Flow control valve

Information

  • Patent Grant
  • 9383035
  • Patent Number
    9,383,035
  • Date Filed
    Tuesday, June 25, 2013
    11 years ago
  • Date Issued
    Tuesday, July 5, 2016
    8 years ago
Abstract
In one embodiment, a constant-flow valve assembly is provided that comprises a first fluid passageway carrying fluid at a first fluid pressure, a piston chamber, and a second fluid passageway connected to the chamber and carrying fluid at a second fluid pressure. A third fluid passageway is configured to carry fluid at a third fluid pressure. An adjustable valve member is provided between the chamber and the third passageway to provide constant fluid flow to the third passageway. An adjustable restrictor assembly is positioned between the first and second fluid passageways. An inlet portion of the restrictor assembly receives fluid at the first fluid pressure and directs the fluid to a restrictor. An outlet portion receives fluid from the restrictor and directs the fluid to the second fluid passageway at the second fluid pressure. The restrictor is movable to adjust the position of entry and exit portions relative to the inlet and outlet portions to adjust a fluid flow rate through fluid pathway to the second fluid passageway, thereby adjusting the flow rate through the valve assembly.
Description
TECHNICAL FIELD

This invention relates to generally constant flow control valves. More particularly, several aspects of the invention are directed toward valves that maintain a substantially constant flow despite changes in the pressure drop across the valve.


BACKGROUND

In the production of oil and gas, chemicals such as corrosion inhibitors, scale inhibitors, paraffin inhibitors, hydrate inhibitors, and demulsifiers are typically injected into the wells to maintain efficient flow of oil or gas. These chemicals usually need to be added to the wells production at a constant rate. Often one pump is used to inject the same chemical into several wells with the use of pressure compensated rate control valves at each injection point. The use of these rate controllers reduces set up and operating costs of injection systems because the alternative is to install a separate pump for each injection point and to maintain several pumps instead of one. These injection valves must be pressure compensated because they need to maintain a rate set point with changes of several thousand pounds per square inch across them to accommodate fluctuations in well pressure. A typical chemical injection rate for an oil well is between 0.5 to 200 US gallons per day. Injection pressures range between 500 to 20,000 psi.


The most robust method to date to achieve rates in this range using pressure compensated rate controllers is to govern the pressure drop across a fixed orifice. The set point for this method is changed by varying the pressure drop across the orifice. This method is described in U.S. Pat. No. 4,893,649. Previous methods to vary the area while maintaining a constant pressure drop have not adequately worked in the low flow range because passages created by mating needles and trims or mating threads to restrict flow are often less than 0.001 inches wide, which makes them prone to clogging and/or filming. The fixed orifice method is robust since hole passage can be made to pass the largest debris for a given flow area and several holes cascading in series can be used to give the same resistance with as much as a twenty fold increase in the flow area reducing the filming and clogging tendencies. The consequences of varying the pressure drop across a fixed resistor is that the range of flow rate set point is limited and passages cannot be opened up to pass blockages as can be done with a mating needle and trim.


Set point range of a valve is defined by its “turn down,” which equals the valve's highest flow rate divided by the lowest flow rate achievable. For a fixed valve orifice, the turn down is calculated by taking the square root of the highest pressure drop across the orifice divided by the lowest pressure drop. For example, a valve that offers a pressure drop across the orifice of 200 psi at maximum flow and 2 psi at minimum flow will have a turn down of 10:1. During the life of the well the flow rate range may need to be adjusted, which involves replacing an orifice. Sending personnel or equipment to remote locations to change an orifice represents a substantial expense, particularly if the valve location is under water.


SUMMARY

A constant-flow valve assembly is provided that overcomes drawbacks experienced in the prior art and provides other benefits. In one embodiment, a constant-flow valve assembly comprises a first fluid passageway configured to carry fluid at a first fluid pressure, a chamber having at least a portion configured to receive fluid at a second fluid pressure less than the first fluid pressure; and a second fluid passageway connected to the portion of the piston chamber and configured to carry fluid at the second fluid pressure. A third fluid passageway is configured to carry fluid at a third fluid pressure less than the first and second fluid pressures. A piston is slideably disposed in the chamber, and an adjustable valve member is provided between the chamber and the third passageway.


The adjustable valve member is configured to provide a substantially constant fluid flow to the third passageway substantially independent of the pressure differentials between the second and third fluid pressures. An adjustable restrictor assembly is between the first and second fluid passageways. The restrictor assembly has an inlet portion, an outlet portion, and a restrictor with a fluid pathway extending therebetween. The inlet portion is positioned to receive fluid at the first fluid pressure from the first fluid passageway and to direct the fluid to the restrictor. The outlet portion is positioned to receive fluid from the restrictor and direct fluid to the second fluid passageway at the second fluid pressure. The restrictor has an entry portion and an exit portion of the fluid pathway. The restrictor is movable to adjust the position of the entry and exit portions relative to the inlet and outlet portions to adjust a fluid flow rate of fluid through the fluid pathway to the second fluid passageway, thereby adjusting the flow rate through the valve assembly.


In another embodiment a constant-flow valve assembly comprises a first fluid passageway with fluid at a first fluid pressure, a chamber containing fluid at a second fluid pressure less than the first fluid pressure, and a second fluid passageway connected to the portion of the chamber and containing fluid at the second fluid pressure. A third fluid passageway has fluid at a third fluid pressure less than the first and second fluid pressures. A piston is slideably disposed in the chamber. A biased valve member having a biasing member and a valve body is coupled to the piston. The valve body is positioned between the chamber and the third passageway and configured to provide a substantially constant fluid flow to the third passageway substantially independent of pressure differentials between the second and third fluid pressures.


A restrictor assembly is between the first and second fluid passageways. The restrictor assembly has a first sealing pad, a second sealing pad, and a restrictor with a fluid pathway extending therebetween. The first sealing pad is positioned to receive fluid at the first fluid pressure from the first fluid passageway and to direct the fluid to the restrictor. The second sealing pad is positioned to receive fluid from the restrictor and direct fluid to the second fluid passageway at the second fluid pressure. The restrictor is movable to adjust the position of the fluid pathway relative to the inlet and outlet portions to adjust a fluid flow rate of fluid through the fluid pathway to the second fluid passageway, thereby adjusting the flow rate through the valve assembly.


