Flow control with network named fragments

Information

  • Patent Grant
  • 10355999
  • Patent Number
    10,355,999
  • Date Filed
    Wednesday, September 23, 2015
    8 years ago
  • Date Issued
    Tuesday, July 16, 2019
    4 years ago
Abstract
One embodiment provides a system that facilitates efficient and secure flow control based on a fragmentation protocol. During operation, the system receives, by an intermediate node, a first fragment which is a fragment of a content object that is fragmented into a plurality of fragments, wherein the plurality of fragments includes at least one named fragment, which indicates a name associated with the content object, the name being a hierarchically structured variable-length identifier that comprises contiguous name components ordered from a most general level to a most specific level. The intermediate node detects a congestion, and sets an indicator for congestion notification in the received fragment. The intermediate node forwards the received fragment, and drops a second fragment received after the forwarded fragment.
Description
RELATED APPLICATION

The subject matter of this application is related to the subject matter in the following applications:

    • U.S. patent application Ser. No. 13/847,814, entitled “ORDERED-ELEMENT NAMING FOR NAME-BASED PACKET FORWARDING,” by inventor Ignacio Solis, filed 20 Mar. 2013 (hereinafter “U.S. patent application Ser. No. 13/847,814”);
    • U.S. patent application Ser. No. 12/338,175, entitled “CONTROLLING THE SPREAD OF INTERESTS AND CONTENT IN A CONTENT CENTRIC NETWORK,” by inventors Van L. Jacobson and Diana K. Smetters, filed 18 Dec. 2008 (hereinafter “U.S. patent application Ser. No. 12/338,175”);
    • U.S. Pat. No. 8,386,622, entitled “METHOD AND APPARATUS FOR FACILITATING COMMUNICATION IN A CONTENT CENTRIC NETWORK,” by inventor Van Jacobson, filed 11 Dec. 2008 (hereinafter “U.S. Pat. No. 8,386,622”);
    • U.S. Pat. No. 8,204,060, entitled “METHOD AND SYSTEM FOR FACILITATING FORWARDING A PACKET IN A CONTENT-CENTRIC NETWORK,” by inventor Van L. Jacobson and James D. Thornton, filed 17 Dec. 2009 (hereinafter “U.S. Pat. No. 8,204,060”);
    • U.S. patent application Ser. No. 14/065,691, entitled “SYSTEM AND METHOD FOR HASH-BASED FORWARDING OF PACKETS WITH HIERARCHICALLY STRUCTURED VARIABLE-LENGTH IDENTIFIERS,” by inventors Marc E. Mosko and Michael F. Plass, filed 29 Oct. 2013 (hereinafter “U.S. patent application Ser. No. 14/065,691”); and
    • U.S. patent application Ser. No. 14/851,894, entitled “NETWORK NAMED FRAGMENTS IN A CONTENT CENTRIC NETWORK,” by inventors Marc E. Mosko and Christopher A. Wood, filed 11 Sep. 2015 (hereinafter “U.S. patent application Ser. No. 14/851,894”);


      the disclosures of which are herein incorporated by reference in their entirety.


BACKGROUND

Field


This disclosure is generally related to distribution of digital content. More specifically, this disclosure is related to a system and method for flow control based on a secure fragmentation protocol in a content centric network.


Related Art


The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Content centric network (CCN) architectures have been designed to facilitate accessing and processing such digital content. A CCN includes entities, or nodes, such as network clients, forwarders (e.g., routers), and content producers, which communicate with each other by sending interest packets for various content items and receiving content object packets in return. CCN interests and content objects are identified by their unique names, which are typically hierarchically structured variable length identifiers (HSVLI). An HSVLI can include contiguous name components ordered from a most general level to a most specific level. Generally, interests and content objects travel through a number of links before they can reach their destination. Each link can have its own maximum transmission unit (MTU), where the differing MTU limits impose different fragmentation requirements.


Fragmentation protocols related to CCN continue to evolve. One secure fragmentation protocol for CCN is known as Fragmentation with Integrity Guarantees and Optional Authentication (FIGOA), described in Ghali et al., “Secure Fragmentation for Content-Centric Networks,” Computing Research Repository, 1405.2861 (2014), which disclosure is herein incorporated by reference in its entirety. The FIGOA protocol operates by creating fragments that are chained via hash computation, transmitting fragments with a name that match an interest for the name, and including a signature in the final fragment. However, under the FIGOA protocol, a content producer signs the final fragment, which creates a delayed verification of the signature by a requesting entity until all fragments have been received. This delayed verification may decrease the overall throughput of data and may also result in the injection of malicious packets, which can create inefficiencies and introduce security issues in the network. In addition, the FIGOA protocol does not provide a method to selectively request re-transmission of a specific fragment or subsequence of fragments. When a fragment is dropped, an intermediate node has no way to mark the point at which it drops a fragment stream. A requesting entity re-requests the entire data stream, resulting in further inefficiencies in the network.


SUMMARY

One embodiment provides a system that facilitates efficient and secure flow control based on a fragmentation protocol. During operation, the system receives, by an intermediate node, a first fragment which is a fragment of a content object that is fragmented into a plurality of fragments, wherein the plurality of fragments includes at least one named fragment, which indicates a name associated with the content object, the name being a hierarchically structured variable-length identifier that comprises contiguous name components ordered from a most general level to a most specific level. The intermediate node detects a congestion and sets an indicator for congestion notification in the received fragment. The intermediate node forwards the received fragment and drops a second fragment received after the forwarded fragment.


In a variation on this embodiment, in response to detecting the congestion, the intermediate node determines that the received fragment indicates an optimal position to restart a flow of the fragment, wherein the indicator for congestion notification is an indicator for early congestion notification.


In a further variation, the intermediate node determines that the received fragment indicates an optimal position to restart a flow of the fragment. The intermediate node also determines that the received fragment is a previous fragment that directly precedes a named fragment.


In a further variation, the intermediate node determines that the received fragment does not indicate an optimal position to restart a flow of the fragment, wherein the indicator for congestion notification is an indicator for early discarding.


In a further variation, the intermediate node receives a third fragment with the indicator for early congestion notification. The intermediate node identifies an alternate path not associated with the congestion, and generates an interest for a remainder of the plurality of fragments starting from a next fragment that directly follows the third fragment. The intermediate node resets the indicator for early congestion notification, and forwards the interest based on an interface associated with the alternate path.


In a further variation, the intermediate node computes an intermediate state for the next fragment based on a hash function performed on an intermediate state from the received fragment, wherein the received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received fragment. The intermediate node determines a payload size for the remainder of the plurality of fragments starting from the next fragment, and includes in a name for the interest the computed intermediate state and the determined payload size.


In a further variation, the intermediate node receives a third fragment with the indicator for early discarding. The intermediate node identifies an alternate path not associated with the congestion, and further identifies a previously received named fragment that is closest in order to the received fragment. The intermediate node generates an interest for a remainder of the plurality of fragments starting from the previously received named fragment. The intermediate node resets the indicator for early discarding and forwards the interest based on an interface associated with the alternate path.


In a further variation, the intermediate node determines a payload size for the remainder of the plurality of fragments starting from the previously received named fragment. The intermediate node includes in a name for the interest message an intermediate state for the previously received named fragment and the determined payload size, wherein the intermediate state for the previously received named fragment is based on a hash function performed on an intermediate state from a previous fragment that directly precedes the previously named fragment and data included in the previously received named fragment.


