immobilized within the flow cell 2 to form reaction sites. When illuminated through a lid of the flow cell 2, the light detection device of the flow cell is able to sense the chemical reactions of the reaction sites via light emitted therefrom (in response to the illumination light) and produce electrical data signals to the circuitry thereof in response thereto. The signals may be conducted through the circuitry of the light detection devices of the flow cell and to the instrument 82 via the electrical contacts 60 of the socket 50. At least a portion of the cover portion 54 may thereby comprise a material that is transparent to the excitation light to allow light that emanates from exterior of the socket 50 (e.g., above the cover portion 54) to propagate into the flow cell 2 within the enclosure 56. In some examples, at least a portion of the cover portion 54 may comprise a material that is optically transparent to at least the excitation light and has low or no autofluorescence, such as, but not limited to, cyclic olefin copolymer (COC). In some examples, the cover portion 54 may comprise an electrically non-conductive and/or semiconductor material, such as polymer (e.g., a thin film polymer), glass, silicon, silica, quartz, fiberglass, epoxy, ceramic or a combination thereof. The cover portion 54 may comprise two or more separate and distant components that are coupled together, or may be of one-piece construction.
As shown in
In some examples, the flow cell 2 may define a smaller lateral size (i.e., footprint) than that of the enclosure 56. As shown in
The flow cell 2 may be removably coupled/maintained within the enclosure via engagement of the cover portion 54 and the base portion 52, as shown in
The lid 4 may form a flow channel 6 between an inner side/surface of the lid 4 and a top reaction/detector surface 22 of each light detection device 10. A flow channel 6 formed via the lid 4 may extend over the detector surface 22 of a single light detection device or over the detector surfaces 22 of a plurality of adjacent light detection devices 10. The light detection devices 10 may comprise a plurality of stacked layers, such as the common base layer portion 14 (e.g., wafer portion) and a plurality of dielectric layers and metal-dielectric layers positioned thereover, as described above. As shown in
The light detection devices 10 may be manufactured using integrated circuit manufacturing processes, such as processes used to manufacture charged-coupled devices circuits (CCD) or complementary-metal-oxide semiconductor (CMOS) devices or circuits. The light detection devices 10 may thereby include, for example, one or more semiconductor materials, and may take the form of, for example, CMOS light detection devices (e.g., a CMOS image sensor) or a CCD image sensor, another type of image sensor. In the present example, the light detection devices 10 comprise CMOS type image sensors as shown in
When configured as CMOS-type light detection devices 10, the “complementary” aspect refers to the inclusion of both n-type and p-type metal-oxide semiconductor field effect transistors (MOSFETs) in integrated circuits (ICs) fabricated using CMOS technology. Each MOSFET has a metal gate with a gate dielectric, such as an oxide (hence, the “Metal-Oxide” part of the name) and a semiconductor material below the gate (corresponds to “Semiconductor” in the name). When the light detection devices 10 are configured as shown in
As a semiconductor based light detection device 10, at least some of the circuitry 24 may be provided within device substrate/layers (e.g., dielectric layers), through/into which the lights guides 18 may each extend. Each of the substrate layers may include interconnected conductive elements that form at least part of the device circuitry 24, with dielectric material adjacent (e.g., surrounding) to the conductive elements/circuitry 24. The conductive elements/circuitry 24 may thereby be embedded within dielectric material. The lights guides 18 may also extend through the dielectric material and may be spaced from the circuitry 24. Various metallic elements and/or dielectric materials may be utilized, such as those suitable for integrated circuit manufacturing (e.g., CMOS manufacturing). For example, the conductive elements/circuitry 24 may be metallic elements, such as gold, tungsten, copper, aluminum or a combination thereof, but it is understood that other materials and configurations may be utilized. The dielectric material may be a low-k material and/or a silicon-containing material, such as SiO2, but it is understood that other dielectric materials and configurations may be utilized.