Another embodiment provides a constant-flow valve assembly that comprises a body portion having a first fluid inlet, a piston chamber, and a first fluid outlet. The first fluid inlet receives fluid at a first fluid pressure. The piston chamber has a first portion exposed to the fluid at the first fluid pressure and has a second portion exposed to fluid having a second fluid pressure less than the first fluid pressure. The first fluid outlet is configured to carry fluid at a third fluid pressure less than the first and second fluid pressures. A piston is slideably disposed in the piston chamber. A seal in the piston chamber between the piston and the body separates one portion of the fluid at the first fluid pressure from another portion of the fluid at the second fluid pressure. A valve member is coupled to the piston in the second portion of the piston chamber and is configured to provide a substantially constant fluid flow from the second portion of the piston chamber toward the outlet substantially independent of the pressure differentials between the first, second, and third fluid pressures.


A first fluid passageway is connected to the first portion of the piston chamber and configured to contain fluid at the first fluid pressure. A second fluid passageway is connected to the second portion of the piston chamber and configured to contain fluid at the second fluid pressure. An adjustable restrictor assembly is coupled to the body between the first and second fluid passageways. The restrictor assembly has a second inlet portion, a second outlet portion, and a restrictor body with a fluid pathway extending therebetween. The second inlet portion is positioned to receive fluid from the first fluid passageway. The second outlet portion is positioned to direct fluid to the second fluid passageway. The restrictor body has an entry portion and an exit portion of the fluid pathway, the restrictor body is movable relative to the second inlet portion to adjust how much of the entry portion is uncovered by the second inlet portion to receive fluid directly therefrom and how much of the entry portion is covered by the second inlet portion to restrict a flow rate through the entry portion to the exit portion, thereby adjusting the flow rate through the valve assembly independent of the differences in the first, second, and third fluid pressures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of a constant flow valve assembly in accordance with an embodiment of the present invention.



FIG. 2 is an enlarged schematic cross-sectional view of the valve assembly taken substantially along lines 2-2 of FIG. 1.



FIG. 3 is an enlarged cross-sectional view of a portion of the valve assembly where indicated in FIG. 2 and showing a restrictor assembly.



FIG. 4 is an enlarged isometric view and partial cutaway view of a geometry of a hollow cylinder and sealing pad shown removed from the restrictor assembly of FIGS. 2 and 3 and shown in an open-most condition.



FIG. 5 is an enlarged isometric view and partial cutaway view of the geometry of the hollow cylinder and sealing pad of FIG. 4 and shown in a reduced flow position.



FIG. 6 is a schematic cross-sectional view of the valve assembly in accordance with another embodiment of the invention.



FIG. 7 an enlarged cross-sectional view of a portion of the valve assembly where indicated in FIG. 6 and showing a restrictor assembly.



FIG. 8 is an enlarged isometric view and partial cutaway view of the geometry of a hollow cylinder and sealing pad shown removed from the restrictor assembly of FIGS. 6 and 7 and shown in the open-most condition and all flow through the receptacles and channels bypassed.



FIG. 9 is an enlarged isometric view of cascading notches and channels in the hollow cylinder of FIG. 8, with the sealing pad removed for purposes of clarity.



FIG. 10 is an enlarged isometric view and partial cutaway view of the geometry of the hollow cylinder and sealing pad of FIGS. 6 and 7 and in a reduced flow condition with three of the six notches bypassed.



FIG. 11 is an enlarged isometric view and partial cutaway view of the geometry of the hollow cylinder and sealing pad of FIGS. 6 and 7 shown with two of the six notches bypassed.



FIG. 12 is an enlarged isometric view and partial cutaway view of the geometry of the hollow cylinder and sealing pad of FIGS. 6 and 7 shown in the lowest flow condition with all flow passing through the six notches and interconnecting channels on each cylinder face in series.



FIG. 13 is a schematic cross-sectional view of the valve assembly in accordance with another embodiment of the invention.



FIG. 14 is an enlarged cross-sectional view of a portion of the valve assembly where indicated in FIG. 13 and showing a restrictor assembly.



FIG. 15 is an enlarged isometric view and partial cutaway view of the geometry of the hollow cylinder and sealing pad shown removed from the valve assembly of FIGS. 13 and 14 for purposes of clarity and shown in the open-most condition.





DETAILED DESCRIPTION

The present invention is directed toward flow control valves. In the following description, numerous specific details are provided, such as particular valve configurations, to provide a thorough understanding of and an enabling description for embodiments of the invention. Those of ordinary skill in the art, however, will recognize that the invention can be practiced without one or more of the specific details explained in the following description. In other instances, well-known structures or operation are not shown or described in detail to avoid obscuring aspects of the invention.


One aspect of the invention is directed to a flow control valve for providing a substantially constant flow of fluid through the valve. An aspect of the valve is to provide a substantially wide range of flow rate set points. In one embodiment, the valve includes a valve body with a series of concentric bores and an end cap with an inlet in the end cap and an outlet in the valve body. The body contains a piston movably disposed in a piston bore and a shaft with a spool-shaped portion movably displaced in a second, third and fourth bore that are both concentric to the piston bore. A first flow passageway is provided between the inlet and a first restriction in a variable restrictor assembly, which share inlet fluid pressure (P1). The restrictor assembly is comprised of a first sealing pad with a hole in the center that slides over a face of a restrictor, and the face contains a notched opening. The sealing pad is urged against the face with a sealing pad spring. The notched opening is axially displaced relative to the sealing pad by moving the shaft's spool portion, which is powered by a handle turning a power screw. Another passageway is provided down stream of the first restriction and upstream of a mating cone-shaped pin and seat, which share intermediate fluid pressure (P2). The cone-shaped pin is supported in the center of the piston with its shank concentric to the round opening in the seat, which is attached to the end of the shaft. An outlet passageway is provided down stream of the mating pin and seat to the outlet of the valve, which shares outlet fluid pressure (P3).


A dynamic seal is positioned proximate to the piston and piston bore and separates the first passageway (with fluid pressure P1) from the second passageway (with fluid pressure P2). The dynamic seal defines a first effective area. The valve also includes a biasing member configured to urge the piston in a first direction toward the first passageway (P1). The inside diameter of the seat defines a second effective area which is substantially smaller than the first effective area.


In one aspect of this embodiment, the valve is configured so that changes in pressure drop across the valve do not generally affect the flow rate of the fluid passing through the valve. In another aspect of this embodiment, the valve further includes an adjustable throttling member formed by the variable restrictor assembly comprised of the first restriction. The urging of the movably disposed piston and pin, which mates with the seat, creates a force balance across the piston that governs the pressure drop across the throttling member, which in turn maintains substantially constant flow with substantially large pressure drop fluctuations across the valve. The throttling member can be movable to vary the size of the opening in the first restriction. The movement of the shaft's distal end portion that creates a change in this opening also changes the force setting of the biasing member on the P2 side of the piston. The double purpose of the shaft's movement creates a substantially wide range of flow rate set point because, at the lowest flow rate, the smallest hole in the first restriction is exposed, and at this set point the lowest pressure drop across the first restriction exists.