In a further variation, a name for an interest includes a digest for the content object, and a number indicating a byte offset that corresponds to a starting byte for the received fragment or a previously received named fragment closest in order to the received fragment.


In another embodiment, the system receives, by a content requesting device, a first fragment which is a fragment of a content object message that is fragmented into a plurality of fragments, wherein the plurality of fragments includes at least one named fragment, which indicates a name associated with the content object, the name being a hierarchically structured variable-length identifier that comprises contiguous name components ordered from a most general level to a most specific level. The content requesting device determines that an indicator for congestion notification in the received fragment is set, and generates an interest for a remainder of the plurality of fragments starting from a named fragment.


In a variation on this embodiment, the indicator for congestion notification is an indicator for early congestion notification, and the named fragment is a next fragment that directly follows the received fragment. The content requesting device computes an intermediate state for the next fragment based on a hash function performed on an intermediate state from the received fragment, wherein the received fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received fragment. The content requesting device determines a payload size for the remainder of the plurality of fragments starting from the next fragment, and includes in a name for the interest the computed intermediate state and the determined payload size.


In a further variation, the content requesting device updates a corresponding entry in a pending interest table based on a payload offset of the received fragment, wherein the payload offset is a number indicating a byte offset that corresponds to a starting byte for the received fragment.


In a further variation, the indicator for congestion notification is an indicator for early discarding, and the named fragment is a previously received named fragment that is closest in order to the received fragment. The content requesting device determines a payload size for the remainder of the plurality of fragments starting from the previously received named fragment, and includes in a name for the interest an intermediate state for the previously received named fragment and the determined payload size, wherein the intermediate state for the previously received named fragment is based on a hash function performed on an intermediate state from a previous fragment that directly precedes the previously named fragment and data included in the previously received named fragment.


In a further variation, the content requesting device updates a corresponding entry in a pending interest table based on a payload offset of the previously received named fragment, wherein the payload offset is a number indicating a byte offset that corresponds to a starting byte for the previously received named fragment.


In a further variation, in response to determining that the indicator for congestion notification in the received fragment is not set, the content requesting device processes the received fragment for reassembly.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary network facilitating flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary format for a first fragment of a content object message, in accordance with an embodiment of the present invention.



FIG. 2B illustrates an exemplary format for a named fragment of a content object message, in accordance with an embodiment of the present invention.



FIG. 3A illustrates a fragmented content object, including an unnamed fragment that is a previous fragment that directly precedes a named fragment, in accordance with an embodiment of the present invention.



FIG. 3B illustrates a fragmented content object that corresponds to the fragmented content object in FIG. 3A, including an indicator of early congestion notification that is set to an active value, in accordance with an embodiment of the present invention.



FIG. 3C illustrates a fragmented content object, including an unnamed fragment that is not a previous fragment that directly precedes a named fragment, in accordance with an embodiment of the present invention.



FIG. 3D illustrates a fragmented content object that corresponds to the fragmented content object in FIG. 3C, including an indicator of early discarding that is set to an active value, in accordance with an embodiment of the present invention.



FIG. 4 presents a flow chart illustrating a method by an intermediate node for processing a fragment of a content object message when congestion is detected, in accordance with an embodiment of the present invention.



FIG. 5A presents a flow chart illustrating a method by an intermediate node for processing a fragment of a content object message, where the fragment indicates congestion and an alternate non-congested path is identified, in accordance with an embodiment of the present invention.



FIG. 5B presents a flow chart illustrating a method by an intermediate node for processing a fragment of a content object message, where the fragment indicates congestion and an alternate non-congested path is identified, in accordance with an embodiment of the present invention.



FIG. 5C presents a flow chart illustrating a method by an intermediate node for processing a fragment of a content object message, where the fragment indicates congestion and an alternate non-congested path is identified, in accordance with an embodiment of the present invention.



FIG. 6A presents a flow chart illustrating a method by a content requesting device for processing a fragment of a content object message, in accordance with an embodiment of the present invention.



FIG. 6B presents a flow chart illustrating a method by a content requesting device for processing a fragment of a content object message, in accordance with an embodiment of the present invention.



FIG. 7A illustrates an exemplary apparatus that facilitates flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention.



FIG. 7B illustrates an exemplary apparatus that facilitates flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention.



FIG. 8A illustrates an exemplary computer system that facilitates flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention.



FIG. 8B illustrates an exemplary computer system that facilitates flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention provide a system that solves the problem of re-requesting an entire fragment stream when only one fragment is dropped by allowing an intermediate node to mark the dropping point and by providing a secure fragmentation protocol where one or more fragments carry a network addressable name (i.e., a named fragment). An intermediate node may detect congestion and drop a fragment at any point. The marked dropping point and the unique name allow a content requestor to re-request only a subsequence of the fragment stream, rather than the entire fragment stream. As a result, the flow of the congested dropped stream is more efficiently resumed. The intermediate node can be a part of a content centric network (CCN), where communication is based on a secure fragmentation protocol known as the Network Named Fragments protocol.


The intermediate node can indicate a detected congestion by marking a flag carried in a fragment. The flag indicates the point at which the intermediate node drops the fragment stream. This allows the requestor to generate an interest for only the remainder of the fragments. For example, the intermediate node can set an early congestion notification (ECN) flag. The ECN flag indicates that the next fragment is a named fragment and that the requestor should request the stream starting from that next named fragment onwards. In another example, the intermediate node can set an early discarding (ED) flag. The ED flag indicates that the next fragment is not a named fragment and that the requestor should request the stream starting from a previously received named fragment that is closest to the received fragment.


The NNF protocol provides a naming convention that allows a requestor to request the remainder of a fragment stream, i.e., a subsequence of fragments. Each fragment is uniquely identified based on certain state characteristics, such as overall digest, payload offset, payload size, and intermediate state. These state characteristics can be encoded into the name of the fragment to allow selective retransmission of a subsequence of fragments. A requestor can compute the intermediate state of the next fragment because the fragments are hash chained, i.e., each fragment contains an intermediate state which is based on a hash of the data of the respective fragment and the intermediate state from the previous fragment. The already received fragments include sufficient information to compute a remaining payload size, such as the overall length, remaining length, and payload offset. The requestor or an intermediate node can encode this computed information in an interest name to selectively request a subsequence of fragments, thus obviating the need to re-request the entire stream.


In addition, upon receiving a fragment that indicates congestion, an upstream intermediate node can identify an alternate non-congested path and proactively begin requesting the remainder of the fragment stream on behalf of the content requestor. Such an upstream intermediate node also clears the appropriate flag in the received fragment.


The following terms describe elements of a CCN architecture:


Content Object or “content object”: A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names: A name in a CCN is typically location independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components parc, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish between different versions of the content item, such as a collaborative document.


In some embodiments, the name can include a non-hierarchical identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest or “interest”: A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175.


Exemplary Network and Communication



FIG. 1 illustrates an exemplary network 100 facilitating flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention. Network 100 can be a content centric network (CCN) and can include a client device or content requesting device 116, a content producing device 118, and a router or other forwarding device at nodes 102, 104, 106, 108, 110, 112, and 114. A CCN router can be a CCN forwarding device residing on top of an IP router. In other words, CCN can be implemented as an overlay on top of IP. Other CCN overlay architecture is also possible. A node can be a computer system, an end-point representing users, and/or a device that can generate interests or originate content.