The light detection devices 10 may also include a reaction structure 20 extending along a top portion thereof, including over openings of the light guides 18, as shown in
As shown in
The area of the light detection devices 10 which is light sensitive is referred to as the active area. The active area of the light detection devices 10 thereby includes the area containing the light guides 18, which direct light to the light sensors 12. As noted above, the top portion of the light detection devices 10 include a reaction structure 20 with an array of reaction recesses 16 positioned thereover for containing at least one corresponding reaction site thereon/therein that are available/accessible for reagent delivery and reaction (e.g., responsive to an analyte in a reaction fluid) and illumination during operation of the flow cells 2. As shown in
The exposed top surfaces of the reaction structure 20 (i.e., the exposed top surfaces of the reaction recesses 16 and/or the interstitial areas extending therebetween and thereabout) may comprise smooth planar/flat surfaces. In particular examples, the exposed top surfaces of the interstitial areas and/or reaction recesses 16 of the reaction structure 20 may be smooth planar/flat surfaces that prevent reaction solution or any other biological and/or chemical substances from being trapped or remaining thereon and/or prevent pad hopping errors. For example, the top exposed surfaces of the reaction structure 20 may include a surface roughness in the micrometric range, such as a surface roughness of less than or equal to about 20 μm, or less than or equal to about 1 μm. In some examples, the exposed top surface of the reaction structure 20 may include a surface roughness of less than or equal to about 100 nm, or less than or equal to about 10 nm.
The reaction structure 20 may comprise one or more layers. In one example, the reaction structure 20 includes a plurality of overlapping layers. The reaction structure 20 may include one or more layers that are configured to allow excitation light signals and/or emitted light signals from the reaction sites in the reaction recesses 16 (after treatment with reaction solution) to pass therethrough, into an opening of one or more corresponding light guide 18, and potentially to one or more corresponding light sensor 12 (depending upon the configuration of the light guides 18, for example). As another example, the reaction structure 20 may include one more layer that prevents crosstalk or “sharing” of emitted light from a particular reaction site in a reaction recess 16 from propagating/passing to a non-corresponding sensor 12.
The reaction structure 20 may provide a solid exposed detector surface 22 that permits chemicals, biomolecules or other analytes-of-interest to be immobilized thereon. For example, each of the reaction sites positioned on/in the reaction recesses 16 may include a cluster of biomolecules that are immobilized on the exposed outer surface thereof. Thus, the reaction structure 20 may comprise a material that permits the reaction sites to be immobilized to the reaction recesses 16. The reaction structure 20 may be physically and/or chemically modified to facilitate immobilizing the biomolecules to form the reaction sites and/or to facilitate detection of the light emissions therefrom. Examples of layers which may form the reaction structure 20, at least in part, include at least one SiN layer and at least one TaO layer. However, the reaction structure 20 may comprise differing layers (e.g., different layers, fewer layers, and/or additional layers) and/or differing materials.
The exposed outer surface (or detector surface) 22 of the reaction structure 20 of each light detection device 10 may be functionalized (e.g., chemically and/or physically modified in a suitable manner for conducting the designated reactions). For example, the detector surface 22 may be functionalized and may include at least one reaction site on/within the nanowells 16 having one or more biomolecules immobilized thereto. The reaction sites may include biological and/or chemical substances that are configured to initiate a reaction and/or form a reaction product that generates/emits light signals in response to the excitation light. In particular examples, the reaction sites may include clusters/colonies of biomolecules (e.g., oligonucleotides) that are immobilized on the detector surface 22 within the nanowells 16. For example, the reactions sites may generate light emissions in response to incident excitation light after treatment with the reaction solution. The excitation light may be emitted or produced from any illumination source (not shown), which may or may not be part of the flow cells 2. In some examples, the illumination system may emit the excitation light at a certain wavelength or wavelengths that excites the biological and/or chemical substance(s) of the reaction sites (e.g., a reaction initiated by the reaction solution and/or reaction product formed via the reaction solution at the reactions sites).
