All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention relates generally to catheters and catheter guides. More particularly, it relates to a flow-directed catheter guide with a variable rigidity shaft to assist in insertion and guidance of a vascular catheter.
The Seldinger technique is a well-known method for percutaneous insertion of catheters into a patient's blood vessels. Typically, a large-bore hypodermic needle is used to access the patient's vein or artery. Flashback of venous or arterial blood through the needle indicates to the physician when the tip of the needle is in the lumen of the blood vessel. A catheter guide is then inserted through the needle into the lumen of the blood vessel and the needle is withdrawn. A catheter is then inserted coaxially over the catheter guide into the lumen of the blood vessel. At this time the catheter guide may be withdrawn, leaving the catheter within the lumen of the blood vessel.
The construction of the catheter guide is critical to the successful completion of the Seldinger technique. The catheter guide must be flexible enough to exit the hypodermic needle and make the sometimes sharp turn into the vessel lumen without damaging or passing through the opposite wall of the vessel. The catheter guide must also be flexible enough to follow any sharp bends or tortuosity in the vessel without damaging the vessel wall. However, at the same time the catheter guide must be rigid enough to guide the catheter through the tissue and the vessel wall into the vessel lumen and to guide the catheter through any sharp bends, tortuosity or narrowing in the vessel without pulling back or kinking. These two requirements can sometimes be incompatible, particularly in difficult to catheterize vessels. For example, in placing venous catheters in neonates and premature infants, the catheter guide must be extremely flexible in order to avoid damaging the delicate vessel walls during insertion. However, such a flexible catheter guide may not be rigid enough to guide the catheter through the tissue and any sharp bends, tortuosity or narrowing in the vessel without pulling back or kinking. This can be extremely problematic in cases where successful catheterization is critical to the survival of the patient. It would be highly desirable in these cases to have a catheter guide that can be inserted into the blood vessel in a flexible state, and then can be rigidified to facilitate insertion of the catheter.
Typical prior art catheter guides are constructed with a coiled wire spring surrounding a core wire. This type of catheter guide is sometimes referred to in the literature as a guidewire spring guide. Often the core wire is ground with a taper to provide the catheter guide with a flexible tip portion and a more rigid body portion. For most cases, this tapered core construction is adequate for providing the necessary combination of flexibility and stiffness. However, it necessarily involves a compromise in the characteristics of the catheter guide that will not be adequate in all cases, particularly in difficult cases like those described above.
At least one kind of variable stiffness catheter guide has been proposed in the prior art. These are known as movable core guidewires because they are constructed with a core wire that, instead of being welded in place within the guidewire, is slidable axially within the outer wire coil. This allows the core wire to be withdrawn so that the tip portion of the guidewire can be changed from stiff to flexible. However, the instructions for use provided with these products warn against advancing the movable core again once the guidewire has been inserted into the patient because of the danger that the core may exit the guidewire between the coils of the spring and damage or pierce the vessel wall. For this reason, such movable core guidewires do not provide an adequate means for changing a catheter guide from flexible to stiff after it has been inserted into the patient's blood vessel.
Flow-directed catheters are known in the prior art. These catheters generally have a very flexible catheter shaft with an inflatable balloon or other bulbous structure near the distal end, which is carried along by the blood flow in an artery or vein. For example, the SWANN-GANZ thermodilution catheter, manufactured by Edwards Laboratories, is a flow-directed catheter used for measuring cardiac output and pulmonary wedge pressure. The flexible catheter shaft is inserted into a patient through the jugular vein or other venous access site, then a small balloon on the distal end of the flexible catheter shaft is inflated with CO2 and venous blood flow carries the inflated balloon through the right side of the heart and into the pulmonary artery. Another example of a flow-directed catheter is the MAGIC catheter manufactured by BALT Extrusions of France. This catheter is constructed with a catheter shaft having an extremely flexible distal section with a small bulbous structure molded on the distal end of the flexible distal section. This construction allows the flow-directed catheter to seek out high flow arterio-venous fistulas or shunts in the brain or elsewhere in the body by following the arterial blood flow. These flow-directed catheters however are not suitable as catheter guides. Furthermore, prior to the present invention, no one has suggested the use of a flow-directed catheter or catheter guide with a variable rigidity shaft that can be selectively changed between a flexible state and a rigid state.
In keeping with the foregoing discussion, the present invention provides a catheter guide with a variable rigidity shaft. The variable rigidity shaft of the catheter guide can be selectively changed between a flexible state and a rigid state. The catheter guide can be inserted into a patient's vein or artery with the variable rigidity shaft in a flexible state to avoid trauma to the vessel walls. Once the catheter guide has been inserted, the variable rigidity shaft can be converted to the rigid state to provide a firm support for insertion of a catheter coaxially over the catheter guide. After the catheter has been inserted, the variable rigidity shaft is allowed to return to the flexible state to facilitate withdrawal of the catheter guide.
An additional feature of the invention is to provide a flow-directed catheter guide. The variable rigidity shaft of the catheter guide has on its distal end a deployable flow-directed member. After the catheter guide has been inserted into the patient's vein or artery with the variable rigidity shaft in the flexible state, the flow-directed member can be deployed to direct the distal end of the catheter guide downstream following the blood flow in the vessel. Generally, the flow-directed member keeps the catheter guide in the middle of the lumen where the velocity of the blood flow is greatest. Once the distal end of the catheter guide has reached the intended site or advanced to a predetermined depth, the flow-directed member can be retracted. Then, the variable rigidity shaft can be converted to the rigid state to provide support for insertion of a catheter coaxially over the catheter guide, as described above. After the catheter has been inserted, the variable rigidity shaft is allowed to return to the flexible state to facilitate withdrawal of the catheter guide.