A requesting entity (such as device 116) can generate an interest in a piece of content. Intermediate nodes (such as CCN routers 102, 104, 112, and 114) can receive and forward the interest. A content producer (such as device or content producer 118) can satisfy the requested interest. Producer 118 can fragment a responsive content object 130 into x number of fragments, e.g., fragments 130.1-130.x. Producer 118 can sign the first fragment and create a trusted hash chain of the remaining fragments. Producer 118 can immediately begin forwarding fragments 130.1-130.x, which fragments will travel the reverse path as the interest (e.g., to nodes 114, 112, 104, and 102) and reach device 116. An exemplary content object fragmented by a producer is described below in relation to FIGS. 3A and 3C.


During the forwarding of the fragment stream, an intermediate router (such as node 104) can receive a fragment (e.g., fragment 130.3) and detect congestion. Intermediate node 104 can set an indicator of congestion notification (CN) 140 in fragment 130.3, and drop any fragments received after fragment 130.3, as described below in relation to FIG. 4. Device 116 can receive fragment 130.3 and, based on CN indicator 140, determine that the fragment stream has been dropped by an intermediate node. Using the naming convention of the NNF protocol, device 116 can generate an interest for the remainder of the fragment stream that comprises content object 130. This obviates the need for the requesting entity to re-request the entire fragment stream. Instead, the requesting entity can re-request only the specific portion of the stream based on CN indicator 140. In some embodiments, the CN indicator can be one of two flags: an early congestion notification (ECN) flag or an early discarding (ED) flag, as described below in relation to FIGS. 6A and 6B. The flags indicate the point at which the requesting entity should begin re-requesting the fragment stream. Device 116 can receive content object fragments 130.1-130.x and reassemble content object 130.


Exemplary Format of CCN Content Object Message Fragments



FIG. 2A illustrates an exemplary format for a first fragment 210 of a content object message, in accordance with an embodiment of the present invention. First fragment 210 can include the following fields: a name 211 that can indicate the name of the content object and also contain encoded information to specifically identify the fragment; an overall digest 212 that is the digest of the entire fragmented payload for the CCN content object message; a payload offset 213 that is the byte offset where this fragment begins; an intermediate state 214 that is a value calculated based on the initialization vector and the payload or data associated with this fragment (e.g., data 219); a next fragment named (NFN) flag 215 that indicates whether the next fragment that immediately follows this fragment is a fragment that includes a name (e.g., a named fragment); an early congestion notification (ECN) flag 216 that indicates whether an intermediate node has detected congestion and dropped the stream immediately after this fragment, where the next fragment is a named fragment; an early discarding (ED) flag 217 that indicates whether an intermediate node has detected congestion and dropped the stream immediate after this fragment, where the next fragment is not a named fragment; an overall length 218 that is the total length of the entire fragmented payload; a data 219 that is the payload of this fragment and one of the input fields for the hash function to calculate intermediate state 214; and a signature 220 that is the signature of the producer of the content object message. First fragment 210 cannot be re-fragmented by an intermediate node. Thus, first fragment 210 may contain no payload (e.g., no data 219) or a payload with a size smaller than a known MTU of the network.


In some embodiments, NFN flag 215, ECN flag 216, and ED flag 217 are control flags or bits that comprise CN indicator 140 depicted in FIG. 1. These control flags can be carried outside of the fragmented payload so that they do not influence the computation of the hash of the intermediate state. In addition, the control flags do not need to be secured because attacks on these control signals, similar to malicious or accidental drops, result in the content requestor going through its normal timeout and restart procedures that are in place even without the features described herein.



FIG. 2B illustrates an exemplary format for a named fragment 220 of a content object message, in accordance with an embodiment of the present invention. Named fragment 220 is a fragment that is not the first fragment of a stream, and includes a name that indicates the name of the content object and can also contain encoded information to specifically identify the fragment. Named fragment 220 can include similar fields as first fragment 210 of FIG. 2A. For example, named fragment 220 can include the following fields: a name 231; an overall digest 232; a payload offset 233; an intermediate state 234; a next fragment named (NFN) flag 235; an early congestion notification (ECN) flag 236; an early discarding (ED) flag 237; an overall length 238; and a data 239. Intermediate state 234 is calculated based on a hash function performed on the intermediate state of the previous fragment. Overall length 238 is the length of the remaining fragment stream, in contrast with overall length 218 (of first fragment 210 in FIG. 2A) which indicates the overall length of the entire fragmented payload. Overall digests 212 and 222 can be included in first fragment 210 and named fragment 230, respectively, when the hash chain and the final overall digest is known in advance, e.g., when fragmenting a known file. Note that signature 220 is only included in first fragment 210, and not in named fragment 230 (or any other subsequent fragments, named or unnamed).


A subsequent fragment that is neither a first fragment nor a named fragment (e.g., an unnamed fragment) includes similar fields as named fragment 230, but does not include an overall length field, and may not include a name field when CCNx Nameless Objects are supported (as described in U.S. patent application Ser. No. 14/337,026). An unnamed fragment that is a previous fragment that directly precedes a named fragment includes the NFN flag set by the content producer (e.g., set to a value of “1” or another active value). An unnamed fragment that is a previous fragment that does not directly precede a named fragment includes the NFN not set by the content producer (e.g., set to a value of “0” or another inactive value).



FIG. 3A illustrates a fragmented content object 350, including an unnamed fragment 305 that is a previous fragment that directly precedes a named fragment 306, in accordance with an embodiment of the present invention. Content object 350 includes fragments 300-310: a first fragment which is a named fragment 300; named fragments 303, 306, and 309; and unnamed fragments 301, 302, 304, 305, 307, 308, and 310. Named (first) fragment 300 includes similar fields as first fragment 210 of FIG. 2A, and named fragments 303, 306, and 309 include similar fields as named fragment 230 of FIG. 2B. Unnamed fragments 301, 302, 304, 305, 307, 308, and 310 also include similar fields as named fragment 230 of FIG. 2B, with the exception described above (e.g., no name or overall length fields). For example, fragment 305 is an unnamed fragment that directly precedes a named fragment. Thus, the NFN flag for fragment 305 is set to “1” by the content producer, indicating that the next fragment is a named fragment. FIG. 3A depicts the content object message generated by the content producer and as received by an intermediate node.



FIG. 3B illustrates fragmented content object 360 that corresponds to fragmented content object 350 in FIG. 3A, including an indicator of early congestion notification that is set to an active value, in accordance with an embodiment of the present invention. As in FIG. 3A, NFN field 354 of unnamed fragment 305 is set to an active value. An intermediate node can receive fragment 305 and detect congestion. The intermediate node can subsequently set ECN flag 355 to an active value (e.g., to a value of “1”), indicating to a content requestor that it will drop all fragments occurring after the current fragment. The ECN flag (e.g., ECN flag 355) also indicates to the requestor that the next fragment is a named fragment (e.g., named fragment 306), thus providing sufficient information for the requestor to generate an interest for the remainder of the fragments (e.g., fragments 306-310), as described below in relation to FIGS. 6A and 6B.



FIG. 3C illustrates a fragmented content object 380, including an unnamed fragment 307 that is not a previous fragment that directly precedes a named fragment, in accordance with an embodiment of the present invention. Content object 380 has similar fragments and fields as content object 350. Content object 380 also includes unnamed fragment 307, which does not directly precede a named fragment. The NFN flag 374 for fragment 307 is not set to an active value (e.g., is set to a value of “0”), indicating that the next fragment is not a named fragment.



