The present invention relates to assemblies through which fluid may flow and more particularly to valving mechanisms both regulating and indicating fluid flow in connection with water-cleaning systems for pools and spas (or otherwise as appropriate).
Commonly-owned U.S. Pat. No. 6,484,743 to Bauckman, whose contents are incorporated herein in their entirety by this reference, discloses exemplary flow control assemblies for use especially with automatic swimming pool cleaners (APCs). As disclosed in the Bauckman patent, versions of the assemblies may be “place[d] between lengths of hose or fittings used in swimming pools,” for example. See Bauckman, col. 3, 11. 26-27. Such an assembly may include a body having an inlet and an outlet together with a pivoting cover. When the cover pivots to an open position because of reduced pressure inside the body, a bypass inlet to the body is formed. See id., 11. 48-53.
Commonly-owned U.S. Patent Application Publication No. 2011/0226361 of van der Meijden, et al., whose contents likewise are incorporated herein in their entirety by this reference, describes other bypass devices for use principally with pool and spa water-cleaning systems. Referenced in the van der Meijden application as “idler mechanism[s],” at least one version of the devices may be “configured as an interface unit for positioning between a hose and a body of an APC.” See van der Meijden, p. 1, ¶0012. This version may include both an inlet and an outlet as well as an additional opening intended, when open, to allow fluid to bypass the APC.
Protecting APCs from unsuitably high water flow rates may reduce risk of damage to internal components of the APCs and thus prolong their useful lives. The present invention hence provides alternatives to, among others, the bypass devices of the Bauckman patent and the van der Meijden application. In particular, devices of the present invention may function both to allow fluid to bypass APCs and to indicate (at least generally) the rate of fluid flow through their bodies. The devices further may serve as adaptors or interfaces between APCs and hoses, for example, thus requiring their presence as part of water recirculation circuits before the APCs will operate. Placement of the devices adjacent APCs causes them to experience substantially the same flow conditions as do the APCs. Alternatively, as with at least idler mechanisms of the van der Meijden application, devices of the present invention may be incorporated into either or both of an APC or a hose (or elsewhere in a circuit).
Continuously indicating fluid flow rate may assist in diagnosing certain issues sometimes existing in pool and spa water-cleaning systems. Indication of low flow through a device of the present invention may diagnose clogged filters or water lines, undesirably low pump speed, or diversion of fluid from the circuit containing the APC, for example. By contrast, indication of high flow might suggest undesirably high pump speed—thus wasting electricity and potentially diminishing pump life—or other issues.
At least some embodiments of the innovative devices of the present invention may employ spring-loaded pistons as valves. The pistons normally close the bypass openings. However, should sufficient pressure differential exist between the fluid external to a device (e.g. ambient pool or spa water) and the interior of the device, the spring force may be overcome resulting in movement of a piston. As the piston moves relative to its normal position, it opens a bypass port allowing pool water to enter or exit the device (depending on whether the interior pressure is lower or higher than ambient). Presently-preferred versions of the devices intended for use with suction-type APCs allow water to enter the device via the bypass port. By allowing water to enter via the bypass port, water flow entering through a main inlet (connected to an APC) may be maintained at or below a maximum flow rate.
Positioning of the piston at a particular time also provides useful information about fluid flow through a device of the present invention. The piston thus may itself be marked for flow-indicating purposes or connected to or in communication with an indicator of fluid flow. In at least one presently-preferred embodiment of the invention, the piston may have sections of different colors providing visual indications of flow status.
Versions of the devices additionally may incorporate bypass ports of irregular shapes to compensate for non-linear relationships between flow rates and pressure differentials. Additionally, devices may design pistons as dashpots so as to dampen the rate of piston movement in response to changing pressures. Such dampening may be beneficial when, for example, an APC ingests large debris (e.g. a large leaf) that puts temporary additional load on a recirculation system. Rather than have the piston respond immediately to open the bypass port (which thus reduces the suction available to move the debris through the system to a filter), the dashpot design would limit immediate piston movement and retain most of the suction to continue moving the debris. Yet additionally, various travel stops or locking mechanisms may be added to limit piston travel or to latch a piston in a particular position (as can occur in assemblies of the Bauckman patent, for example).
It thus is an optional, non-exclusive object of the present invention to provide flow control assemblies.
It is another optional, non-exclusive object of the present invention to provide assemblies that both control and indicate flow.
It is also an optional, non-exclusive object of the present invention to provide flow control and indicator assemblies configured to function as adaptors or interfaces between APCs and hoses of pool- or spa-water recirculation systems.
It is a further optional, non-exclusive object of the present invention to provide flow control assemblies having spring-loaded pistons normally closing bypass openings.