FIG. 1 is an isometric view of valve assembly 100 for controlling the flow of a fluid in accordance with one embodiment of the invention. FIG. 2 is an enlarged schematic cross-sectional view of the valve assembly 100 taken substantially along lines 2-2 of FIG. 1. FIG. 3 is an enlarged schematic cross-sectional view of a portion of the valve assembly 100 where indicated in FIG. 2. The valve assembly 100 includes a valve body 102 and an inlet cap 108 that contains an inlet fitting 106 with an aperture defining a flow inlet 104. The valve body 102 contains an outlet fitting 110 with an aperture that defines a flow outlet 111.


As best seen in FIG. 2, the valve body 102 contains a series of concentric bores common to longitudinal axis X1 that contain the piston 112, a piston biasing member 114, and a central shaft 125 with a spool portion 126. Attached to the lower end of the shaft 125 and axially aligned with the shaft is a seat 128 with a round inside diameter that mates with a cone-shaped end 119a of a pin 118 supported by the piston 112. A pin retainer 122 sitting atop the piston 112 centers the pin 118 and provides a shoulder 123a for a mating shoulder 119b of the pin 118 against which to slide. A pin spring 116 between the pin 118 and the piston 112 provides a force to keep the pin shoulder 119b in contact with the shoulder 123a and centered to the seat 128. The spring 116 also prevents the pin from “crashing” against the seat, as described in U.S. Pat. No. 4,893,649, which is hereby incorporated in its entirety herein by reference thereto. The movement of the piston 112 and the pin 118 along the longitudinal axis X1 relative to the seat 128 is configured to maintain a constant fluid flow rate through the valve assembly 100 despite changes in the pressure drop across the valve 100, as described below in detail.


A cup seal 124 is attached to the piston 112 and sealably engages the piston bore 130. The cup seal 124 separates fluid within the valve assembly's flow path, so inlet pressure (P1) is on one side of the cup seal (e.g., below the cup seal) and fluid at an intermediate pressure (P2) is on the other side of the cup seal (e.g., above the cup seal). As discussed below, the fluid at intermediate pressure P2 is within a series of passageways down stream of a variable restrictor assembly 132 (discussed below). In other embodiments, the cup seal 124 could be substituted with an “O” ring or other sealing member, such as a bellows or diaphragm.


The piston 112 and pin 118 are urged away from the seat 128 along the longitudinal axis X1 with the biasing member 114. In the illustrated embodiment, the biasing member 114 is a stack of disk springs, but other biasing devices, such as a coil spring mechanism, can be used to provide a biasing force against the piston 112 away from the seat 128. The arrangement of the spring-biased piston and pin mating with the seat 128 maintains substantially constant flow through the valve 100 independent of the pressure drop across the valve 100 assembly because the piston, pin and seat 128 maintain a substantially constant pressure drop across the variable restrictor assembly 132.


The constant flow configuration independent of the valve's outlet pressure (P3) is demonstrated by the force balance equation:

P1(Apiston)=P2(Apiston−Aseat)+Kspring*Xspring+Seal drag−(P2−P3)Aseat

Where:

  • Apiston=area enclosed by the piston bore 130
  • Aseat=effective area enclosed by the inside diameter of the seat 118
  • Kspring=spring constant of the biasing member 114
  • Seal drag=drag of seal 124
  • Xspring=spring deflection of the biasing member 114


The effective area Aseat is enclosed by the mating inside diameter of the seat 128 and the cone-shaped end 119a of the pin 118.


The lower portion of the piston bore 130 below the cup seal 124 is connected to a flow passageway 170 formed by a hole drilled in the body. The flow passageway 170 carries fluid at pressure P1 from the inlet to the variable restrictor assembly 132. As best seen in FIGS. 2-5, the variable restrictor assembly 132 of the illustrated embodiment includes an inlet sealing pad portion 141, a restrictor 143, and an outlet sealing pad portion 145. The inlet sealing pad portion 141 includes a sealing pad 136a pressed against the restrictor 143 by a biasing member, such as a pad springs 140a. The pad spring 140a presses against a pad cap 142a, which is securely screwed into a threaded aperture in the valve body 102.


In the illustrated embodiment, the restrictor 143 includes a hollow cylinder 134 in the form of a sleeve fixed to the shaft 125 around the spool portion 126. The hollow cylinder 134 has a flat surface 135a against which the sealing pad 136a presses. In the illustrated embodiment, the sealing pad 136a is urged along lateral axis X2 toward the first flat surface 135a on the hollow cylinder 134 by the pad springs 140a, which pushes on a pad pusher 138a between the pad springs and the sealing pad. The pad springs 140a can be of a spring design such as a Belleville washer, wave washer, coil spring, or other biasing device. The pad pusher 138a and the pad springs 140a are guided by the pad cap 142a. The sealing pad 136a is guided along the lateral axis X2 by the body 102 and a sealing pad guide 150a. The sealing pad guide 150a retains an inner seal 152a and an outer seal 154a which prevents fluid leakage and maintains the fluid flow at pressure P1 through the flow passageway 170, the inside diameter of the sealing pad 136a and the upstream side of the variable restrictor 143.


The hollow cylinder 134 has a second flat engagement surface 135b. A second sealing pad 136b on the outlet side of the hollow cylinder 134 is pressed against the second flat surface 135b by second pad springs 140b, a second pad cap 142b, and a second pad pusher 138b. The pad pusher 138b and the sealing pad 136b are guided by a second sealing pad guide 150b so that the sealing pad 136b is also urged along the lateral axis x2 toward the restrictor 143.


As best seen in FIGS. 2 and 3, the fluid at pressure P1 flows from the lower portion of the piston bore 130 (FIG. 2) through the first flow passageway 170, into a central aperture 133d in the sealing pad 136a, and into the restrictor 143 via a through-hole 133a and associated surface restrictions on the first flat surface 135a to control flow rate, as discussed in detail below. The fluid exits the restrictor 143 via a through-hole 148 in the hollow cylinder 134 on the second flat surface 135b, and into a central aperture 136d in the second sealing pad 136b. The fluid entering the second sealing pad 136b is at a fluid pressure P2, which is less than the fluid pressure P1. The fluid flows from the second sealing pad 136b into a second flow passageway 174, which carries the fluid to the pin 118 and the seat 128 at the bottom portion of the shaft 125 (FIG. 2).