The light guides 18 may comprise a filter material configured to filter the excitation light or a range of wavelengths including that of the excitation light, and permit the light emissions from at least one reaction site of at least one corresponding reaction recess 16 (or a range of wavelengths including that of the light emissions) to propagate therethrough and toward at least one corresponding light sensor 12. The light guides 18 may be, for example, an absorption filter (e.g., an organic absorption filter) such that the filter material absorbs a certain wavelength (or range of wavelengths) and allows at least one predetermined wavelength (or range of wavelengths) to pass therethrough. Each of the light guides 18 of the array may include substantially the same filter material, or differing light guides 18 may include differing filter material. Each light guide 18 may thereby be configured relative to surrounding material of the device 10 (e.g., dielectric material) to form a light-guiding structure. For example, the light guides 18 may have a refractive index of at least about 2.0. In certain configurations, the light guides 18 may comprise an optical density (OD) or absorbance of the excitation light of at least about 4 OD.
As shown in
As shown in
Each flow channel 6 is configured (e.g., sized and shaped) to direct a fluid, such as the reaction solution, along the detector surface 22 of the reaction structure 20 of the associated light detection device 10. As shown in
In some examples, the lid 4 may be indirectly coupled to the top surface 22 of the reaction structure 20 of the light detection devices 10 via an intervening layer, which may or may not at least partially define the lateral sides of the flow channels 6. In other examples, the lid 4 may be directly coupled to the top surfaces 22 of the reaction structure 20 of the light detection devices 10. In such an example, the lid 4 may include side wall portions that that space portions of the bottom surface/portion of the lid 4 extending over the light detection devices 10 above the exposed outer top surface 22 of the reaction structure 20. The side wall portions of such a lid 4 may define the lateral sides of the flow channels 6. In one example, the lid 4 may be directly coupled to the top surfaces of the reaction structure 20 of the light detection devices 10 via a low autofluorescence adhesive.
As also shown in
The at least one port 8 may allow for the flow of a reagent fluid or solution into, and potentially through, the associated flow channel 6. As explained above, during use of the flow cells 2 (e.g., after dicing of the wafer level flow cell structure 1 and coupling the diced flow cells 2 with the socket 50), chemical reactions may take place between the reagent solution and the reaction sites on the detector surface 22 of the reaction structure 20 of each light detection device 10 in the respective flow channel 6. When illuminated through the lid 4, the light detection devices 10 of the flow cells 2 are able to sense the chemical reactions that take place in the flow channel 6 via light emitted therefrom and produce signals in response thereto. The signals may be conducted through the circuitry 24 of the light detection devices 10. The lid 4 may thereby comprise a material that is transparent to the excitation light propagating from an exterior of the flow cells 2 and toward/into the flow channels 6. It is noted that excitation light may approach the lid 4 from any angle, and along the same or different angles. In some examples, the lid 4 may comprise a material that is optically transparent to at least the excitation light and has low or no autofluorescence, such as, but not limited to, cyclic olefin copolymer (COC).
Initially, the reaction sites of the nanowells 16 of the reaction structure 20 of a light detection device 10 may not include a designated reaction. As discussed above, a reaction site may include biological and/or chemical substances immobilized to the detector surface 22 on the base and/or side surfaces of the nanowells 16 of the reaction structure 20. In some examples, the biological and/or chemical substances that may ultimately form a designated reaction may be immobilized to the reaction structures 20 (e.g., the nanowells 16 thereof) prior to the lid 4 being coupled to the light detection devices 10 of the flow cells 2 (i.e., prior to formation of the flow channels 6) of the wafer level flow cell structure 1. In some other examples, the biological and/or chemical substances that may ultimately form a designated reaction may be immobilized to the reaction structures 20 (e.g., the nanowells 16 thereof) after the lid 4 is coupled to the light detection devices 10 of the flow cells 2 (i.e., subsequent to formation of the flow channels 6) of the wafer level flow cell structure 1. Further, the biological and/or chemical substances that may ultimately form a designated reaction may be immobilized to the reaction structures 20 (e.g., the nanowells 16 thereof) of the light detection devices 10 of the flow cells 2 of the wafer level flow cell structure 1, or may be immobilized to the reaction structures 20 of the light detection devices 10 of distinct flow cells 2 are separation thereof (e.g., via dicing) from the wafer level flow cell structure 1.