It is, moreover, an optional, non-exclusive object of the present invention to provide flow control assemblies in which sections of pistons may be colored differently for purposes of providing visible flow indication information.
It is an additional optional, non-exclusive object of the present invention to provide flow control assemblies having irregularly-shaped bypass openings.
It is yet another optional, non-exclusive object of the present invention to provide flow control assemblies with pistons acting as dashpots or with travel stops or latching mechanisms for pistons.
Other objects, features, and advantages of the present invention will be apparent to those skilled in relevant fields with reference to the remaining text and the drawings of this application.
Depicted in
Illustrated as being present on lower section 38 are clips 40. The clips 40, when present, may connect to corresponding components of APC 41 so as to help interconnect assembly 10 and APC 41. Clips 40 thus may function similarly to clips of commonly-owned U.S. Patent Application Publication No. 2012/0137451 of Bauckman, et al. (the “Bauckman Application”), whose contents also are incorporated herein in their entirety by reference.
Body 14 defines main openings 42 and 46 and a hollow interior region therebetween. Water or other fluid thus may flow through body 14 from opening 42 to opening 46 (or vice-versa). Preferably, however, assembly 10 is used with a suction-type APC 41, in which case main opening 42 forms an inlet to body 14 and main opening 46 constitutes an outlet.
Also shown as included as parts of lower section 38 are at least one bypass opening 50 and one or more auxiliary openings 54. Bypass opening 50 may, but need not, have regular shape. Indeed, as illustrated in
Beneficially, though, the irregular shaping of bypass opening 50 may help maintain generally constant flow through main opening 42 when the bypass opening 50 is open. This is because pressure differential change is a function of the square of flow rate rather than a linear function thereof. As piston 18 moves longitudinally within body 14, the effective size of bypass opening 50 (see, e.g.,
Depicted as present on upper section 34 are protrusions 74. The protrusions 74, when present, may connect to corresponding channels 76 or recesses of hose section 78. Protrusions 74 thus may operate like protrusions of the Bauckman Application.
Spring 22 preferably biases piston 18 so that its sidewall 82 completely closes bypass opening 50. In preferred versions of assembly 10, optimal or desired fluid flow rates will result in sidewall 82 barely closing bypass opening 50, so that a small increase in flow rate thereafter will overcome force of spring 22 sufficiently to cause at least slight (nominally upward) movement of the piston 18.
Finally, for purposes of illustration in
In at least one version of assembly 10, ring 30 may be green in color and piston 18 may be red in color. Ring 30 may include a flange that abuts the end of piston 18 so as to add a color band thereto. Depending on the position of piston 18, as noted above, different colors (red, green, or both) may be visible. Of course, piston 18 and ring 30 need not necessarily be colored or, if colored, need not necessarily be colored red and green, respectively.
In a typical use in a pool or spa, assembly 10 (or 10′) may be connected between a fluid outlet of APC 41 and a hose section 78, as shown in
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of the present invention. Further modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of the invention. Any terms of direction and relative positioning (e.g. upper, lower, upward, left, right, etc.) are used to identify nominal or preferred, rather than absolute, orientations or relationships of components and may be modified as appropriate.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/695,456, filed Aug. 31, 2012, and having the same title as appears above, the entire contents of which application is incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
933786 | Richmond | Sep 1909 | A |
1853863 | Hornbruch | Apr 1932 | A |
4450861 | Bouteille | May 1984 | A |
4791950 | Pedersen | Dec 1988 | A |
D325621 | Hengesbach | Apr 1992 | S |
5105848 | Kallenbach | Apr 1992 | A |
5351709 | Vos | Oct 1994 | A |
5363877 | Frentzel et al. | Nov 1994 | A |
5720068 | Clark et al. | Feb 1998 | A |
5758691 | Nedderman, Jr. | Jun 1998 | A |
D404118 | Hwang | Jan 1999 | S |
D409287 | Hansen | May 1999 | S |
5904171 | Stahle et al. | May 1999 | A |
6112354 | Stoltz et al. | Sep 2000 | A |
6314983 | Hatch | Nov 2001 | B1 |
6484743 | Bauckman | Nov 2002 | B2 |
7284565 | Sebor | Oct 2007 | B2 |
D633179 | Geideman et al. | Feb 2011 | S |
8826659 | Shieh | Sep 2014 | B2 |
20090007349 | Bauckman et al. | Jan 2009 | A1 |
20110226361 | Van der Meijden et al. | Sep 2011 | A1 |
Entry |
---|
International Search Report and Written Opinion dated Nov. 18, 2013 in Application No. PCT/US2013/056566. |
Number | Date | Country | |
---|---|---|---|
20140060671 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
61695456 | Aug 2012 | US |