The present application claims priority to United Kingdom Patent Application No. GB1012268.7 filed on Jul. 22, 2010, the contents of which are incorporated herein by reference.
This invention relates to a flow control apparatus. More particularly, the invention relates to a flow control apparatus for use in a wellbore and a method of cleaning a flow control apparatus in a wellbore.
In unconsolidated formations created for the extraction of oil and gas, horizontal and deviated wells may be provided with integrated sand screens and inflow control device (ICD) completions, such as those described in GB2448069. Such wells are usually drilled using a drilling mud containing solids for bridging purposes and to prevent fluid loss into the formation. Once the well has been drilled, the drilling mud is replaced with a non-damaging fluid, called Drill In Fluid (DIF), which is cleaner than the conventional drilling mud. However, the DIF still contains some solids to form mud cake to prevent fluid loss.
Prior to completing the reservoir section of the wellbore with the ICD screen completions, the DIF is either replaced by or conditioned to a low or zero solids system. If, however, the DIF in the wellbore is not replaced by or conditioned to a low or zero solids system, and the ICD screen completions are lowered into an unconditioned section of mud which contains solids, the ICD screen completions may plug and, as a result, well performance and productivity may be poor or significantly decline. Even if the ICD screen completions are introduced into a conditioned well, screen plugging can occur as a result of mud cake and invaded mud solids flow back.
It is therefore an aim of the present invention to provide a flow control apparatus and method of cleaning the flow control apparatus, which addresses at least some of the afore-mentioned problems.
According to a first aspect of the present invention there is provided a method of cleaning a flow control apparatus in a wellbore comprising: providing in a wellbore a flow control apparatus comprising at least one screen and at least one inflow control device wherein a fluid inflow path is provided through the at least one screen and from an outer portion to an inner portion of the at least one inflow control device; targeting the at least one inflow control device with a treatment fluid; and delivering the treatment fluid such that the fluid flows in a reverse direction along the fluid inflow path.
Thus, the treatment fluid may pass through the inflow control device and then through or over the screen and dislodge, dissolve or disperse material on or in the screen. The treatment fluid may be circulated back through another portion of the flow control apparatus, or may flow along an annulus between the apparatus and a surrounding well bore.
The step of targeting the at least one inflow control device may comprise inserting a treatment tool into the wellbore for the delivery of the treatment fluid.
The method may further comprise the step of locating the treatment tool on a locator provided by the flow control apparatus.
According to a second aspect of the present invention there is provided a flow control apparatus for use in a wellbore, the flow control apparatus comprising: a screen; a first inflow control device and a second inflow control device; wherein a fluid inflow path is provided through the screen and from an outer portion to an inner portion of each inflow control device.
A further aspect of the invention comprises circulating treatment fluid from an inner portion to an outer portion of the first inflow control device, along the screen, and then through an outer portion to an inner portion of the second inflow control device.
Embodiments of the second aspect of the invention provide an improved flow control apparatus which facilitates effective cleanup operations since treatment fluid can be directed along the length of the screen from the first inflow control device (ICD) to the second inflow control device. Accordingly, the treatment fluid will tend to be flowed over or through most or all parts of the screen. Furthermore, embodiments of the present invention may be significantly more efficient at removing near wellbore damage and screen plugging than previous apparatus since treatment fluids can more effectively reach areas of the completion in the targeted vicinity of the ICDs. It is noted that, to date, cleaning of a completion had been attempted by simply pressurising a length of the completion. However, as ICDs are designed to choke or restrict flow, this technique does not effectively result in the cleaning of screens provided in the wellbore.
A further advantage of the present invention is that the second ICD can serve as a back-up to the first ICD, should the first ICD become ineffective or inoperable during use.
The first inflow control device may be provided at one end of the screen and the second inflow control device may be provided at the opposite end of the screen. The orientation of the first and second screens may be such that they both face inwardly towards the screen.
The apparatus may comprise one or more further inflow control devices. Screens may be provided between each inflow control device.
The apparatus may further comprise an ICD locator configured for the alignment of a treatment tool to deliver targeted treatment fluid through at least one of the first or second inflow control devices. As such, improved placement of the treatment fluid for use in the flow control apparatus can be achieved. It will be understood that in certain embodiments, a treatment tool can be accurately positioned to straddle the flow control apparatus so that treatment fluid can be forced through an adjacent first ICD before flowing back through the second ICD. In a particular embodiment, the ICD furthest from the surface may be targeted with the treatment tool so that the treatment fluid can flow back through the nearest ICD and up to the surface.
The ICD locator may be constituted by a recess or an inwardly projecting ledge, shoulder or other projection on which the treatment tool can be located. The ICD locator may be retractable or collapsible (for example, by pressure activation or deactivation) so as to allow the treatment tool to pass by. In certain embodiments, the ICD locator may comprise a welding ring, a spring-loaded (e.g. dog) clip, or an inflatable straddle.
Each of the first and second inflow control devices may be provided for reservoir management. For example, the first and/or second ICDs may be configured to limit the inflow of oil, gas or water into the production tubing from the surrounding wellbore formations. Accordingly, the first and/or second ICDs may be of the type described in GB2448069 having an inner member and an outer member with a flow path therebetween and an elastomer member disposed within the outer member and adjacent the flow path, the elastomer member being capable of swelling on contact with an actuating agent to thereby restrict the inflow of oil, gas or water.