In particular examples, the reaction sites are located proximate to an opening of at least one corresponding light guide 18 so that designated/predefined light emissions emitted from the reaction sites after a designated reaction has occurred via treatment with the reaction solution propagate through the reaction structure 20, through the at least one corresponding light guide 18, and to at least one corresponding light sensor 12.
The biological and/or chemical substances of a single reaction site may be similar or identical (e.g., a colony of analytes (e.g., oligonucleotides) that have a common sequence). However, in other examples, a single reaction site and/or nanowell 16 may include differing biological and/or chemical substances. Before a designated reaction, the reaction sites may include one or more analyte (e.g., an analyte-of-interest). For example, the analyte may be an oligonucleotide or a colony thereof (e.g., an oligonucleotide-of-interest). The oligonucleotides may have an effectively common sequence and bind with a particular fluorescently labeled biomolecule, such as a fluorescently-labeled nucleotide.
However, prior to the designated reaction, the fluorophores of the fluorescently labeled biomolecule are not incorporated or bonded to the biological and/or chemical substances (e.g., an oligonucleotides) at the reaction sites. To achieve the designated reaction (i.e., to incorporate a fluorescently labeled biomolecule with the biological and/or chemical substances of the reaction sites 114), a flow of the reaction solution may be provided into the flow channel 6 of a light detection device 10 of a flow cell 2 via the at least one port 8, and thereby to the reaction structure 20 thereof. The reaction solution may be any solution. In some examples, the reaction solution may comprise a liquid. For example, the reaction solution may be an aqueous solution. In one implementation, the reaction solution contains one or more nucleotide types, at least some of which are fluorescently-labeled, and the reaction solution also contains one or more biomolecules, such as polymerase enzymes, which incorporate nucleotides into a growing oligonucleotide at the reaction site, thereby labeling the oligonucleotide with a fluorescently-labeled nucleotide. In this implementation, a wash solution may be utilized remove any free nucleotides that did not incorporate into oligonucleotides. The reaction sites can then be illuminated with an excitation light, causing fluorescence in those reaction sites where a fluorescently-labeled nucleotide was incorporated. Reaction sites that did not incorporate a fluorescently-labeled nucleotide do not emit light upon incident excitation light.
As shown in
As shown in
The electrically insulative portions 30 of the redistribution portion extend over (directly or indirectly) the back side of the base wafer portion 14, as shown in
The vias 28 extending through the base wafer portion 14 may compromise or weaken the structural integrity of the base wafer portion 14, and thereby the light detection devices 10 of the flow cells 2 and the flow cells themselves (e.g., before and after being separated from the wafer level flow cell structure 1. To provide structural support/rigidly to the base wafer portion 14, and thereby the light detection devices 10 themselves and the flow cells 2 comprising the light detection devices 10, the wafer level flow cell structure 1 may include a support layer 36 extending over (directly or indirectly) the back side of the base wafer portion 14. For example, as shown in
As shown in
A separate and distinct back side contact pad 34 may be provided for each electrically conductive portion 32 and an associated via 28 (i.e., an exclusively associated via 128) of each light detection device 10 of each flow cell 2 of the wafer level flow cell structure 1. As each back side contact pad 34 is in electrical connection/communication with an electrically conductive portion 32, and each electrically conductive portion 32 is in electrical connection/communication with a via 28 of the device circuitry 24 of a light detection device 10, the back side contact pads 34 can transmit (e.g., conduct) the electrical data signals from the circuitry 24 of the light detection devices 10 (based on photons detected by the light sensors 16 thereof) and to the circuitry 24 of the light detection devices 10. The support layer 36 may be electrically insulative or non-conductive (or a semiconductor) so as to not interfere with the operation of the contact pads 34 from transmitting/conducting the data signals from/to the circuitry 24 of the light detection devices 10. The back side contact pads 34 may comprise an electrically conductive material (e.g., copper, gold, tungsten, aluminum or a combination thereof), but it is understood that other electrically conductive materials may be utilized.