In the illustrated embodiment, the through-hole 148 on the outlet side is larger than the through-hole 133a on the inlet side, so surface restrictions on the second flat surface 135b are not needed for flow rate control. Because the restriction of through-hole 148 is quite small compared to the full flow condition of through-hole 133a, the pressure down stream of the through-hole 133a in the cavity 172 (FIG. 3) created between the inside of the hollow cylinder 134 and outer surface of the spool portion 126 and in the second sealing pad 136b is pressure P2. Because there is no meaningful pressure drop across the through-hole 148, additional seals are not needed around the second pad guide 150b. In other embodiments, however, seals may be provided around the second pad guide 150b similar to the seals 152a and 154a discussed above. In the illustrated embodiment, the fluid moving through the restrictor 143 is also blocked from migrating along the surface of the shaft 125 by upper and lower seals 156 and 158. The illustrated seals are groove seals disposed in annular grooves formed in the exterior of the shaft 125 above and below the hollow cylinder 134, such that the seals sealably engage the shaft and the valve body 102.


The fluid at pressure P2 flows through the second flow passageway 174 into the upper portion of the piston bore 130 that contains the piston biasing member 114 and pin 118. The largest restriction in the valve assembly 100 is created by the cone-shaped end 119a of the pin 118 mating with seat 128 on the end of the shaft 125. The fluid flows through the restriction between the pin 118 and the seat 128, thereby creating another drop in fluid pressure from P2 to P3. Down stream of the mating pin 118 and seat 128 is the common fluid pressure P3, which is bound by the center and cross hole 175 in shaft 125, the seals 156 and 159 between the shaft and the valve body, and the outlet fitting 110, such that the pressure of the fluid exiting the valve assembly is at pressure P3.


The hollow cylinder 134 is securely held on the shaft 125 about the spool portion 126, so that the hollow cylinder moves with the shaft as a unit along the longitudinal axis X1. In the illustrated embodiment, one end of the hollow cylinder 134 is bound by a thrust washer 144 and snap ring 146, which is anchored to the spool portion 126. The opposite end of the hollow cylinder 134 is bound by a spring 160 that urges the hollow cylinder 134 toward the thrust washer 144. The spring 160 can be a coil spring, a wave washer, Belleville washer design, or other biasing member.


As best seen in FIG. 2, the shaft 125 with the spool portion 126 is coupled to an adjustment handle 184 extending from the valve body 102. The handle 184 is coupled to a stem 182 and a power screw 180. When the handle 184 is turned to adjust the flow rate through the valve assembly, the stem 182 and the power screw 180 rotate and move axially, thereby causing the spool portion 126, the cylinder 134, the snap ring 146, and the thrust washer 144 to move as a unit axially along longitudinal axis X1. This movement of the hollow cylinder 134 results in the first and second flat surfaces 135a and 135b moving longitudinally relative to the respective sealing pads 136a and 136b. Accordingly, the through-hole 133a on the inlet side of the hollow cylinder 134 and the through-hole 148 on the outlet side also move relative to the central apertures 133d and 136d in the sealing pads 136a and 136b, such that all or portions of the through-hole 133a may be exposed to the fluid flow through the sealing pad.


Controlling the axial movement of the shaft 125 and the hollow cylinder 134 will control the position of the through-holes 133a and 148 relative to the sealing pads 136a and 136b, thereby controlling the fluid flow rate through the restrictor 143. The snap ring 146, thrust washer 144, and spring 160 provide a means of preventing backlash between the hollow cylinder 134 and the spool 126 during the axial movement. In one embodiment, the product of thrust from turning of the end of the stem 182 against the end of the shaft 125 and the friction forces between these two surfaces cause the spool portion 126 to rotate as it moves along longitudinal axis X1. Higher pressures in the valve assembly 100 create greater forces between the shaft 125 and the end of the stem 182, which results in greater torque applied to the shaft. The hollow cylinder 134 allows the spool portion 126 to rotate, preventing the spool torque from overcoming the torque that the sealing pads 136a and 136b exert on the hollow cylinder 134, which in turn allows the sealing pads 136a and 136b to maintain contact with their mating flat surfaces 135a and 135b on the hollow cylinder 134. If the sealing pads 136a and 136b were to lose contact with the mating flat surfaces 135a and 135b respectively, the exposed flow area of the variable restrictor assembly 132 would dramatically increase causing an undesirable increase in the flow rate set point.



FIG. 4 and FIG. 5 show an enlarged isometric view of the sealing pad 136a mating with the flat surface 135a on the inlet side of the hollow cylinder 134, wherein only half of the sealing pad 136a is shown for illustrative purposes. The footprint of the inside diameter of the sealing pad's central aperture 133d is shown as dashed line 133d relative to the through-hole 133a. In the illustrated embodiment, the flat surface 135a of the hollow cylinder 134 also has a blind V-shaped notch 133b and a blind trench 133c recessed therein and coupled to the through-hole 133a. The trench 133c is configured to receive and direct fluid from the sealing pad's central aperture 133d to the notch 133b, and the notch directs the fluid into the through-hole 133a.


The hollow cylinder 134 is shown in FIG. 4 in a fully open position because the entire through-hole 133a is directly exposed to the sealing pad's central aperture 133d and fluid flowing there through. For this opening, the maximum spring tension in disk springs 114 (FIG. 2) exists, creating the maximum pressure drop through the through holes 133a and 133b, producing the maximum flow rate set point for the valve assembly 100.


The sealing pad 136a and hollow cylinder 134 are illustrated in FIG. 5 in a lower flow rate set point because a flange portion of the sealing pad 136a around the central aperture 133d is positioned to cover the entire through-hole 133a. In this position, only a portion of the V-shaped notch 133b and the trench 133c are within the footprint of the central aperture 133d and directly exposed to fluid flow there through. Accordingly, fluid will enter the exposed portions of the notch 133b and the trench 133c and will flow through the restriction created by the sealing pad 136a on the flat surface 135a over the notch 133b, and into the covered through-hole 133a for passage through the hollow cylinder 134. The through-hole 133a, the notch 133b, and the trench 133c are configured so that the fluid flow rate through the inlet side of the hollow cylinder 134 is directly related to how much of the trench, notch, and/or through-hole is within the footprint of the sealing pad's central aperture 133d and thereby directly exposed to the fluid flow there through. Accordingly, less exposed area of the trench/notch/through-hole provides a lower flow rate through the inlet side of the hollow cylinder, and more area exposed provides a greater flow rate. At the lower flow rate set point shown in FIG. 5, the minimum spring tension in disk springs 114 (FIG. 2) exists, creating the minimum pressure drop through the through hole 133b producing a lower flow rate set point than shown in FIG. 4. In other embodiments, such as those described below with reference to FIGS. 8-12, the restrictor 143 can have different configurations of trenches and/or notches to provide restrictions to fluid flow depending on the position of the shaft related to the sealing pads 136a and 136b.