The screen may comprise a tube of mesh configured to restrict the flow of solids, such as sand particles, therethough.
The screen may be provided around a base pipe, in a spaced relationship therefrom.
The fluid inflow path may comprise the space between the base pipe and the screen.
The flow control apparatus may further comprise at least one packer or seal configurable to seal the annulus between the apparatus and the surrounding wellbore. The at least one packer or seal may be extendable or expandable to selectively seal the gap between the apparatus and the surrounding wellbore.
In a specific embodiment, a first packer is configured to seal the annulus between the apparatus and the surrounding wellbore in a region above the first ICD and a second packer is configured to seal the annulus between the apparatus and the surrounding wellbore in a region below the second ICD.
According to a third aspect of the present invention there is provided a treatment tool for use with the flow control apparatus according to the second aspect of the invention, the treatment tool comprising: an inlet for treatment fluid to flow into the tool; at least one outlet for treatment fluid to flow out of the tool; and a treatment locator configured for the alignment of the at least one outlet with the first inflow control device of the flow control apparatus.
The treatment locator may comprise a recess or an outwardly projecting flange, shoulder or other projection. The treatment locator may be retractable or collapsible (for example, by pressure activation or deactivation) so as to allow the treatment tool to pass the first inflow control device. In certain embodiments, the treatment locator may comprise a welding ring, a spring-loaded (e.g. dog) clip, or an inflatable straddle.
According to a fourth aspect of the present invention there is provided a system for cleaning a flow control apparatus in a wellbore comprising: the flow control apparatus according to the second aspect of the present invention and the treatment tool according to the third aspect of the present invention.
It will be understood that in embodiments of the first aspect of the invention, the treatment tool employed may be in accordance with the third aspect of the present invention and the optional features described above in relation to both the second and third aspects of the invention may, optionally, be included in the apparatus employed in the method of the first aspect of the invention.
Certain embodiments of the invention will now be described with reference to the accompanying drawings, in which:
More specifically,
With reference to
Disposed around the base pipe 12 at one end of the ICD 20 is a tubular wire wrap screen 32. The screen 32 surrounds and is spaced from the base pipe 12. In use, a production fluid inflow path 26 extends through the screen 32 into the region between the base pipe 12 and the screen 32. The inflow path then passes through the nozzles 30, between the members 22, 24 and through the apertures 23. Although fluid can flow through the screen 32, sand and other particulates are prevented from passing therethrough and they are therefore prevented from entering the base pipe 12 through the ICD 20.
An end ring 34 is provided at the other end of the screen 32 to secure the screen to the base pipe 12.
In accordance with the first aspect of the invention, the flow control apparatus 10 may be cleaned by targeting and delivering a treatment fluid through the ICD 20 such that it flows in the reverse direction along the inflow path 26, and thus flows along and through the screen 32. The treatment fluid thus dislodges, dissolves or disperses material which may have become adhered to or gathered in or on the screen.
The treatment fluid and any dislodged or dispersed material may be circulated out of the bore, for example passing along the annulus between the apparatus and the surrounding bore wall, passing back through a further ICD, or through some other port or valve.
Also as described above in relation to
While a wellbore is producing, production fluid will flow through the screen 62, along the annulus between the screen 62 and the base pipe 42, through the nozzles 60, 80, between the inner and outer members 52, 72, and 54, 74, and through the apertures 53, 73 and into the base pipe 42. The production fluid will then flow to surface, co-mingling with production fluid which has passed through other ICDs at other locations on the completion.
An ICD locator in the form of a collapsible inwardly projecting annular ledge 82 is provided on the inner surface of the base pipe 42 between the first end 44 and the first ICD 50.
First and second expandable annular sealing elements 98 are provided between the treatment tool 90 and the flow control apparatus 40, to ensure fluid flow from the series of jetting nozzles 94 is directed through the apertures 53 and into the first ICD 50. It will be understood that in order to arrive at the position shown in
As best shown in
As above, when a wellbore is producing, the production fluid will flow through the screen 62, along the annulus 106 between the screen 62 and the base pipe 42, through the nozzles 60 between the inner and outer members 52, 54 and through the apertures 53 into the base pipe 42. The production fluid will then flow to surface, co-mingling with production fluid which has passed through other ICDs at other locations on the completion.
Should the screen 62 ever become plugged with mud or other particulates, either prior to commencement of production or at a later point in the life of the well, it is possible to clean the flow control apparatus 100 by targeting one of the ICDs 102, 104 and delivering treatment fluid through the apertures 53 so that the treatment fluid is forced in reverse direction along the flow path 56 and along the annulus 106 to the other ICD 102, 104 before re-entering the base pipe 42 and flowing to the surface. Gradually pressure will build up along the annulus 106 and this will help to force the mud or other particulates outwardly from the screen 62 to thereby unblock the screen 62.
It will be appreciated by persons skilled in the art that various modifications may be made to the above embodiments without departing from the scope of the present invention. For example, embodiments of the invention may be utilised to deliver stimulation fluid to a wellbore section adjacent the apparatus. The fluid may be targeted to a specific well bore section.
Number | Date | Country | Kind |
---|---|---|---|
1012268.7 | Jul 2010 | GB | national |