FIG. 3D illustrates a fragmented content object 390 that corresponds to fragmented content object 380 in FIG. 3C, including an indicator of early discarding that is set to an active value, in accordance with an embodiment of the present invention. As in FIG. 3C, NFN field 354 of unnamed fragment 307 is not set to an active value. An intermediate node can receive fragment 307 and detect congestion. The intermediate node can subsequently set ED flag 376 to an active value (e.g., to a value of “1”), indicating to a content requestor that it will drop all fragments occurring after the current fragment. The ED flag (e.g., ED flag 376) also indicates to the requestor that the next fragment is a not a named fragment (e.g., unnamed fragment 308). The ED flag thus provides sufficient information for the requestor to generate an interest for the remainder of the fragments starting from a previously received named fragment that is closest in order to the current fragment (e.g., starting from the closest previously received named fragment 306), as described below in relation to FIGS. 6A and 6B.


Selective Retransmission of a Fragment or a Subsequence of Fragments


Because the NNF protocol uniquely identifies each fragment based on, e.g., {Name, OverallDigest, PayloadOffset, IntermediateState}, certain of these characteristics can be encoded into the name to uniquely address a fragment for selective retransmission. For example, Overall Digest (“OD”), Payload Offset (“PO”), and IntermediateState (“IS”) can be encoded in the name for a fragment:

/parc.com/movie.alto.mkv/OD=123abc/PO=4096/IS=653efa  (1)

By using this naming convention, a requesting entity (such as a content requesting device or an intermediate node) can selectively request a specific fragment.


In addition, a requesting entity can selectively request a subsequence or chain of fragments by including the name and an additional payload size. For example, consider an interest with the following name:

/parc.com/movie.alto.mkv/OD=123abc/PO=4096/IS=653efa/PS=8192  (2)

If the size of each individual fragment is 1024 B, interest (2) returns a chain of four fragments starting at byte offset 4096. Re-fragmentation can also occur. For example, consider an interest with the following name:

/parc.com/movie.alto.mkv/OD=123abc/PO=4096/IS=653efa/PS=7680  (3)

Similar to interest (2), interest (3) returns a chain of four fragments. However, the fourth fragment of the chain is re-fragmented to 512 B.


In some embodiments, the interest can carry a TLV field for how many bytes (or blocks or demarcations) to deliver (e.g., the size of the remainder of the plurality of fragments or a specific subsequence of fragments). An intermediate node can truncate the fragment stream at the point indicated in the interest, which allows a requesting entity to limit the congestion created by any single interest.


Processing and Flow Control by an Intermediate Node



FIG. 4 presents a flow chart 400 illustrating a method by an intermediate node for processing a fragment of a content object message when congestion is detected, in accordance with an embodiment of the present invention. During operation, an intermediate node receives a first packet that corresponds to a fragment of a content object message fragmented into a plurality of fragments (operation 402). The plurality of fragments includes at least one named fragment, which indicates a name associated with the content object message, where the name is a hierarchically structured variable-length identifier that comprises contiguous name components ordered from a most general level to a most specific level. The intermediate node determines whether congestion is detected (decision 404). If not, the intermediate node forwards the received fragment to a next-hop node based on a reverse path of a corresponding interest in the pending interest table (PIT) (operation 412). If the intermediate node does detect congestion, the intermediate node determines whether the received fragment indicates an optimal restart position (operation 406). The indication of an optimal restart position can be a next named fragment (NFN) flag, such as NFN flags 354 or 374 of FIGS. 3A and 3C, respectively. If the received fragment indicates an optimal restart position, the intermediate node sets an indicator of early congestion notification (ECN) for the received fragment to an active value (operation 408). If the received fragment does not indicate an optimal restart position, the intermediate node sets an indicator of early discarding (ED) for the received fragment to an active value (operation 410). The intermediate node then forwards the received fragment to a next-hop node based on a reverse path of a corresponding interest in the PIT (operation 412).


Subsequently, the intermediate node determines whether it receives a second packet that corresponds to a subsequent fragment, e.g., a fragment received after the forwarded packet (decision 414). If it does not, the operation returns. If the intermediate node does receive a subsequent fragment, the intermediate node drops the subsequent fragment (operation 416).



FIG. 5A presents a flow chart 500 illustrating a method by an intermediate node for processing a fragment of a content object message, where the fragment indicates congestion and an alternate non-congested path is identified, in accordance with an embodiment of the present invention. During operation, an intermediate node receives a packet that corresponds to a fragment of a content object message fragmented into a plurality of fragments (operation 502). The plurality of fragments includes at least one named fragment. The intermediate node determines whether an indicator for congestion notification is set (operation 504). For example, the intermediate node determines whether either of the ECN or ED flags is set to an active value. If the indicator for CN is not set, the intermediate node forwards the received fragment to a next-hop node based on a reverse path of a corresponding interest in the PIT (operation 514). If the indicator for CN is set (e.g., either of the ECN or ED flags is set), the intermediate node determines whether it can identify a non-congested alternate path (e.g., an alternate path not associated with the congestion) (operation 506). If it cannot, the intermediate node performs operation 514 as described above. If it can identify a non-congested alternate path, the intermediate node determines which of the ECN or ED flags is set to an active value (decision 508). If the ECN flag is set, the operation continues at Label A of FIG. 5B, and if the ED flag is set, the operation continues at Label B of FIG. 5C.



FIG. 5B presents a flow chart 520 illustrating a method by an intermediate node for processing a fragment of a content object message, where the fragment indicates congestion and an alternate non-congested path is identified, in accordance with an embodiment of the present invention. During operation, at Label A, when the intermediate node detects that the ECN flag is set, and a non-congested alternate path is available, the intermediate node generates an interest message for the remainder of the plurality of fragments, starting from the next fragment (operation 522). The next fragment is the fragment which directly follows the received fragment. The intermediate node computes the intermediate state for the next fragment based on a hash function performed on the intermediate state of the received fragment (operation 524). The intermediate node also computes the payload size for the remainder of the plurality of fragments, starting from the next fragment (operation 526). This can be based on, e.g., determining from a PIT lookup the overall length of the content object message in combination with the total number of bytes forwarded for the corresponding entry. The intermediate node includes the computed intermediate state and the computed payload size in a name for the interest message (operation 528). The intermediate node also sets the indicator of early congestion notification for the received fragment to an active value (operation 530), and the operation continues at Label C of FIG. 5C.


At Label B, when the intermediate node detects that the ED flag is set, and a non-congested alternate path is available, the intermediate node identifies a previously received named fragment that is closest in order to the received fragment (operation 532). The intermediate node generates an interest message for a remainder of the plurality of fragments, starting from the previously received name fragment (operation 534). The intermediate node computes the size for the remainder of the plurality of fragments, starting from the previously received named fragment (operation 536). This can be based on, e.g., identifying the payload offset of the received fragment and the overall length of the content object message from a corresponding PIT entry. The intermediate node includes the intermediate state of the previously received name fragment and the computed payload size in a name for the interest message (operation 538). The intermediate node also sets the indicator of early discarding for the received fragment to an inactive value (operation 540), and the operation continues at Label C of FIG. 5C.



FIG. 5C presents a flow chart 550 illustrating a method by an intermediate node for processing a fragment of a content object message, where the fragment indicates congestion and an alternate non-congested path is identified, in accordance with an embodiment of the present invention. During operation, at Label C, the intermediate node forwards the received fragment to a next-hop node based on a reverse path of a corresponding interest in the PIT (operation 552). The intermediate node also forwards the interest message (with the appropriately constructed name, as shown in FIG. 5B) to a next-hop node based on an interface associated with the non-congested alternate path (operation 554). In this way, an upstream intermediate node that detects either the ECN or ED flag set to an active value can proactively begin requesting the remainder of the fragment stream on behalf of the client from a different, non-congested downstream path (e.g., the alternate path), and can also clear the appropriate bit or flag (as in operations 530 and 538).