In a further feature of the present invention, the flow-directed catheter guide with variable rigidity shaft may be provided as part of a kit for performing venous or arterial catheterization using a modified Seldinger technique or other technique.
Alternatively, the flow-directed member 104 described herein may be mounted on a catheter guide or catheter of more conventional construction. For example, the flow-directed member 104 may be mounted to the distal end of a conventional guidewire or spring guide with an elongated guide body that is constructed with a tapered core wire to provide a very flexible tip and gradually increasing stiffness in the proximal direction.
In one preferred embodiment of the catheter guide 100, the parachute shroud 120 of the flow-directed member 104 is formed so that is assumes an approximately hemispherical shape when deployed in the patient's blood vessel. Alternatively, the parachute shroud 120 may be a simple flat panel of fabric or plastic film. In an alternate embodiment of the catheter guide 100, a parachute shroud 120 of either geometry may be mounted directly to the elongated shaft 102 without any parachute wires 122 and with or without a retraction wire 128 attached to the parachute shroud 120. In other alternate embodiments of the catheter guide 100, the flow-directed member 104 may be in the form of an inflatable balloon or a bulbous structure on the elongated shaft 102 of the catheter guide 100.
If the fusible material 136 has a melting point slightly below normal body temperature, the variable rigidity shaft 102 is in the flexible state when it is at body temperature. If the melting point of the fusible material 136 is below room temperature, the variable rigidity shaft 102 will already be in the flexible state before it is inserted into the patient. If the melting point of the fusible material 136 is between room temperature and normal body temperature, the catheter guide 100 can be placed in a conditioning chamber to warm it to body temperature so that the variable rigidity shaft 102 is in the flexible state for insertion into the patient. The variable rigidity shaft 102 can be selectively rigidified by circulating a cooling fluid, either a liquid or gas, at a temperature below the melting temperature of the fusible material 136 through the heat exchange tube 140. The variable rigidity shaft 102 can be made more flexible again by circulating a warm fluid at a temperature above the melting temperature of the fusible material 136 through the heat exchange tube 140 or by simply allowing the temperature of the variable rigidity shaft 102 to equilibrate at body temperature.
If the fusible material 136 has a melting point slightly above normal body temperature, the variable rigidity shaft 102 is in the rigid state when it is at body temperature. The variable rigidity shaft 102 can be converted to the flexible state for insertion into the patient by circulating a warm fluid at a temperature above the melting temperature of the fusible material 136 through the heat exchange tube 140 or by placing the catheter guide 100 in a conditioning chamber at a temperature above the melting temperature of the fusible material 136. The variable rigidity shaft 102 can be selectively rigidified by circulating a cooling fluid at a temperature below the melting temperature of the fusible material 136 through the heat exchange tube 140 or by simply allowing the temperature of the variable rigidity shaft 102 to equilibrate at body temperature. The variable rigidity shaft 102 can be made more flexible again by circulating a warm fluid at a temperature above the melting temperature of the fusible material 136 through the heat exchange tube 140.
If the fusible material 136 has a melting point at approximately normal body temperature, the variable rigidity shaft 102 can be converted to the flexible state for insertion into the patient by circulating a warm fluid at a temperature above the melting temperature of the fusible material 136 through the heat exchange tube 140 or by placing the catheter guide 100 in a conditioning chamber at a temperature above the melting temperature of the fusible material 136. The variable rigidity shaft 102 can be selectively rigidified by circulating a cooling fluid at a temperature below the melting temperature of the fusible material 136 through the heat exchange tube 140. The variable rigidity shaft 102 can be made more flexible again by circulating a warm fluid at a temperature above the melting temperature of the fusible material 136 through the heat exchange tube 140.
Suitable materials for the fusible material 136 include, but are not limited to, the following materials, which are available from Indium Corp. (www.indium.com) as well as other suppliers:
Alternatively, the fusible material 136 in the embodiment of
The variable stiffness shaft and the flow-directed aspects of the invention described above may be used separately or together for introduction of a catheter guide into both venous and arterial sites for various applications. Alternatively, the variable stiffness shaft and the flow-directed aspects of the invention may be adapted for use in a diagnostic or therapeutic catheter device. Some of the potential applications include insertion and placement of central venous lines, peripheral venous lines, peripherally inserted central (PIC) lines, SWANN-GANZ catheters, and therapeutic catheters, such as angioplasty or stenting catheters and therapeutic embolization catheters for treating aneurisms and arterio-venous fistulas or shunts.
While the present invention has been described herein with respect to the exemplary embodiments and the best mode for practicing the invention, it will be apparent to one of ordinary skill in the art that many modifications, improvements and subcombinations of the various embodiments, adaptations and variations can be made to the invention without departing from the spirit and scope thereof.
This application is a continuation of U.S. patent application Ser. No. 10/210,736, filed Jul. 31, 2002 titled “FLOW DIRECTED CATHETER WITH VARIABLE RIGIDITY SHAFT”, which claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 60/309,268 filed Jul. 31, 2001, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60309268 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10210736 | Jul 2002 | US |
Child | 12564829 | US |