As shown in
The socket 150 of the flow cell system 180 is similar to the socket 50 of
As also shown in
It is noted that the wafer level flow cell structure 201 may have included a temporary support layer (not shown), such as the support layer 36 described above with respect to the wafer level flow cell structure 1 of
As shown in
As also shown in
The device circuitry 324 of the light detection devices 310 of the flow cells 302 of the wafer level flow cell structure 301 may extend to a top side of the light detection devices 310. For example, as shown in
In some examples (not shown), the contact surfaces 376 of the device circuitry 324 may be positioned at (and thereby define a portion of) a lateral side of the light detection devices 310, which may form lateral sides of the flow cell 302 after separation from the wafer level flow cell structure 301. The contact surfaces 376 of the device circuitry 324 may thereby be exposed and accessible at lateral sides of the flow cell 302. For example, the device circuitry 324 may extend through a portion of the reaction structure 20, the dielectric material, the base wafer portion 314 or the lid 304 (or a layer extending thereover) to an exposed lateral side edge of the flow cell 302 defined thereby. In such examples, the device circuitry 324 may not extend entirely through the reaction structure 320 to the top surface 322 thereof.
As shown in
As shown in
The substrate portion 392 of the flow cell device carrier 390 may include a plurality electrically conductive vias/leads 398 extending therethrough from an exterior back side surface 393 (e.g., bottom surface) of the substrate portion 392 at least to an interior surface of the substrate portion 392 that is positioned in, and/or defines, the cavity 396, as shown in
As shown in
As shown in
The exposed contact surfaces 376 of the device circuitry 324 of the light detection device 310 of the flow cell 302 (e.g., positioned at the top and/or side surfaces of the flow cell 302) may be electrically coupled to the electrically conductive vias 398 within the cavity 396. As shown in
As shown in
When the flow cell device carrier 390 is positioned within the enclosure 356 of the socket 350, the vias 398 of the substrate portion 352 of the flow cell device carrier 390 may be electrically coupled to the electrical contacts 360 of the base portion 352 of the socket 350, as shown in
The substrate portion 440 may include a plurality electrically conductive vias/leads 498 extending therethrough from an exterior back side surface 493 (e.g., bottom surface) to the top surface thereof, as shown in
The exposed contact surfaces 376 of the device circuitry 324 of the light detection device 310 of the flow cell 302 (e.g., positioned at the top and/or side surface of the flow cell 302) may be electrically coupled to the electrically conductive vias 498 within the substrate portion 440, as shown in
As shown in
When the coupled substrate portion 440, wires 499 and flow cell 302 are positioned within the enclosure 356 of the socket 350, the vias 498 of the substrate portion 440 may be electrically coupled to the electrical contacts 360 of the base portion 352 of the socket 350, as shown in
Among the various systems and methods described above, some examples thereof include the following.
A1. A flow cell system, comprising: a socket comprising a base portion, a plurality of electrical contacts, and a cover portion coupled with the base portion comprising at least one first port, wherein the base portion and the cover portion cooperatively form an enclosure, wherein the electrical contacts extend between the enclosure and an exterior side of the base portion, and the at least one first port extends between the enclosure and an exterior side of the cover portion; and a flow cell device secured within the enclosure of the socket, comprising: a frameless light detection device comprising a base wafer portion, a plurality of dielectric layers extending over the base wafer portion, a reaction structure extending over the dielectric layers that comprises a detector surface, a plurality of light sensors, device circuitry extending through the dielectric layers electrically coupled to the light sensors to transmit data signals based on photons detected by the light sensors, and a plurality of light guides associated with the light sensors; and a lid extending over the detector surface with a flow channel therebetween, the lid comprising at least one second port in communication with the flow channel and the at least one first port of the socket, wherein the device circuitry of the light detection device of the flow cell device is electrically coupled to the electrical contacts of the socket.