Processing by a Content Requestor



FIG. 6A presents a flow chart 600 illustrating a method by a content requesting device for processing a fragment of a content object message, in accordance with an embodiment of the present invention. During operation, a content requesting device or a content requestor receives a packet that corresponds to a fragment of a content object message fragmented into a plurality of fragments (operation 602). The plurality of fragments includes at least one named fragment. The requestor determines whether an indicator for congestion notification is set (operation 604). For example, the requestor determines whether either of the ECN or ED flags is set to an active value. If the indicator for congestion notification is not set (e.g., neither of the ECN or ED flags is set), the requestor processes the received fragment for reassembly (operation 612). If the indicator for congestion notification is set (e.g., either of the ECN or ED flags is set), the requestor determines which of the ECN or ED flags is set to an active value (decision 606). If the ECN flag is set, the operation continues at Label D of FIG. 6B, and if the ED flag is set, the operation continues at Label E of FIG. 6B.



FIG. 6B presents a flow chart 620 illustrating a method by a content requesting device for processing a fragment of a content object message, in accordance with an embodiment of the present invention. During operation, at Label D, when the content requesting device or the content requestor determines that the ECN flag is set, the requestor performs operations 622, 624, 626, and 628, which correspond respectively to operations 522, 524, 526, and 528 performed by an intermediate node, as described above in relation to FIG. 5B. The requestor also updates the corresponding PIT entry based on the payload offset of the received fragment (operation 630), which allows the requestor to continue monitoring which fragments have already been received. At Label E, when the requestor determines that the ED flag is set, the requestor performs operations 632, 634, and 636, which correspond respectively to operations 534, 536, and 538 performed by an intermediate node, as described above in relation to FIG. 5B. The requestor also updates the corresponding PIT entry based on the payload offset of the previously received name fragment (operation 638).


Exemplary Apparatus and Computer System



FIG. 7A illustrates an exemplary apparatus 700 that facilitates flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention. Apparatus 700 can comprise a plurality of modules which may communicate with one another via a wired or wireless communication channel. Apparatus 700 may be realized using one or more integrated circuits, and may include fewer or more modules than those shown in FIG. 7A. Further, apparatus 700 may be integrated in a computer system, or realized as a separate device which is capable of communicating with other computer systems and/or devices. Specifically, apparatus 700 can comprise a communication module 702, a congestion detecting module 704, an interest constructing module 706, a path identifying module 708, and an optimal restart module 710.


In some embodiments, communication module 702 can send and/or receive data packets to/from other network nodes across a computer network, such as a content centric network, where a data packet can correspond to a fragment of a content object message that is fragmented into a plurality of fragments. For example, communication module 702 can receive, by an intermediate node, a fragment of a content object. Congestion detecting module 704 can detect a congestion and set an indicator for congestion notification in a received fragment. Communication module 702 can forward the received fragment and also drop any fragments received after the forwarded fragment, e.g., for the same stream. Optimal restart module 710 can determine that the received fragment indicates an optimal position to restart a flow of the plurality of fragments, and can also determine that the received fragment is a previous fragment that directly precedes a named fragment. Optimal restart module 710 can further determine that the received fragment does not indicate an optimal position to restart a flow of the plurality of fragments.


Path identifying module 708 can identify an alternate path not associated with the congestion. Optimal restart module 710 can identify a previously received named fragment that is closest in order to the received fragment. Interest constructing module 706 can generate an interest for a remainder of the plurality of fragments starting from a next fragment that directly follows a received fragment or the previously received named fragment. Interest constructing module 706 can also compute an intermediate state for the next fragment, determine a payload size for the remainder of the plurality of fragments starting from the next fragment or the previously received named fragment, and include in a name for the interest the computed intermediate state (or an intermediate state of the previously received named fragment) and the determined payload size. Congestion detecting module 704 can reset an indicator for early congestion notification or for early discarding. Communication module 702 can forward the interest based on an interface associated with the alternate path.



FIG. 7B illustrates an exemplary apparatus 750 that facilitates flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention. Apparatus 750 can comprise a plurality of modules which may communicate with one another via a wired or wireless communication channel. Apparatus 750 may be realized using one or more integrated circuits, and may include fewer or more modules than those shown in FIG. 7B. Further, apparatus 750 may be integrated in a computer system, or realized as a separate device which is capable of communicating with other computer systems and/or devices. Specifically, apparatus 750 can comprise a communication module 752, a congestion detecting module 754, an interest constructing module 756, a PIT maintenance module 758, and a fragment processing module 760.


In some embodiments, communication module 752 can send and/or receive data packets to/from other network nodes across a computer network, such as a content centric network, where a data packet can correspond to a fragment of a content object message that is fragmented into a plurality of fragments. For example, communication module 752 can receive, by a content requesting device, a fragment of a content object. Congestion detecting module 754 can determine that an indicator for congestion notification in the received fragment is set. Interest constructing module 756 can generate an interest for a remainder of the plurality of fragments starting from a named fragment.


Interest constructing module 756 can generate an interest for a remainder of the plurality of fragments starting from a next fragment that directly follows a received fragment or identify a previously received named fragment that is closest in order to the received fragment. Interest constructing module 756 can also compute an intermediate state for the next fragment, determine a payload size for the remainder of the plurality of fragments starting from the next fragment or the previously received named fragment, and include in a name for the interest the computed intermediate state (or an intermediate state of the previously received named fragment) and the determined payload size. PIT maintenance module 758 can update a corresponding entry in a PIT based on a payload offset of the received fragment or the previously received named fragment. Fragment processing module 760 can process the received fragment for reassembly.



FIG. 8A illustrates an exemplary computer system 802 that facilitates flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention. Computer system 802 includes a processor 804, a memory 806, and a storage device 808. Memory 806 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer system 802 can be coupled to a display device 810, a keyboard 812, and a pointing device 814. Storage device 808 can store an operating system 816, a content-processing system 818, and data 830.


Content-processing system 818 can include instructions, which when executed by computer system 802, can cause computer system 802 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 818 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network (communication module 820). For example, content-processing system 818 can include instructions for receiving, by an intermediate node, a data packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments (communication module 820).


Content-processing system 818 can include instructions for detecting a congestion and setting an indicator for congestion notification in a received fragment (congestion detecting module 822). Content-processing system 818 can also include instructions for forwarding the received fragment and for dropping any fragments received after the forwarded fragment, e.g., for the same stream (communication module 820). Content-processing system 818 can additionally include instructions for determining whether the received fragment indicates an optimal position to restart a flow of the plurality of fragments, and also for determining that the received fragment is a previous fragment that directly precedes a named fragment (optimal restart module 828).


Content-processing system 818 can further include instructions for identifying an alternate path not associated with the congestion (path identifying module 826). Content-processing system 818 can include instructions for identifying a previously received named fragment that is closest in order to the received fragment (optimal restart module 828). Content-processing system 818 can include instructions for generating an interest for a remainder of the plurality of fragments starting from a next fragment that directly follows a received fragment or the previously received named fragment (interest constructing module 824). Content-processing system 818 can also include instructions for computing an intermediate state for the next fragment, determining a payload size for the remainder of the plurality of fragments starting from the next fragment or the previously received named fragment, and including in a name for the interest the computed intermediate state (or an intermediate state of the previously received named fragment) and the determined payload size (interest constructing module 824).