FIG. 6 is a cross-sectional view of a valve assembly 100 in accordance with another embodiment, and FIG. 7 is an enlarged cross-sectional view of a portion of the valve assembly where indicated in FIG. 6. The valve assembly 100 has generally the same components as those described above and shown in FIGS. 1-5, so only the primary differences will be discussed. In this alternate embodiment, the restrictor 143 includes a flow restricting hollow cylinder 192 on the spool portion 126. The hollow cylinder 192 has a through-hole 198a in a flat surface 196a on the inlet side of the hollow cylinder 192. The sealing pad 136a on the inlet side is urged against the flat surface 196a as discussed above. The hollow cylinder 192 also has a through-hole 198b on a flat surface 196b on the outlet side of the hollow cylinder. The sealing pad 136b on the outlet side is urged against the flat surface 196b in the similar manner. In the illustrated embodiment, the through-hole 198a on the inlet side has approximately the same diameter as the through-hole 198b on the outlet side. The hollow cylinder 192 includes a plurality of flow restricting members (discussed below) on the flat surface 196a on the inlet side and connected to the through-hole 198a, such that the flow rate through the restrictor can be adjusted by adjusting the position of the hollow cylinder 192 relative to central aperture 133d in the sealing pad 136a. In at least one embodiment, flow restricting members can be provided on the flat surface 196b on the outlet side and connected to the through-hole 198b.


As best seen in FIGS. 8-12, the through-hole 198a is connected to a blind V-shaped notch 200a machined into the flat surface 196a on the outside of the hollow cylinder 192 on the inlet side. FIG. 9 is an enlarged isometric view of the hollow cylinder 192 showing the flat surface 196a, the through-hole 198a, and the flow restricting members. These flow restricting members include a plurality of blind receptacles, referred to as trenches 202a and 206a, interconnected by a plurality of blind channels 204a. The trenches 202a in the illustrated embodiment are radially and longitudinally offset from each other and run generally parallel to the longitudinal axis X1. Each trench 202a is connected to an adjacent trench or to the through-hole 198a by a channel 204a, thereby forming a series of cascading flow restrictions configured to allow for fluid flow through each trench in series to the through-hole 198a. The trenches 202a in the illustrated embodiment are deeper than the connecting channels 204a.


As best seen in FIG. 8, the hollow cylinder 192 can be positioned relative to the sealing pad 136a in a fully open position, so that the central aperture 133d of the sealing pad 136a and the associated fluid flow are directly over the through-hole 198a, the V-shaped notch 200a, and a plurality of the trenches 202a. As the hollow cylinder 192 is moved axially, the flat surface moves under the sealing pad 136a so that the flange of the sealing pad 136a slides over and covers at least a portion of the through-hole 198a, the V-shaped notch 200a, the channels 204a, and/or the trenches 202a, thereby decreasing the flow rate through the inlet side of the hollow cylinder. Accordingly the channels 204a and the trenches 202a are either engaged or bypassed in a series/parallel relationship with the fluid flow passing through the V-shaped notch 200a and the through-hole 198a.


As seen in FIG. 8, when the sealing pad 136a and the hollow cylinder 192 are in the fully open position, all of the flow bypasses the channels 204a and the trenches 202a because the channels and trenches are not covered by the sealing pad. All flow at this set point on the flat surface 196a is restricted by the intersection of the sealing pad's central aperture 133d and the through-hole 198a. This configuration provides the maximum flow stroke position for the valve assembly 100 because the restriction through the inlet side of the hollow cylinder exposes the maximum possible flow area (minimum flow restriction) with the piston springs 114 (FIG. 6) stroke position in the maximum loaded condition. This maximum flow condition can be used to clean the channels 204a and trenches 202a because the flow path on the hollow cylinder 192 is exposed and the maximum flow condition exists to “wash out” the flow path.



FIG. 10 is an isometric view of the sealing pad 196a and the hollow cylinder 192 in a configuration wherein a portion of the V-shaped notch 200a, the through-hole 198a, and approximately three of the trenches 202a are covered by the flange portion of the sealing pad 136a. Three of the channels 204a are within the footprint of the central aperture 133d, and thereby bypassed from restricting the flow through the hollow cylinder. At this set point, the flow at flat surface 196a and into the through-hole has a parallel path. The majority of the flow passes into the through-hole 198a via the exposed portion of the V-shaped notch 200a. Another portion of the flow moves through the covered trenches 202a and channels 204a in series after the flow from the central aperture 133d into one of the trenches 202a that is exposed or only partially covered by the flange of the sealing pad 136a. The flow then passes through a channel 204a in the side of the partially covered trench 202a, then to the first completely covered trench 202a, then the next channel 204a, then to the next covered trench 202a, and to the next channel 204a where the flow enters through-hole 198a. This “in-series” restrictive flow path of channels 204a and trenches 202a is a parallel path to the flow passing through the partially exposed V-shaped notch and into the through-hole. FIG. 10 illustrates a reduced flow set point as compared to the flow set point illustrated in FIG. 8, because less flow area is exposed on the flat surface 196a, and the piston springs 114 (FIG. 6) are loaded less than in the position shown in FIG. 8, thereby producing a smaller pressure drop across the inlet side of the hollow cylinder.



FIG. 11 is an isometric view of the sealing pad 196a and the hollow cylinder 192 in a configuration wherein the V-shaped notch 200a and the through-hole 198a are fully covered by the flange portion of the sealing pad 136a. Two of the channels 204a are bypassed and the remaining four channels and associated trenches are covered, thereby restricting the flow through the inlet side of the hollow cylinder 192. At this set point, the flow at the flat surface 196a has only an in-series path to the through-hole 198a, wherein the flow passes into a portion of a trench 202a only partially covered by the sealing pad 136a. The flow then passes through the four channels 204a and three trenches 202 in series. The configuration illustrated in FIG. 11 provides a reduced flow set point compared to the configuration shown in FIG. 10, because there is less flow area exposed on the flat surface 196a. In addition, the piston springs 114 (FIG. 6) are loaded less than in the position shown in FIG. 10, thereby producing a smaller pressure drop across the inlet side of the hollow cylinder 192.



