Low frequency sound is typically generated using moving diaphragms such as speakers or high voltage electrostatic diaphragms. Audio systems normally utilize a large diaphragm with a sealed frame to generate low frequency pulses.
The disclosure herein is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements, and in which:
A sound generation system is disclosed that includes a controller and a fluid pump to produce an air flow through a sound channel. The sound generation system further includes a sound control medium disposed within the sound channel to modulate the air flow to produce pressure waves at a plurality of audible frequencies. Additionally or as an alternative, the fluid pump can modulate the air flow to produce a variety of pressure waves of different phases, frequencies, and/or amplitudes.
In one aspect, the system can be realized as a pump with a post modulator or it can be realized as a dynamic pump which uses high frequency control to modulate its output.
The sound control medium can be an array of micro-valves configured to be operated in unison to produce pressure waves at audible frequencies. For example, low frequency sound waves may be produced at up to 300 Hz or higher. Each micro-valve can be comprised of a single gate, or may include multiple chambers for refined flow modulation. Furthermore, controlled fluid pumps for gas or liquids can provide a high degree of pressure control to the point where audio information can be emitted into a pump fluid medium for use in audio playback applications, actuator applications, or propulsion. Thus, a system is provided to generate controlled modulated acoustic flows for generation of low frequency sound. Also, a modulating pump is provided for fluid flow applications.
One or more embodiments described herein provide that methods, techniques, and actions performed by a computing device are performed programmatically, or as a computer-implemented method. Programmatically, as used herein, means through the use of code or computer-executable instructions. These instructions can be stored in one or more memory resources of the computing device. A programmatically performed step may or may not be automatic.
One or more embodiments described herein can be implemented using programmatic modules or components of a system. A programmatic module or component can include a program, a sub-routine, a portion of a program, or a software component or a hardware component capable of performing one or more stated tasks or functions. As used herein, a module or component can exist on a hardware component independently of other modules or components. Alternatively, a module or component can be a shared element or process of other modules, programs or machines.
Some embodiments described herein can generally require the use of computing devices, including processing and memory resources. For example, one or more embodiments described herein can be implemented, in whole or in part, using computing devices such as desktop computers, cellular or smart phones, personal digital assistants (PDAs), laptop computers, and tablet devices. Memory, processing, and network resources may all be used in connection with the establishment, use, or performance of any embodiment described herein (including with the performance of any method or with the implementation of any system).
Furthermore, one or more embodiments described herein may be implemented through the use of instructions that are executable by one or more processors. These instructions may be carried on a computer-readable medium. Machines shown or described with figures below provide examples of processing resources and computer-readable mediums on which instructions for implementing embodiments can be carried and/or executed. In particular, the numerous machines shown with embodiments include processor(s) and various forms of memory for holding data and instructions. Examples of computer-readable mediums include permanent memory storage devices, such as hard drives on personal computers or servers. Other examples of computer storage mediums include portable storage units, such as CD or DVD units, flash memory (such as carried on smart phones, multifunctional devices or tablets), and magnetic memory. Computers, terminals, network enabled devices (e.g., mobile devices, such as cell phones) are all examples of machines and devices that utilize processors, memory, and instructions stored on computer-readable mediums. Additionally, embodiments may be implemented in the form of computer-programs, or a computer usable carrier medium capable of carrying such a program.
The fluid pump 120 can be configured to generate a continuous and direct air flow 122 through a sound channel for modulation by the sound control medium 140. In such variations, the fluid pump 120 can be configured to either pull air into the sound channel, or push air into the sound channel.
Alternatively the fluid pump 120 can be configured to generate an alternating flow 124. For example, the fluid pump 120 can be a slow modulated alternating current (AC) pump such as a circular pump. In such variations, the downstream sound control medium (e.g., a valve array), can be timed to be in phase with the AC pump. Furthermore, for AC implementations, pressurized chambers may be included to bridge periods of low flow times between pump cycles. The AC pump may be a “push-pull” pump, which can redirect airflow as input into the sound channel, or output through the fluid pump 120. Such push-pull pumps can be controlled dynamically according to pump control signals 112 from the controller 110. Still further, the fluid pump 120 can be any variety or combination of different pumps to generate dynamic flows or pulses as described in further detail below.
The fluid pump 120 can be configured to generate either unidirectional or bidirectional airflows, and can further be configured to generate an output flow that can either be modulated or un-modulated. Furthermore, the fluid pump 120 can be ultrasonic and can further be capable of modulating its power in real-time and/or utilize a post modulator, such as a gated apparatus, to achieve a higher degree of pressure control efficacy.