Content-processing system 818 can include instructions for resetting an indicator for early congestion notification or for early discarding (congestion detecting module 822). Content-processing system 818 can include instructions for forwarding the interest based on an interface associated with the alternate path (communication module 820).



FIG. 8B illustrates an exemplary computer system 852 that facilitates flow control based on a secure fragmentation protocol, in accordance with an embodiment of the present invention. Computer system 852 includes a processor 854, a memory 856, and a storage device 858. Memory 856 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer system 852 can be coupled to a display device 860, a keyboard 862, and a pointing device 864. Storage device 858 can store an operating system 866, a content-processing system 868, and data 880.


Content-processing system 868 can include instructions, which when executed by computer system 852, can cause computer system 852 to perform methods and/or processes described in this disclosure. Specifically, content-processing system 868 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network (communication module 870). For example, content-processing system 818 can include instructions for receiving, by a content requesting device, a data packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments (communication module 870).


Content-processing system 868 can include instructions for determining that an indicator for congestion notification in the received fragment is set (congestion detecting module 872). Content-processing system 868 can include instructions for generating an interest for a remainder of the plurality of fragments starting from a named fragment (interest constructing module 874).


Content-processing system 868 can include instructions for generating an interest for a remainder of the plurality of fragments starting from a next fragment that directly follows a received fragment or the previously received named fragment (interest constructing module 874). Content-processing system 868 can also include instructions for computing an intermediate state for the next fragment, determining a payload size for the remainder of the plurality of fragments starting from the next fragment or the previously received named fragment, and including in a name for the interest the computed intermediate state (or an intermediate state of the previously received named fragment) and the determined payload size (interest constructing module 874).


Content-processing system 868 can also include instructions for updating a corresponding entry in a PIT based on a payload offset of the received fragment or the previously received named fragment (PIT maintenance module 876). Content-processing system 868 can also include instructions for processing the received fragment for reassembly (fragment processing module 878).