FIG. 12 is an isometric view of the sealing pad 196a and the hollow cylinder 192 in a set point configuration wherein the V-shaped notch 200a, the through-hole 198a, and all of the channels 204a are fully covered by the sealing pad. At this set point, the flow at flat surface 196a has only a series path to the through-hole 198a where the flow passes into an uncovered portion of the longest trench 206a. The flow then passes in series through the six channels 204a and the five interspersed trenches 202a. The configuration illustrated in FIG. 12 provides a reduced flow set point compared to the set point illustrated in FIG. 11, because there is less flow area exposed on the flat surface 196a, and piston springs 114 (FIG. 6) are loaded less than in the position shown in FIG. 11, thereby producing a smaller pressure drop across the inlet side of the hollow cylinder 192. FIG. 12 illustrates a configuration wherein the flow rate set point is changed entirely by changing the tension in the piston springs 114.


As in the configurations shown in FIGS. 2-5, the sealing pad 136b shown in FIGS. 6 and 7 on the outlet side of the hollow cylinder 192 mates with the flat surface 196b shown in FIG. 8. Channels 204b, trenches 202b, and a V-shaped groove 200b referenced in FIG. 8 are substantially identical to the channels 204a, trenches 202a, and V-shaped notch 200a provided in the flat surface 196a on the inlet side of the hollow cylinder 192 discussed above. The channels 204b, notches 202a, and V-shaped groove 200b are positioned to be selectively exposed to the central aperture 133d in the sealing pad 136b or covered by the flange portion of the sealing pad, so as to provide a variable fluid resistor 194b that provides flow resistance to the fluid flow exiting hollow cylinder 192 and flowing into the sealing pad 136b and into the flow passageway 174 similar to the flow resistance configuration on the inlet side of the restrictor.


The second fluid resistor 194b on the outlet side can substantially increase the fluid resistance for the lower flow rate set points, thereby allowing very low flow rates to be achieved with the largest cross-sectional flow passages. In the lowest flow set point, the fluid flows from the inlet pressure P1 then passes in series through part of the elongated trench 206a, five trenches 202a and the interspersed six channels 204a and then into the through-hole 198a. The flow then passes through the inlet side of the hollow cylinder 192, and through the cavity 172 created by the inside diameter of the hollow cylinder and the outside diameter of the recessed spool portion 126. From the cavity 172, the flow passes out the through-hole 198b, then through six channels 204b and the interspersed five trenches 202b, all in series, and then into the central aperture 133d in the sealing pad 136b. The combined effect of the channels and trenches on the hollow cylinder is to produce a sequence of multiple flow restrictions in series that steps the fluid pressure down from P1 to P2. In other embodiments, there could be as few as one trench 202a and one channel 204a or more than five trenches 202a and channels 204a on flat surface 196a. Likewise there could be more or less trenches 202b and channels 204b on flat surface 196b. The fluid resistance for a restrictor 194a can be, but does not have to be, substantially identical to the resistor 194b.


The embodiment illustrated in FIGS. 6 and 7 include seals 152b and 154b adjacent to the sealing pad 136b and the pad guide 150b. These additional seals help prevent leaks out of cavity 172 through the ends of the hollow cylinder 192 into cavity 172 which is at fluid pressure P2, thereby preventing an inadvertent bypass of any of the six fluid resistors that make up fluid resistor 194b.