In variations, a second fluid pump operating anti-parallel to the first air pump can be utilized. In such variations, the outputs of both pumps can be merged allowing for true positive and negative pressure amplitudes, and can be achieved through the use of one or more internal valves with varying tradeoff in distortion and/or loading. Certain variations may include a sound channel shaped to allow for flow convergence, and may further include one or more valve arrays to further refine generated pressure pulses.
Furthermore, the fluid pump 120 can include multiple flow channels, where each flow channel can be optimized for an audio frequency band. For example, when a desired sound has a frequency of 125 Hz, air flow may be redirected to a particular flow channel that has been optimized for a frequency range between say 100-150 Hz. In such arrangements, other flow channels can be blocked to allow a single optimized flow for that particular frequency range.
The sound control medium 140 can be disposed within the sound channel and can be coupled to receive the air flow from the fluid pump 120. Furthermore, the sound control medium 140 can be controlled by way of valve control signals 114 from the controller 110. The sound control medium 140 can be a single valve constrictor that “pinches” the airflow according to a desired sound amplitude and/or frequency. However, given that such a constrictor valve can cause distortion and back flow shock to the fluid pump 120, an air regulator may be included to prevent damage to the fluid pump 120. Alternatively, the sound control medium 140 may comprise a single valve redirector that redirects the air flow through one or more waste channels, thereby preventing any back flow that could otherwise damage the fluid pump 120.
In variations, the sound control medium 140 can be an array of valves, or micro-valves (e.g., sound channel array 142) that can be operated in unison to produce pressure pulses to be outputted through the sound channel. In such variations, the sound control medium 140 can be a grating disposed within the sound channel. The grating can have a micro-valve array disposed on a plurality of openings of the grating, where the micro-valves of the micro-valve array can be configured to operate in unison to collectively manipulate the air flow to produce pressure waves at a plurality of audible frequencies.
The sound control medium 140 can also include a waste channel coupled to the sound channel. The waste channel can output a waste flow caused by a collective constriction of the air flow by the micro-valve array. Furthermore, a waste channel grating can be included and disposed within the waste channel, the waste channel grating can also have a micro-valve array (i.e., waste channel array 144) disposed on a plurality of openings of the waste channel grating. Thus, the controller 110 can generate valve control signals that dynamically and synchronously control both the sound channel array 142 and the waste channel array 144 in order to produce the desired sounds.
A waste channel 208 can be coupled to the sound channel 204 to prevent back flow from damaging the fluid pump 202. Furthermore, as discussed above, a second micro-valve array 214 can be included in the waste channel. Both micro-valve arrays 206, 214 can be synchronized for optimal deliver of sound 212.
Any number of waste channels can be included, as well as any number of optimized sound channels. For example, certain sound/waste channel arrangements may be optimized for a certain frequency range. Such arrangements may include a single sound channel with a plurality of waste channels coupled thereto. Alternatively, multiple sound channels with any number of waste channels may be arranged and tuned to produce optimum audible sounds in a specified frequency range.
The micro-valve arrays 206, 214 can also include any number of valves. As frequency increases, the valves are required to operate more rapidly. Smaller and smaller valves are able to operate more rapidly than larger valves. Thus, gratings may be used to dispose hundreds, thousands, even tens or hundreds of thousands of micro-electro-mechanical (MEM) valves to control the relatively large air flow 210 and produce the sound pulses 212. In order to operate in unison, these MEM valves may be controlled via varying electric fields, magnetic fields, or otherwise.
Furthermore, any number of waste channels 208 and sound channels 204 may be included to produce a wide swath of audio frequencies, from 0 Hz-300 Hz and beyond. For example, a series of sound channels can be coupled to the pump 202 and each can include a micro-valve array, and can be tuned to a certain frequency band. Furthermore, the micro-valves themselves may be tuned or adjusted in size to produce a desired sound quality at a desired frequency band.
As an addition or alternative, the pump 202 itself may include a flow regulator to restrict and admit flow through each of the series of sound channels. Further still, multiple valve array and multiple pump combinations are contemplated that may be tuned to specified frequency bands. Accordingly, a complex system of air flow generation and various degrees of modulation and refinement is contemplated to produce sharp pulses of low frequency pressure waves.
Further still, for AC implementations, some valve types (e.g., piezo) have a limited frequency direct flow response. In other words, such valve types can have difficulty in maintaining constriction. Accordingly, for piezo valves may be coupled in series so that in the aggregate, the correct flow constriction is produced through their combined path. Valve constriction may be intricately controlled to produce audible frequencies of a high quality by means of a precisely timed controller capable of synchronizing the low frequency sound generation apparatus with, for example, an audio unit such as a media player.
