The present invention relates to fluid containers, and more particularly to spill-resistant beverage containers.
Spill-resistant containers are widely used for storing liquids in situations where the liquid may spill from an open-top cup. For example, travel mugs have lids or caps that resist accidental spillage of liquid that slosh due to rough road conditions. A drinking hole is provided in the lids or caps through which liquids (e.g., coffee) may be sipped by a person traveling in an automobile, and an air inlet hole is provided that admits air to replace the volume of beverage sipped from the travel mug. Sports bottles are another type of spill-resistant container that typically includes a screw-on lid having a built-in straw, and a cap for sealing the end of the straw. Some of these sports bottles also have a manually operated pop-up air intake vent that admits air to replace the volume of beverage drawn through the straw.
Sippy cups are a third type of spill-resistant container typically made for children. Sippy cups include a cup body and a screw-on or snap-on lid having a drinking spout molded thereon. An elastomeric flow control element, such as a soft rubber or silicone outlet valve, is provided in some sippy cups to control the flow of liquid through the drinking spout. Such flow control elements typically include a sheet of the elastomeric material located between the inner cup chamber and the drinking spout that defines one or more slits formed in an X or Y pattern. As a child tilts the container and sucks liquid through the drinking spout, the slits yield and the flaps thereof bend outward, thereby permitting the passage of liquid to the child. When the child stops sucking, the resilience of the causes the slits to close once more so that were the cup to be tipped over or to fall on the floor, no appreciable liquid would pass out the drinking spout. The lid often also includes an air inlet port (vent) formed to admit air into the cup body to replace the volume of liquid sipped or sucked through the drinking spout, and a rubber or spring-loaded self-sealing air inlet control valve is sometimes provided to prevent spillage through the air inlet.
A problem with conventional sippy cups that utilize elastomeric flow control elements is that the elastomeric material in the region of the slits can fatigue and/or become obstructed over time, and the resulting loss of resilience can cause leakage when the slit flaps fail to fully close after use. This failure of the slit flaps to close can be caused by any of several mechanisms, or a combination thereof. First, repeated shearing forces exerted at the end of each slit due to repeated use can cause tearing of the elastomeric material in this region, thereby reducing the resilient forces needed to close the slit flaps after use. Second, thermal cycling or mechanical cleaning (brushing) of the elastomeric material due, for example, to repeated washing, can cause the elastomeric material to become less elastic (i.e., more brittle), which can also reduce the resilience of the slit flaps. Third, solid deposits left by liquids passing through the slits can accumulate over time to impede the slit flaps from closing fully.
What is needed is a spill-resistant beverage container including an elastomeric flow control element that avoids the problems associated with conventional slit-based elastomeric flow control elements.
The present invention is directed to a spill resistant container (e.g., a sippy cup, travel mug, or sports bottle) including a flow control element including a membrane defining multiple pinholes, instead of conventional slits, for controlling the flow of liquid through a drinking spout. The membrane is formed at one end of a cylindrical wall formed such that the flow control element can be mounted on a corresponding cylindrical mounting structure formed on a cover that screws onto a cup-shaped body. In one embodiment, the cylindrical wall is mounted over the mounting structure and a relatively large diameter membrane is positioned at an end of the mounting structure away from the drinking spout, which is formed on the cap. In a second embodiment the cylindrical wall of the flow control element is pushed into the mounting structure such that a relatively small diameter membrane is located adjacent to the drinking spout. In either embodiment, the membrane is positioned between liquid stored in the cup-shaped body and the drinking spout. The flow control element is formed from a suitable elastomeric material (e.g., soft rubber, thermoplastic elastomer, or silicone) such that the membrane stretches when subjected to a differential pressure (e.g., as a result of a child sucking on the drinking spout). The pinholes are formed by puncturing the membrane using one or more pins having a substantially circular cross-section and formed with the membrane in radial tension such that each pinhole is closed by the surrounding elastomeric material when the pins are removed and the tension is relieved. Accordingly, under normal atmospheric conditions (i.e., when the cup is not in use), the pinholes remain closed, thereby preventing leakage of liquid from the cup through the membrane. During subsequent use, the applied pressure differential causes the membrane to stretch, thereby opening the pinholes and allowing liquid to pass through the membrane and through the drinking spout. Upon removal of the differential pressure, the membrane returns to its original (e.g., planar) shape, and the pinholes are again closed. Because the pinholes are substantially circular (i.e., do not include slits that can fatigue or trap deposits), the pinholes facilitate reliable leakage prevention over a longer period than that possible using conventional, slit-based flow control elements.
The present invention will be more fully understood in view of the following description and drawings.
FIGS. 4(A) and 4(B) are simplified enlarged cross-sectional views showing the opening of a pinhole formed in the flow control element of
Body 110 includes a roughly cylindrical sidewall 111 having a threaded upper edge 113, and a bottom wall 115 located at a lower edge of sidewall 111. Sidewall 111 and bottom wall 115 define a beverage storage chamber 117 in which a beverage BVG is received during use. Body 110 has a height of approximately 4 inches and a diameter of approximately 3 inches. Body 110 is molded from a suitable plastic using known methods. An optional cold plug 120 is mounted on bottom wall 115, as described in co-owned U.S. Pat. No. 6,502,418 issued Jan. 7, 2003, which is incorporated herein by reference.