FIGS. 13 and 14 are cross-sectional views of another embodiment of the valve assembly 100. In this embodiment, the sealing pads 136a and 136b are pressed into direct engagement with the shaft 125, rather than against the hollow cylinder 192 discussed above. In this embodiment, the shaft has an aperture 266 extending there through between the sealing pads 136a and 136b. Accordingly, this portion of the shaft engaged by the sealing pads 136a and 136b does not rotate when the handle 184 and/or power screw 180. FIG. 15 is an enlarged isometric view of the sealing pad 136a mating with the surface 262a on the inlet side of the shaft 125. In this figure a series of notches and channels are provided on the surface of the shaft 125, similar to those illustrated in FIG. 9 and discussed above, but the aperture 266 passes completely through the shaft. The aperture 266 can communicate with a series of cascading notches and channels in the shaft adjacent to the sealing pad on the outlet side of the restrictor.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. A flow valve assembly, comprising: a fluid inlet portion with a fluid inlet;a fluid outlet portion with a fluid outlet;a fluid passageway between the fluid inlet and fluid outlet; andan adjustable restrictor having the fluid passageway extending therethrough, the restrictor having an entry portion defining a portion of the fluid passageway that receives fluid from the fluid inlet portion, the restrictor having an exit portion that directs fluid along the fluid passageway toward the fluid outlet portion, the restrictor being movable to adjust the position of the entry and exit portions relative to the fluid inlet and fluid outlet, the fluid passageway includes the entry portion defined by a plurality of blind notches interconnected by at least one blind channel and in fluid communication with a through passage between the entry and exit portions, the restrictor being movable to allow the fluid inlet portion to interfere with at least a portion of the entry portion to adjustably restrict the fluid flow into the blind notches, blind channel, or through hole and to control the fluid flow rate through the adjustable restrictor.
  • 2. The assembly of clam 1 wherein the restrictor has an outer surface, and the plurality of blind notches are formed in the outer surface and are in fluid communication with the through passage.
  • 3. The assembly of claim 1 wherein the restrictor comprises a sleeve with an interior area and a central member disposed in the interior area, the through passage extends through the sleeve and around the central member.
  • 4. The assembly of claim 1, further comprising an external adjustment device coupled to the restrictor, the adjustment device being manipulatable to move the restrictor to change the position of the plurality of blind notches of the restrictor relative to the fluid inlet portion.
  • 5. A constant-flow valve assembly, comprising: a body with a fluid inlet, a fluid outlet, a fluid passageway therebetween;an adjustable flow restriction coupled to the fluid passageway and being configured to provide a substantially constant fluid flow to the fluid outlet substantially independent of a pressure differentials between the fluid inlet and fluid outlet; andan adjustable restrictor assembly having the fluid passageway extending therethrough, the restrictor assembly having an inlet portion, an outlet portion, and a restrictor with a fluid pathway extending therebetween, the inlet portion being positioned to direct the fluid to the restrictor, and the outlet portion being positioned to receive fluid from the restrictor and direct fluid toward the fluid outlet, the restrictor having an entry portion and an exit portion of the fluid pathway, the entry portion defined by a plurality of blind notches interconnected by at least one blind channel and in fluid communication with fluid pathway between the entry and exit portions, the restrictor being movable to adjust the position of the entry and exit portions relative to the inlet and outlet portions to adjust a fluid flow rate of fluid through fluid pathway to fluid outlet.
  • 6. The assembly of clam 5 wherein the restrictor is movable to allow the inlet portion to interfere with at least a portion of the entry portion to adjustably restrict the fluid flow into the blind notches, blind channel, or through hole.
  • 7. The assembly of claim 5, further comprising an external adjustment device coupled to the restrictor assembly, the adjustment device being manipulatable to move the restrictor assembly to change the position of the restrictor relative to the inlet portion.
  • 8. The assembly of claim 5 wherein the restrictor has an outer surface, the fluid pathway includes the exit portion defined by at least one a blind notch in the outer surface and in fluid communication with a through hole, the restrictor being movable to allow the outlet portion to interfere with at least a portion of the exit portion to adjustably restrict the fluid flow into through the restrictor.
  • 9. The assembly of claim 5 wherein the restrictor has an outer surface, and the plurality of blind notches are formed in the outer surface and are in fluid communication with the through passage.
  • 10. The assembly of claim 5 wherein the restrictor has an outer surface, and the plurality of blind notches are formed in the outer surface and are in fluid communication with the through passage.
  • 11. The assembly of claim 5 wherein the restrictor comprises a sleeve with an interior area and a central member disposed in the interior area, the through passage extends through the sleeve and around the central member.
  • 12. A constant-flow valve assembly, comprising: a first fluid passageway configured to carry fluid at a first fluid pressure;a chamber having at least a portion configured to receive fluid at a second fluid pressure less than the first fluid pressure;a second fluid passageway connected to the portion of the chamber and configured to carry fluid at the second fluid pressure;a third fluid passageway configured to carry fluid at a third fluid pressure less than the first and second fluid pressures; andan adjustable restrictor assembly between the first and second fluid passageways, the restrictor having an entry portion defining a fluid passageway portion that receives fluid from the first fluid passageway, the restrictor having an exit portion that directs fluid along the fluid passageway portion toward the second fluid passageway, the restrictor being movable to adjust the position of the entry and exit portions relative to the first and second fluid passageways, the entry portion having a plurality of blind notches interconnected by at least one blind channel and in fluid communication with a through passage between the entry and exit portions, the restrictor being movable to allow the fluid inlet portion to interfere with at least a portion of the entry portion to adjustably restrict the fluid flow into the blind notches, blind channel, or through hole and to control the fluid flow rate through the adjustable restrictor.
  • 13. The assembly of claim 12 wherein the restrictor has an outer surface, and the plurality of blind notches are formed in the outer surface and are in fluid communication with the through passage.
  • 14. The assembly of claim 12 wherein the restrictor comprises a sleeve with an interior area and a central member disposed in the interior area, the through passage extends through the sleeve and around the central member.
  • 15. The assembly of claim 12, further comprising an external adjustment device coupled to the restrictor, the adjustment device being manipulatable to move the restrictor to change the position of the plurality of blind notches of the restrictor relative to the fluid inlet portion.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation of U.S. patent application Ser. No. 13/441,281, filed Apr. 6, 2012 and titled FLOW CONTROL VALVE, now granted U.S. Pat. No. 8,469,053, issued Jun. 25, 2013, which is a divisional of U.S. patent application Ser. No. 12/838,316, filed Jul. 16, 2010 and titled FLOW CONTROL VALVE, which is a continuation of U.S. patent application Ser. No. 11/741,477, filed Apr. 27, 2007 and titled FLOW CONTROL VALVE, now granted U.S. Pat. No. 7,770,595, issued Aug. 10, 2010, which claims priority to and the benefit of U.S. Provisional Patent Application No. 60/795,748, filed Apr. 27, 2006 and titled FLOW CONTROL VALVE, each of which are hereby incorporated herein by reference thereto.