One or more micro-valve arrays may be actuated to produce pressure waves (320) at audible frequencies. For direct flow implementations, the one or more arrays can be configured to simply actuate in order to produce the pulse. However, for slow modulating alternating flows, the one or more arrays may be timed to be in sync according to the alternating flow. Furthermore, all micro-valves can be synchronized to operate in unison (322) in order to produce a desired frequency of pressure wave. Alternatively, certain sets of micro-valves in the array can be regulated, such as closed or shut down during periods when certain frequency bands require (324). For example, a frequency band of 150 Hz-200 Hz may be optimal when a portion of the array is not used to produce a higher quality sound.
As audio signals are transmitted to the controller, the controller can dynamically transmit valve control signals to the one or more arrays in order to modulate the pressure pulses to change pitch (330). Modulation of the pressure waves may also be achieved via the fluid pump. For example, dynamically controllable pumps, such as a non-resonant rigid array pump with an oscillatory drive mechanism, can produce air flow almost instantaneously. Thus, such pumps may be utilized to work in conjunction with the one or more micro-valve arrays in order to produce a higher quality sound and/or more efficient sound production.
Flow can be controlled via the high frequency source by: (i) an amplitude of the drive; (ii) a frequency of drive; and/or (iii) a ratio of the source/sink pump drive. However, care should be taken to adjust for interference, and sum and difference of the frequency interactions between source and sink. Furthermore, as is similarly known with a bipolar junction transistor (BJT) amplifier, care must be taken when switching from source to sink and vice-versa. Accordingly, direction of air flow may be bidirectional depending on which of the pumps is operating or which is being driven harder.
Similarly,
Conclusion
It is contemplated for embodiments described herein to extend to individual elements and concepts described herein, independently of other concepts, ideas or system, as well as for embodiments to include combinations of elements recited anywhere in this application. Although embodiments are described in detail herein with reference to the accompanying drawings, it is to be understood that this disclosure is not limited to those precise embodiments. As such, many modifications and variations will be apparent to practitioners skilled in this art. Accordingly, it is intended that the scope of this disclosure be defined by the following claims and their equivalents. Furthermore, it is contemplated that a particular feature described either individually or as part of an embodiment can be combined with other individually described features, or parts of other embodiments, even if the other features and embodiments make no mentioned of the particular feature. Thus, the absence of describing combinations should not preclude the inventor from claiming rights to such combinations.
One or more embodiments described herein provide that methods, techniques and actions performed by a computing device are performed programmatically, or as a computer-implemented method. Programmatically means through the use of code, or computer-executable instructions. A programmatically performed step may or may not be automatic.
One or more embodiments described herein may be implemented using programmatic modules or components. A programmatic module or component may include a program, a subroutine, a portion of a program, or a software component or a hardware component capable of performing one or more stated tasks or functions. As used herein, a module or component can exist on a hardware component independently of other modules or components. Alternatively, a module or component can be a shared element or process of other modules, programs or machines.
Furthermore, one or more embodiments described herein may be implemented through the use of instructions that are executable by one or more processors. These instructions may be carried on a computer-readable medium. Machines shown or described with FIGs below provide examples of processing resources and computer-readable mediums on which instructions for implementing embodiments can be carried and/or executed. In particular, the numerous machines shown with embodiments include processor(s) and various forms of memory for holding data and instructions. Examples of computer-readable mediums include permanent memory storage devices, such as hard drives on personal computers or servers. Other examples of computer storage mediums include portable storage units (such as CD or DVD units), flash memory (such as carried on many cell phones and tablets)), and magnetic memory. Computers, terminals, network enabled devices (e.g., mobile devices such as cell phones) are all examples of machines and devices that utilize processors, memory and instructions stored on computer-readable mediums. Additionally, embodiments may be implemented in the form of computer-programs, or a computer usable carrier medium capable of carrying such a program.
Although illustrative embodiments have been described in detail herein with reference to the accompanying drawings, variations to specific embodiments and details are encompassed by this disclosure. It is intended that the scope of the invention is defined by the following claims and their equivalents. Furthermore, it is contemplated that a particular feature described, either individually or as part of an embodiment, can be combined with other individually described features, or parts of other embodiments. Thus, absence of describing combinations should not preclude the inventor(s) from claiming rights to such combinations.
While certain embodiments have been described above, it will be understood that the embodiments described are by way of example only. Accordingly, this disclosure should not be limited based on the described embodiments. Rather, the scope of the disclosure should only be limited in light of the claims that follow when taken in conjunction with the above description and accompanying drawings.
This application is a continuation of U.S. Patent Application No. 14/145,783, filed Dec. 31, 2013, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/748,050 entitled “Flow Controlled Sound Generator,” filed Dec. 31, 2012; both of the aforementioned priority applications being hereby incorporated by reference in their respective entirety.
Number | Date | Country | |
---|---|---|---|
61748050 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14145783 | Dec 2013 | US |
Child | 15812050 | US |