A2. A flow cell system, according to A1, wherein the cover portion and the base portion are removably coupled, and wherein the flow cell device is removably secured within the enclosure. A3. A flow cell system, according to A1 or A2, wherein the cover portion engages the lid of the flow cell device, and one or both of the base portion and the electrical contacts engage a back side of the flow cell device. A4. A flow cell system, according to A3, wherein the cover portion and one or both of the base portion and the electrical contacts apply a compressive force to the flow cell device to secure the flow cell device within the enclosure.
A5. A flow cell system, according to any one of A1-A4, wherein the flow cell device further comprises a plurality of contact pads extending over the base wafer portion that are electrically coupled to the device circuitry and define exposed back surfaces that comprise portions of the back side of the flow cell device, and wherein the electrical contacts engage the contact pads. A6. A flow cell system, according to A5, wherein the contact pads are electrically coupled to vias of the device circuitry that extend through the base wafer portion. A7. A flow cell system, according to A5 or A6, wherein the flow cell device further comprises a support layer extending over the base wafer portion, and wherein the support layer extends past the exposed back surfaces of the contact pads.
A8. A flow cell system, according to any one of A1-A4, wherein the flow cell device further comprises a substrate portion coupled to and extending over the base wafer portion that defines the back side of the flow cell device, wherein the substrate portion comprises a plurality of electrical leads extending therethrough from the back side of the flow cell device. A9. A flow cell system, according to A8, wherein the electrical contacts engage the electrical leads at the back side of the flow cell device. A10. A flow cell system, according to A8 or A9, wherein the electrical leads are electrically coupled to exposed contact surfaces of the device circuitry at the detector surface or a lateral side of the flow cell device. A11. A flow cell system, according to A10, wherein the flow cell device further comprises a plurality of electrically conductive wires electrically coupled between the electrical leads and the exposed contact surfaces of the device circuitry.
A12. A flow cell system, according to A8, wherein the substrate portion and the electrical leads comprise a printed circuit board. A13. A flow cell system, according to A8, further comprising side wall portions extending from the substrate portion, the substrate portion and the side wall portions forming a cavity, and wherein the light detection device is positioned within the cavity. A14. A flow cell system, according to A13, wherein the substrate portion and the side wall portions comprise ceramic land chip carrier or an organic land chip carrier.
A15. A flow cell system, according to any one of A1-A14, wherein an open portion of the enclosure extends about exposed lateral sides of the flow cell device. A16. A flow cell system, according to A15, wherein the exposed lateral sides of the flow cell device are defined by the base wafer portion, the dielectric layers, the reaction structure, the device circuitry of the light detection device, or combinations thereof.
A17. A flow cell system, according to any one of A1-A16, wherein the light detection device comprises a complementary metal-oxide semiconductor (CMOS) light sensor.
B1. A system, comprising: a flow cell system according to any one of A1-A17; and an instrument coupled with the flow cell system comprising at least one third port and a plurality instrument electrical contacts, wherein the at least one third port of the instrument is in communication with the at least one first port of the socket to deliver a flow of reaction solution into the flow channel to form a plurality of reaction sites on the detector surface, and wherein the instrument electrical contacts are in engagement with the electrical contacts of the socket to transmit data signals between the device circuitry of the light detection device and the instrument.