Data 830 of FIG. 8A and data 880 of FIG. 8B can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 830 and data 880 can store at least: a packet that corresponds to a fragment of a content object message that is fragmented into a plurality of fragments; a unique name that is an HSVLI that comprises contiguous name components ordered from a most general level to a most specific level; a name that is based on a hash of a content object or that indicates a digest; an intermediate state for a fragment which is based on a hash function performed on an intermediate state from a previous fragment and data included in the fragment; a pending interest table; a digest for a content object; a byte offset that corresponds to a starting byte for a fragment; an overall length for a content object; a payload size; an entry in a pending interest table; a digital signature of a content producing device; a total number of bytes forwarded; a name that indicates the intermediate state, the byte offset, the digest, and/or the payload size; an indicator of congestion notification; an indicator of early congestion notification; an indicator of early discarding; an indicator that a next fragment is a named fragment; and an interest for a subsequence of a fragment stream.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A computer system for facilitating forwarding of packets, the system comprising a processor; anda storage device storing instructions that when executed by the processor cause the processor to perform a method, the method comprising: receiving, by an intermediate node, a first fragment which is a fragment of a content object that is fragmented into a plurality of fragments,wherein the plurality of fragments includes at least one named fragment, which indicates a name associated with the content object, the name being a hierarchically structured variable-length identifier that comprises contiguous name components ordered from a most general level to a most specific level;detecting a congestion;when there is congestion: setting an indicator for congestion notification in the received first fragment;forwarding the received first fragment;dropping a second fragment received after the forwarded first fragment;receiving a third fragment comprising a congestion notification;identifying an alternate path not associated with the congestion;generating an interest for a remainder of the plurality of fragments based on the congestion notification of the third fragment; andforwarding the interest based on an interface associated with the alternate path.
  • 2. The computer system of claim 1, wherein in response to detecting the congestion, the method further comprises: determining that the received first fragment indicates an optimal position to restart a flow of the fragment,wherein the indicator for congestion notification is an indicator for early congestion notification.
  • 3. The computer system of claim 1, wherein the method further comprises: determining that the received first fragment indicates an optimal position to restart a flow of the fragment, which involves: determining that the received first fragment is a previous fragment that directly precedes a named fragment.
  • 4. The computer system of claim 1, wherein the method further comprises: determining that the received first fragment does not indicate an optimal position to restart a flow of the fragment,wherein the indicator for congestion notification is an indicator for early discarding.
  • 5. The computer system of claim 1, wherein the congestion notification in the received third fragment is an indicator for early congestion, and wherein the method further comprises: generating the interest further comprises, generating the interest for the remainder of the plurality of fragments starting from a next fragment that directly follows the received third fragment; andsetting the indicator for early congestion notification in the received third fragment to an inactive value.
  • 6. The computer system of claim 5, wherein generating the interest further comprises: computing an intermediate state for the next fragment based on a hash function performed on an intermediate state from the received third fragment, wherein the received third fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received third fragment;determining a payload size for the remainder of the plurality of fragments starting from the next fragment; andincluding in a name for the interest based on the computed intermediate state and the determined payload size.
  • 7. The computer system of claim 1, wherein the congestion notification in the received third fragment is an indicator for early discarding, and wherein the method further comprises: identifying a previously received named fragment that is closest in order to the received third fragment;generating the interest further comprises, generating the interest for the remainder of the plurality of fragments starting from the previously received named fragment; andsetting the indicator for early discarding in the received third fragment to an inactive value.
  • 8. The computer system of claim 7, wherein generating the interest further comprises: determining a payload size for the remainder of the plurality of fragments starting from the previously received named fragment; andincluding in a name for the interest an intermediate state for the previously received named fragment and the determined payload size,wherein the intermediate state for the previously received named fragment is based on a hash function performed on an intermediate state from a previous fragment that directly precedes the previously received named fragment and data included in the previously received named fragment.
  • 9. The computer system of claim 1, wherein a name for an interest includes a digest for the content object, and a number indicating a byte offsetthat corresponds to a starting byte for the received first fragment or a previously received named fragment closest in order to the received first fragment.
  • 10. A computer system for facilitating forwarding of packets, the system comprising: a processor; anda storage device storing instructions that when executed by the processor cause the processor to perform a method, the method comprising: receiving, by a content requesting device, a first fragment which is a fragment of a content object message that is fragmented into a plurality of fragments,wherein the plurality of fragments includes at least one named fragment, which indicates a name associated with the content object, the name being a hierarchically structured variable-length identifier that comprises contiguous name components ordered from a most general level to a most specific level;determining that an indicator for congestion notification in the received first fragment is set;updating a corresponding entry in a pending interest table based on a payload offset of the received first fragment or of a previously received named fragment that is closest in order to the received first fragment, wherein the payload offset is a number indicating a byte offset; andgenerating an interest for a remainder of the plurality of fragments starting from a named fragment.
  • 11. The computer system of claim 10, wherein the indicator for congestion notification is an indicator for early congestion notification, wherein the named fragment is a next fragment that directly follows the received first fragment, and wherein generating the interest further comprises: computing an intermediate state for the next fragment based on a hash function performed on an intermediate state from the received first fragment, wherein the received first fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received first fragment;determining a payload size for the remainder of the plurality of fragments starting from the next fragment; andincluding in a name for the interest based on the computed intermediate state and the determined payload size.
  • 12. The computer system of claim 10, wherein the byte offset corresponds to a starting byte for the received first fragment.
  • 13. The computer system of claim 10, wherein the indicator for congestion notification is an indicator for early discarding, wherein the named fragment is the previously received named fragment that is closest in order to the received first fragment, and wherein generating the interest further comprises: determining a payload size for the remainder of the plurality of fragments starting from the previously received named fragment; andincluding in a name for the interest an intermediate state for the previously received named fragment and the determined payload size,wherein the intermediate state for the previously received named fragment is based on a hash function performed on an intermediate state from a previous fragment that directly precedes the previously received named fragment and data included in the previously received named fragment.
  • 14. The computer system of claim 13, wherein the byte offset corresponds to a starting byte for the previously received named fragment.
  • 15. The computer system of claim 10, wherein the method further comprises: in response to determining that the indicator for congestion notification in the received first fragment is not set, processing the received first fragment forreassembly.
  • 16. A computer-implemented method for forwarding packets, the method comprising: receiving, by an intermediate node, a first fragment which is a fragment of a content object that is fragmented into a plurality of fragments,wherein the plurality of fragments includes at least one named fragment, which indicates a name associated with the content object, the name being a hierarchically structured variable-length identifier that comprises contiguous name components ordered from a most general level to a most specific level;detecting a congestion;when there is congestion: setting an indicator for congestion notification in the received first fragment;forwarding the received first fragment;dropping a second fragment received after the forwarded first fragment;receiving a third fragment comprising a congestion notification;identifying an alternate path not associated with the congestion;generating an interest for a remainder of the plurality of fragments based on the congestion notification of the third fragment; andforwarding the interest based on an interface associated with the alternate path.
  • 17. The method of claim 16, wherein in response to detecting the congestion, the method further comprises: determining that the received first fragment indicates an optimal position to restart a flow of the fragment,wherein the indicator for congestion notification is an indicator for early congestion notification.
  • 18. The method of claim 16, further comprising: determining that the received first fragment indicates an optimal position to restart a flow of the fragment, which involves: determining that the received first fragment is a previous fragment that directly precedes a named fragment.
  • 19. The method of claim 16, further comprising: determining that the received first fragment does not indicate an optimal position to restart a flow of the fragment,wherein the indicator for congestion notification is an indicator for early discarding.
  • 20. The method of claim 16, further comprising wherein the congestion notification in the received third fragment is an indicator for early congestion, the method further comprising: generating the interest further comprising, generating the interest for the remainder of the plurality of fragments starting from a next fragment that directly follows the third fragment; andsetting the indicator for early congestion notification in the received third fragment to an inactive value.
  • 21. The method of claim 20, wherein generating the interest further comprises: computing an intermediate state for the next fragment based on a hash function performed on an intermediate state from the received first fragment, wherein the received first fragment indicates an intermediate state which is based on a hash function performed on an intermediate state from a previous fragment and data included in the received first fragment;determining a payload size for the remainder of the plurality of fragments starting from the next fragment; andincluding in a name for the interest the computed intermediate state and the determined payload size.
  • 22. The method of claim 16, wherein the congestion notification in the received third fragment is an indicator for early discarding, the method further comprising: identifying a previously received named fragment that is closest in order to the received third fragment;generating the interest further comprising, generating the interest for the remainder of the plurality of fragments starting from the previously received named fragment; andsetting the indicator for early discarding in the received third fragment to an inactive value.
  • 23. The method of claim 22, wherein generating the interest further comprises: determining a payload size for the remainder of the plurality of fragments starting from the previously received named fragment; andincluding in a name for the interest an intermediate state for the previously received named fragment and the determined payload size,wherein the intermediate state for the previously received named fragment is based on a hash function performed on an intermediate state from a previous fragment that directly precedes the previously received named fragment and data included in the previously received named fragment.
  • 24. The method of claim 16, wherein a name for an interest includes a digest for the content object, and a number indicating a byte offset that corresponds to a starting byte for the received first fragment or a previously received named fragment closest in order to the received first fragment.
US Referenced Citations (607)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6021464 Yao Feb 2000 A
6047331 Medard Apr 2000 A
6052683 Irwin Apr 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091724 Chandra Jul 2000 A
6128623 Mattis Oct 2000 A
6128627 Mattis Oct 2000 A
6173364 Zenchelsky Jan 2001 B1
6209003 Mattis Mar 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6289358 Mattis Sep 2001 B1
6292880 Mattis Sep 2001 B1
6332158 Risley Dec 2001 B1
6363067 Chung Mar 2002 B1
6366988 Skiba Apr 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6775258 vanValkenburg Aug 2004 B1
6834272 Naor Dec 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6915307 Mattis Jul 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7007024 Zelenka Feb 2006 B2
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7043637 Bolosky May 2006 B2
7061877 Gummalla Jun 2006 B1
7080073 Jiang Jul 2006 B1
RE39360 Aziz Oct 2006 E
7149750 Chadwick Dec 2006 B2
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7233948 Shamoon Jun 2007 B1
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7535926 Deshpande May 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7623535 Guichard Nov 2009 B2