US Referenced Citations (183)
Number Name Date Kind
988495 Noyes Apr 1911 A
1517877 Wallem Dec 1924 A
1586834 Ormsby Jun 1926 A
1777261 Grainger et al. Sep 1930 A
2071036 Johnston Feb 1937 A
2101356 Zak Dec 1937 A
2626810 Galera Jan 1953 A
2650613 Brumbaugh Sep 1953 A
2693701 Whitworth et al. Nov 1954 A
2751935 Smith Jun 1956 A
3079953 Mounteer Mar 1963 A
3344805 Wapner Oct 1967 A
3434395 Londal Mar 1969 A
3575088 Bauer Apr 1971 A
3613517 Bradley Oct 1971 A
3677288 Martin Jul 1972 A
3853143 De Lepeleire Dec 1974 A
3908698 Baumann Sep 1975 A
3954124 Self May 1976 A
3969991 Comstock et al. Jul 1976 A
3971411 Baumann Jul 1976 A
3999528 Knapp et al. Dec 1976 A
4015626 Thordarson Apr 1977 A
4055084 Wilde Oct 1977 A
4096747 Gilson Jun 1978 A
4098285 Karing Jul 1978 A
4131128 Gotzenberger Dec 1978 A
4161961 Knapp et al. Jul 1979 A
4176686 Stahle Dec 1979 A
4177830 Munson Dec 1979 A
4210171 Rikuta Jul 1980 A
4228777 Haase Oct 1980 A
4234013 Rikuta Nov 1980 A
4241757 Bron Dec 1980 A
4250914 Ferrentino Feb 1981 A
4250915 Rikuta Feb 1981 A
4254791 Bron Mar 1981 A
4278010 Wallischeck et al. Jul 1981 A
4319735 Moen Mar 1982 A
4327757 Weevers May 1982 A
4343305 Bron Aug 1982 A
4361147 Aslanian et al. Nov 1982 A
4372147 Waugh et al. Feb 1983 A
4395018 Moen Jul 1983 A
4406442 Bettin et al. Sep 1983 A
4422470 Jackson et al. Dec 1983 A
4428397 Bron Jan 1984 A
4429708 Strueh Feb 1984 A
4449548 Tutherly May 1984 A
4508140 Harrison Apr 1985 A
4513777 Wright Apr 1985 A
4541454 Sturman et al. Sep 1985 A
4549426 Erickson Oct 1985 A
4549572 Wright Oct 1985 A
4634095 Taylor Jan 1987 A
4673162 Lachmann Jun 1987 A
4679592 Lamb Jul 1987 A
4699358 Iqbal Oct 1987 A
4809589 Bertrand Mar 1989 A
4809746 Wolfges Mar 1989 A
4813447 Ichiryu et al. Mar 1989 A
4817662 Skibowski Apr 1989 A
4829808 West May 1989 A
4893649 Skoglund Jan 1990 A
4921547 Kosarzecki May 1990 A
4987740 Coleman Jan 1991 A
5000219 Taube et al. Mar 1991 A
5004006 Jung Apr 1991 A
5061454 Birk Oct 1991 A
5101854 Bron Apr 1992 A
5143116 Skoglund Sep 1992 A
5190075 Tentler et al. Mar 1993 A
5214939 Drucker et al. Jun 1993 A
5234025 Skoglund et al. Aug 1993 A
5247139 Shon et al. Sep 1993 A
5249773 Feld Oct 1993 A
5251655 Low Oct 1993 A
5255711 Reeds Oct 1993 A
5280805 Skoglund Jan 1994 A
5295506 Smith Mar 1994 A
5299775 Kolze Apr 1994 A
5301713 Skoglund Apr 1994 A
5363876 Nash Nov 1994 A
5377955 Baker Jan 1995 A
5383489 Golestan et al. Jan 1995 A
5408886 Lalin Apr 1995 A
5421363 Bron Jun 1995 A
5427139 Hilton Jun 1995 A
5427149 Higgs Jun 1995 A
5450873 Palmer Sep 1995 A
5490539 Ottestad Feb 1996 A
5495869 Hashida Mar 1996 A
5509446 Bey Apr 1996 A
5562002 Lalin Oct 1996 A
5597012 Moinard Jan 1997 A
5615708 Barron Apr 1997 A
5622204 Skoglund Apr 1997 A
5634491 Benedict Jun 1997 A
5638861 Hashida Jun 1997 A
5642752 Yokota et al. Jul 1997 A
5655568 Bhargava et al. Aug 1997 A
5662142 Ansite Sep 1997 A
5673607 Schwab Oct 1997 A
5680889 Boger Oct 1997 A
5695169 Higgins et al. Dec 1997 A
5718410 Baumann Feb 1998 A
5727529 Tuckey Mar 1998 A
5775369 Hagmann Jul 1998 A
5803119 Steinke Sep 1998 A
5806557 Helge Sep 1998 A
5853022 Eggleston et al. Dec 1998 A
5878766 Dekhtyar Mar 1999 A
5904177 Mullin et al. May 1999 A
5931186 Skoglund Aug 1999 A
5964408 Musson Oct 1999 A
5971012 Skoglund Oct 1999 A
5975654 Zaviska et al. Nov 1999 A
5979495 Taube et al. Nov 1999 A
5988211 Cornell Nov 1999 A
5996615 Zuegner et al. Dec 1999 A
6026849 Thordarson Feb 2000 A
6026850 Newton et al. Feb 2000 A
6041807 Honaga et al. Mar 2000 A
6062257 Wild et al. May 2000 A
6062534 Eggleston May 2000 A
6098598 Riefenstahl et al. Aug 2000 A
6110427 Uffenheimer Aug 2000 A
6135142 Yokota et al. Oct 2000 A
6167906 Liberfarb Jan 2001 B1
6189564 Hilton Feb 2001 B1
6209578 Newton Apr 2001 B1
6244297 Baumann Jun 2001 B1
6254576 Shekalim Jul 2001 B1
6298879 Knapp Oct 2001 B1
6302341 Yoo Oct 2001 B1
6314980 Bewick et al. Nov 2001 B1
6443174 Mudd Sep 2002 B2
6520209 Lundqvist Feb 2003 B1
6568656 Wrocklage May 2003 B1
6581903 Yokoyama et al. Jun 2003 B2
6616837 Tovar De Pablos et al. Sep 2003 B2
6640830 Zahe et al. Nov 2003 B2
6644345 Dulin Nov 2003 B2
6662823 Lee Dec 2003 B2
6688319 Trantham Feb 2004 B2
6729346 Fuhrmann May 2004 B2
6751939 Futa, Jr. et al. Jun 2004 B2
6824379 Doyle et al. Nov 2004 B2
6892757 Weber May 2005 B2
6895995 Kirkman et al. May 2005 B2
6932107 Kirchner et al. Aug 2005 B2
6966329 Liberfarb Nov 2005 B2
7011109 Tran et al. Mar 2006 B2
7013918 McCarty et al. Mar 2006 B2
7036793 Turnau, III et al. May 2006 B2
7114700 Beswick et al. Oct 2006 B2
7128086 Kirchner et al. Oct 2006 B2
7150445 Faye et al. Dec 2006 B2
7156122 Christenson et al. Jan 2007 B2
7156368 Lucas et al. Jan 2007 B2
7219688 Tahir et al. May 2007 B2
7219690 McDonald et al. May 2007 B2
7225831 Hope et al. Jun 2007 B2
7234488 Partridge et al. Jun 2007 B2
7249608 Hayashi et al. Jul 2007 B2
7252143 Sellers et al. Aug 2007 B2
7341075 Taylor Mar 2008 B2
7484710 Koester et al. Feb 2009 B2
7503754 Okii et al. Mar 2009 B2
7641470 Albizuri Jan 2010 B2
7736604 Ashe et al. Jun 2010 B2
7770595 Kirchner et al. Aug 2010 B2
20010032675 Russell Oct 2001 A1
20020100506 May Aug 2002 A1
20020134441 Kusumoto et al. Sep 2002 A1
20030084940 Lee May 2003 A1
20030192597 Trantham et al. Oct 2003 A1
20040021120 Turnau, III et al. Feb 2004 A1
20050002831 Ashe et al. Jan 2005 A1
20050211305 Kirchner et al. Sep 2005 A1
20060208213 Turnau et al. Sep 2006 A1
20070289640 Kirchner et al. Dec 2007 A1
20100276013 Kirchner et al. Nov 2010 A1
Foreign Referenced Citations (5)
Number Date Country
3919299 Jan 1990 DE
404290678 Dec 1977 FR
404290678 Oct 1992 JP
0113017 Feb 2001 WO
2005005841 Jan 2005 WO
Non-Patent Literature Citations (2)
Entry
“International Search Report and Written Opinion for PCT/US2007/067688; SKO FLO Industries, Inc.; May 30, 2008; p. 9 Pages.”
“Office Action & Examination Report; NO Patent Application No. 20084955; Aug. 25, 2015; 4 Pages.”
Related Publications (1)
Number Date Country
20140131598 A1 May 2014 US
Provisional Applications (1)
Number Date Country
60795748 Apr 2006 US
Divisions (1)
Number Date Country
Parent 12838316 Jul 2010 US
Child 13441281 US
Continuations (2)
Number Date Country
Parent 13441281 Apr 2012 US
Child 13926642 US
Parent 11741477 Apr 2007 US
Child 12838316 US