C1. A method, comprising: separating a flow cell device from a wafer level flow cell structure, the wafer level flow cell structure comprising a plurality of integral flow cell devices positioned on a common base wafer, the flow cell devices comprising: a portion of the base wafer; a plurality of dielectric layers extending over the portion of the base wafer; a reaction structure extending over the dielectric layers that comprises a detector surface; a plurality of light sensors positioned within the dielectric layers; device circuitry extending through the dielectric layers electrically coupled to the light sensors to transmit data signals based on photons detected by the light sensors; a plurality of light guides positioned within the dielectric layers between the detector surface and the light sensors; and a lid extending over the detector surface with a flow channel therebetween, the lid comprising at least one first port in communication with the flow channel; positioning the separated flow cell device within a portion of an enclosure of a socket over a base portion thereof such that the device circuitry is electrically coupled to electrical contacts of the socket that are positioned within the enclosure and extend through a portion of the base portion; and coupling a cover portion of the socket with the base portion thereof to secure the separated flow cell device within the enclosure of the socket and couple at least one second port of the cover portion in communication with the at least one port of the flow cell device.
C2. A method, according to C1, wherein separating the flow cell device from the wafer level flow cell structure comprises dicing the wafer level flow cell structure. C3. A method, according to C2, wherein dicing the flow cell device from the wafer level flow cell structure forms lateral side surfaces of the separated flow cell device comprised of least one of the base wafer, the dielectric layers, the reaction structure, the device circuitry and the lid, and wherein the lateral side surfaces of flow cell device are exposed within the enclosure.
C4. A method, according to any one of C1-C3, wherein the flow cell devices further comprise contact pads extending over a back side of the base wafer electrically coupled to vias of the device circuitry that extend through the base wafer, and wherein positioning the separated flow cell device within a portion of the enclosure of the socket comprises engaging an exposed surface of the contact pads of the separated flow cell device with the electrical contacts within the enclosure.
C5. A method, according to any one of C1-C3, further comprising coupling the base wafer portion of the separated flow cell device with a substrate, and electrically coupling the device circuitry of the separated flow cell device with electrical leads of the substrate, and wherein positioning the separated flow cell device within a portion of the enclosure of the socket comprises positioning the separated flow cell device and the substrate within the portion of the enclosure of the socket and engaging an exposed surface of the leads of the substrate with the electrical contacts within the enclosure.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described examples (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various examples without departing from their scope. While dimensions and types of materials may be described herein, they are intended to define parameters of some of the various examples, and they are by no means limiting to all examples and are merely exemplary. Many other examples will be apparent to those of skill in the art upon reviewing the above description. The scope of the various examples should, therefore, be determined with reference to the claims included herein, along with the full scope of equivalents to which such claims are entitled.
As used herein, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, as used herein, the terms “first,” “second,” and “third,” etc. are used merely as referee labels, and are not intended to impose numerical, structural or other requirements on their objects. Forms of term “based on” herein encompass relationships where an element is partially based on as well as relationships where an element is entirely based on. Forms of the term “defined” encompass relationships where an element is partially defined as well as relationships where an element is entirely defined. Further, the limitations of the claims included herein are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function cavity of further structure. It is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular example. Thus, for example, those skilled in the art will recognize that the devices, systems and methods described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
While the disclosure has been described in detail in connection with only a limited number of examples, it should be readily understood that the disclosure is not limited to such disclosed examples. Rather, this disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the disclosure. Additionally, while various examples have been described, it is to be understood that aspects of the disclosure may include only one example or some of the described examples. Also, while some disclosure are described as having a certain number of elements, it will be understood that the examples can be practiced with less than or greater than the certain number of elements.
It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein.
This patent application is a divisional of U.S. patent application Ser. No. 16/678,915, filed Nov. 8, 2019, and entitled Flow Cell Systems and Methods Related to Same, which claims priority to U.S. Provisional Patent Application No. 62/771,194, filed Nov. 26, 2018, and entitled Flow Cell Systems and Methods Related to Same. The entire contents of each of the aforementioned applications are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62771194 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16678915 | Nov 2019 | US |
Child | 18166023 | US |