7636767 Lev-Ran Dec 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801069 Cheung Sep 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7873619 Faibish Jan 2011 B1
7908337 Garcia-Luna-Aceves Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
7979912 Roka Jul 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8069023 Frailong Nov 2011 B1
8074289 Carpentier Dec 2011 B1
8077606 Litwack Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8239331 Shanmugavelayutham Aug 2012 B2
8271578 Sheffi Sep 2012 B2
8271687 Turner Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8332357 Chung Dec 2012 B1
8375420 Farrell Feb 2013 B2
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8861356 Kozat Oct 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9002921 Westphal Apr 2015 B2
9032095 Traina May 2015 B1
9071498 Beser Jun 2015 B2
9112895 Lin Aug 2015 B1
9137152 Xie Sep 2015 B2
9253087 Zhang Feb 2016 B2
9270598 Oran Feb 2016 B1
9280610 Gruber Mar 2016 B2
9686194 Jacobson Jun 2017 B2
20020002680 Carbajal Jan 2002 A1
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030009365 Tynan Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mitra May 2003 A1
20030140257 Peterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040196783 Shinomiya Oct 2004 A1
20040218548 Kennedy Nov 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040233916 Takeuchi Nov 2004 A1
20040246902 Weinstein Dec 2004 A1
20040252683 Kennedy Dec 2004 A1
20040267902 Yang Dec 2004 A1
20050003832 Osafune Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050066121 Keeler Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050083929 Salo et al. Apr 2005 A1
20050132207 Mourad Jun 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060242155 Moore Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20060288237 Goodwill Dec 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070156998 Gorobets Jul 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080005223 Flake Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080082662 Dandliker Apr 2008 A1
20080095159 Suzuki Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080291923 Back Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090135728 Shen May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090198832 Shah Aug 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090274158 Sharp Nov 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288076 Johnson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090296719 Maier Dec 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307286 Laffin Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100217985 Fahrny Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100257149 Cognigni Oct 2010 A1
20100268782 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100316052 Petersen Dec 2010 A1
20100322249 Thathapudi Dec 2010 A1
20100332595 Fullagar Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Iovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110131308 Eriksson Jun 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219093 Ragunathan Sep 2011 A1
20110219427 Hito Sep 2011 A1
20110219727 May Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110280214 Lee Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120045064 Rembarz Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120079056 Turanyi et al. Mar 2012 A1
20120102136 Srebrny Apr 2012 A1
20120106339 Mishra May 2012 A1
20120110159 Richardson May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Ioffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120300669 Zahavi Nov 2012 A1
20120307629 Vasseur Dec 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120317655 Zhang Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130061084 Barton Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130073882 Inbaraj Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130090942 Robinson Apr 2013 A1
20130091237 Ambalavanar Apr 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130128786 Sultan May 2013 A1
20130132719 Kobayashi May 2013 A1
20130139245 Thomas May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt, III Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227048 Xie Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130262698 Schwan Oct 2013 A1
20130275544 Westphal Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130332971 Fisher Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140003424 Matsuhira Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140043987 Watve Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140082661 Krahnstoever Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140098685 Shattil Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140122587 Petker et al. May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140237095 Petker May 2014 A1
20140156396 deKozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140181140 Kim Jun 2014 A1
20140192677 Chew Jul 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140204945 Byun Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150033365 Mellor Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150120663 LeScouarnec Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150279348 Cao Oct 2015 A1
20150288755 Mosko Oct 2015 A1
20150312300 Mosko Oct 2015 A1
20150349961 Mosko Dec 2015 A1
20150372903 Hui Dec 2015 A1
20150381546 Mahadevan Dec 2015 A1
20160019275 Mosko Jan 2016 A1
20160021172 Mahadevan Jan 2016 A1
20160062840 Scott Mar 2016 A1
20160110466 Uzun Apr 2016 A1
20160171184 Solis Jun 2016 A1
20170187641 Lundqvist Jun 2017 A1
20170302681 Solis Oct 2017 A1
20180011936 Mosko Jan 2018 A1
Foreign Referenced Citations (33)
Number Date Country
103873371 Jun 2014 CN
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1383265 Jan 2004 EP
1384729 Jan 2004 EP
1473889 Nov 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
2299754 Mar 2011 EP
2323346 May 2011 EP
2552083 Jan 2013 EP
2214356 May 2016 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2005041527 May 2005 WO
2007113180 Oct 2007 WO
2007122620 Nov 2007 WO
2007144388 Dec 2007 WO
2011049890 Apr 2011 WO
2012077073 Jun 2012 WO
2013123410 Aug 2013 WO
2014023072 Feb 2014 WO
2014074802 May 2014 WO
2014108773 Jul 2014 WO
2015084327 Jun 2015 WO
Non-Patent Literature Citations (174)
Entry
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Tiancheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013.
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013.
Marc Mosko: “CCNx 1.0 Protocol Introduction” Apr. 2, 2014 [Retrieved from the Internet Jun. 8, 2016] http://www.ccnx.org/pubs/hhg/1.1%20CCNx%201.0%20Protocol%20Introduction.pdf *paragraphs [01.3], [002], [02.1], [0003].
Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”, Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303, *Paragraph [002]* *figure 1*.
Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%20CCNx%201.0%20Tutorial.pdf [retrieved on Jun. 8, 2016] *paragraphs [003]-[006], [0011], [0013]* *figures 1,2*.
Marc Mosko et al “All-In-One Streams for Content Centric Networks”, May 24, 2015, retrieved from the Internet: http://www.ccnx.org/pubs/AllinOne.pdf [downloaded Jun. 9, 2016] *the whole document*.
Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://arxiv.org/pdf/1402.3332v5.pdf *p. 5, col. 1* *p. 2, col. 1-2* * Section 4.1; p. 4, col. 2* *Section 4.2; p. 4, col. 2*.
Priya Mahadevan et al. “CCN-KRS”, Proceedings of the 1st International Conference on Information-Centric Networking, Inc. '14, Sep. 24, 2014.
Flavio Roberto Santos Et al. “Funnel: Choking Polluters in BitTorrent File Sharing Communities”, IEEE Transactions on Network and Service Management, IEEE vol. 8, No. 4, Dec. 1, 2011.
Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, Oct. 23, 2013, pp. 1-5.
Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36.
Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3.
Mandl et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506 *The Whole Document*.
Sun et al.: “Content-Based Route Lookup Using CAMs”, Global Communications Conference, IEEE, Dec. 3, 2012 *The Whole Document*.
Gelenbe et al.: “Networks With Cognitive Packets”, Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000. IEEE, Aug. 29, 2000, pp. 3-10.
Vangelis et al.: “On the Role of Semantic Descriptions for Adaptable Protocol Stacks in the Internet of Things”, 2014 28th International Conference on Advanced Information Networking and Applications Workshops, IEEE, May 13, 2014, pp. 437-443, *last paragraph of section II.B*.
Smetters et al. “Securing Network Content” Technical Report, PARC TR-2009-1, Oct. 1, 2009, Retrieved from the internet URL:http//www.parc.com/content/attachments/TR-2009-01.pdf [retrieved Nov. 1, 2016].
Marc Mosko “CCNx Label Forwarding (CCNLF)” Jul. 21, 2014.
Gallo Alcatel-Lucent Bell Labs “Content-Centric Networking Packet Header Format” Jan. 26, 2015.
Huard J-F et al. “A Programmable Transport Architecture with QOS Guarantees” IEEE Communications Magazine, vol. 36, No. 10, Oct. 1, 1998.
Microsoft Computer Dictionary, Fifth Edition, 2002, Microsoft Press, p. 23.
Mind—A Brief Introduction, John R. Searle, 2004, Oxford University Press, pp. 62-67.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking {Feb. 2009).
“PBC Library—Pairing-Based Cryptography—About,” http://crypto.stanford.edu/pbc. downloaded Apr. 27, 2015.
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002).
Boneh et al., “Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys”, 2005.
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001).
Anteniese et al., “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage”, 2006.
Xiong et al., “CloudSeal: End-to-End Content Protection in Cloud-based Storage and Delivery Services”, 2012.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digit.
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer Sciencevol. 5443 (2009).
Gopal et al. “Integrating content-based Mechanisms with hierarchical File systems”, Feb. 1999, University of Arizona, 15 pages.
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008).
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf.
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010).
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010).
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf.
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/.
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012).
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012).
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09.
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Fall, K. et al., “DTN: An architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015.
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content_delivery_network&oldid=465077460.
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital_signature.
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015.
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015.
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015.
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015.
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999.
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013.
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279.
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009.
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014.
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013.
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009.
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015.
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015.
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010.
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4.
Dijkstra, Edsger W., Wim HJ Feijen, and A_J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512.
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006.
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983.
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM.
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013.
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012.
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989.
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014.
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014.
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004.
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision—Theoretic Troubleshooting.” Communications of the ACM. 1995.
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 {2012).
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20.
https://code.google.com/p/ccnx-trace/.
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000.
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012.
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011.
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187.
L. Wang et al., ‘OSPFN: an OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014.
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997.
M. Walfish, H. H Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007.
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Matteo Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012.
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005).
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015.
Narasimhan, Sriram, and Lee Brownston. “HyDE—A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286.
P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. Inc 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154.
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988.
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996.
S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002.
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015.
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005.
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008.
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993.
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008.
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002.
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999.
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002.
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003.
Wang, Jiangzhe et al.,“DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56.
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395.
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, Parc Tech Report.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73.
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1.
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering.
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network and Computer Applications 35 (2012) 221-229.
D. Trossen and G. Parisis, “Designing and realizing and information-centric internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7.
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium.
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006.
Hoque et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13.
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012.
Extended European Search Report in counterpart European Application No. 16187859.0, dated Feb. 7, 2017, 10 pages.
Related Publications (1)
Number Date Country
20170085491 A1 Mar 2017 US