Cap 140 includes a base portion 142 having threaded inside surface that mates with threaded upper edge 113 to connect cap 140 to body 110, thereby enclosing storage chamber 117. Cap 140 also includes a drinking spout 145 defining an outlet passage 146. Provided at a lower end of drinking spout 145 is a cylindrical mounting structure 147 to which flow control element 150 is press fitted. Cylindrical mounting structure 147 forms a channel through which liquid passes from storage chamber 117 to outlet passage 146. In one embodiment, cylindrical mounting structure 147 has an inner diameter of approximately 0.6 inches and an outer diameter of approximately 0.7 inches.
Referring to
In accordance with the present invention, several pinholes 157 are formed in membrane 155 to facilitate liquid flow from storage chamber 117 through drinking spout 145. As indicated in FIG. 4(A), each pinhole 157 is formed by piercing membrane 155 with a pin 410, or other sharp pointed object, such that the pinhole is closed by the surrounding elastomeric material when pin 410 is subsequently removed. In a preferred embodiment, membrane 155 is stretched in a radial direction by a force F that is sufficient to increase the diameter of membrane 155 in the range of 1 to 10 percent during the formation of pinholes 157. When the stretching force F is subsequently removed (i.e., membrane 155 returns to an unstretched state), pinholes 157 are collapsed by the surrounding membrane material to provide a reliable seal. In accordance with another aspect, each pin 410 is formed with a continuously curved (e.g., circular) cross section such that each pinhole 157 is substantially circular (i.e., does not have a slit or fold that would be formed by a cutting element having an edge). Note that a pin having a diameter DIA of approximately 0.025 inches was used to produce successful pinholes in a membrane having a thickness of approximately 0.02 inches. The number of pinholes 157 and membrane thickness T3 determine the amount of liquid flow through membrane 155 during use for a given pressure differential, as discussed below.
Referring again to
As mentioned above, the number of pinholes 157 determines the amount of liquid flow through membrane 155 during use. Because each pinhole 157 only opens a small amount, the amount of liquid passing through each pinhole 157 during use is quite small. Accordingly, multiple pinholes 157 are arranged in a pattern that collectively facilitate desired flow conditions. In an experiment using a silicone membrane having thickness of 0.02 inches and a diameter of approximately ¾ inches, a pattern of fifteen spaced-apart pinholes was found to produce insufficient liquid flow during normal use, whereas a pattern of forty-nine pinholes 157 was found to produce an optimal liquid flow. Of course, the number and pattern of pinholes 157 depends on a number of factors, and the pattern shown in
Referring to
Referring again to
In addition to the specific embodiments disclosed herein, one or more aspects of the present invention may be incorporated into other spill-resistant containers, such as travel mugs and sport bottles. Other features and aspects may be added to these spill-resistant containers that fall within the spirit and scope of the present invention. Therefore, the invention is limited only by the following claims.
The present application is a continuation-in-part of commonly owned U.S. patent application Ser. No. 10/236,459, “FLOW CONTROL ELEMENT WITH PINHOLES FOR SPILL-RESISTANT BEVERAGE CONTAINER” filed Sep. 6, 2002 now abandoned by James W. Holley, Jr.
Number | Name | Date | Kind |
---|---|---|---|
1360893 | Cowie | Nov 1920 | A |
1794728 | Oliver | Mar 1931 | A |
2075137 | Rosen | Mar 1937 | A |
2187558 | Kushima | Jan 1940 | A |
2588069 | Allen | Mar 1952 | A |
2889829 | Tannenbaum et al. | Jun 1959 | A |
3047950 | Stasiuk | Aug 1962 | A |
4981022 | Snyder | Jan 1991 | A |
5044173 | Cheng | Sep 1991 | A |
5090213 | Glassman | Feb 1992 | A |
5186347 | Freeman et al. | Feb 1993 | A |
5271244 | Staggs | Dec 1993 | A |
5284028 | Stuhmer | Feb 1994 | A |
5300089 | Sassin | Apr 1994 | A |
5410814 | Caban | May 1995 | A |
5499729 | Greenwood et al. | Mar 1996 | A |
5597087 | Vinarsky | Jan 1997 | A |
5706973 | Robbins, III et al. | Jan 1998 | A |
5875646 | Rich | Mar 1999 | A |
6042850 | Ida et al. | Mar 2000 | A |
6102245 | Haberman | Aug 2000 | A |
6123065 | Teglbjarg | Sep 2000 | A |
6422415 | Manganiello | Jul 2002 | B1 |
6502418 | Holley, Jr. | Jan 2003 | B1 |
6508379 | Van De Pol-Klein Nagelvoort et al. | Jan 2003 | B1 |
20010020623 | McDonough et al. | Sep 2001 | A1 |
20020011583 | Getzewich et al. | Jan 2002 | A1 |
20020063103 | Kiernan | May 2002 | A1 |
20020066714 | Rees | Jun 2002 | A1 |
Number | Date | Country |
---|---|---|
571788 | May 1924 | FR |
1189334 | Oct 1959 | FR |
2302724 | Oct 1976 | FR |
529438 | Nov 1940 | GB |
Number | Date | Country | |
---|---|---|---|
20040045922 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10236459 | Sep 2002 | US |
Child | 10339861 | US |