The technical field generally relates to the electrical grounding blocks. Specifically, an improved, ergonomic, grounding block is provided. Embodiments herein are particularly suited for dry environments but are not so limited herein.
Electrical systems of all types are usually connected to a ground for safety and for operational considerations. This ground is ultimately connected to the earth in stationary circumstances such as with systems installed in buildings. In vehicles, a physical connection to ground is usually not feasible. As such electrical systems in a vehicle are connected to the vehicle's structural chassis/body, which is often used as a common ground. The vehicle chassis/body is often referred to as being in a wet environment because it is not unusual for it to be exposed to water, dirt, grease, oil and other foreign matter, which may or may not aggravate corrosion or other electrical problems.
To minimize corrosion of chassis/body components in wet environments and to ensure a solid electrical connection, components requiring electrical attachment to the chassis/body are typically welded to the chassis/body such that the water tight integrity of the chassis/body is not broken and a secure connection is maintained. However, welding is in fact a permanent attachment such that the replacement of a welded part (i.e., a grounding block) requires considerable effort to grind through the weld, which may in and of itself cause unavoidable damage to the chassis/body.
Grounding blocks are usually a minor component in manufacturing a vehicle.
Further, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
A grounding block is provided. The grounding block comprises a means for fastening and a formed metallic block. The formed metallic block comprises two or more flanges, where each flange is configured to accept the means for fastening. The formed metal block further comprises a uniform clearance formed into the underside of the grounding block between the flanges and a hole formed through the grounding block configured to accept a bolt.
The exemplary embodiments will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The various illustrative components described in connection with the embodiments disclosed herein are merely exemplary and which may be modified with a multitude of adjustments to the various components disclosed herein without departing from the scope of this disclosure. The word “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
In this document, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Numerical ordinals such as “first,” “second,” “third,” etc. simply denote different singles of a plurality and do not imply any order or sequence unless specifically defined by the claim language. The sequence of the text in any of the claims does not imply that process steps must be performed in a temporal or logical order according to such sequence unless it is specifically defined by the language of the claim. Any process steps may be interchanged in any order without departing from the scope of the invention as long as such an interchange does not contradict the claim language and is not logically nonsensical.
Further, depending on the context, words such as “connect” or “coupled to” used in describing a relationship between different elements do not imply that a direct physical connection must be made between these elements. For example, two elements may be connected to each other physically, electronically, logically, or in any other manner, through one or more additional elements.
The grounding block 111 is depicted as essentially a rectangular solid with a top surface 112 but may be extruded or otherwise manufactured with other shapes as may prove to be advantageous such as a cylinder, multi-faceted cylinder, a triangular solid, a pyramid, a truncated pyramid, etc. In this exemplary embodiment the upper corners of the grounding block 111 are rounded off to reduce weight. Similarly, underside cut outs 107 are also formed or cut into the grounding block 111 to reduce weight.
Further, additional material is removed on the underside of the grounding block 111 to ensure that there is sufficient clearance 104 between the chassis/body 2 and the underside of the grounding block 111 such that flexation or vibration of the grounding block 111 and/or chassis/body 2 does not cause the block to impact the chassis/body 2 thereby causing a rattle. The clearance 104 may be approximately 2-3 mm from a bottom surface of the grounding block after the weight reducing cutouts 107 are factored in. In other embodiments the clearance my range from 1-6 mm depending on the severity of vibration and the length of the grounding block. Such anti-rattle clearances apply to this embodiment and the following embodiments.
The grounding block 111 includes one or more transverse (i.e. side-to-side) bolt holes (101,102) completely through the grounding block 111 to accommodate terminal bolts (6, 8). The diameter of the transverse bolt holes may differ to accommodate different size bolts such as a 6 mm (“M6”) and/or 8 mm (“M8”) bolts. The bolts (6, 8) secure an electrical wire 105 to the grounding block 111. The electrical wire 105 comprises an attachment eye with a tab 109 that engages a surface of the grounding block 111 that is prepared to engage the tab 109.
The grounding block 211 is depicted as essentially a rectangular solid with a top surface 212 but may be extruded or otherwise manufactured with other shapes as may prove to be advantageous such as a cylinder, multi-faceted cylinder, a triangular solid, a pyramid, a truncated pyramid, etc. Similarly, underside cut outs 107 are also formed into the block to reduce weight.
Further, additional material is removed on the underside of the grounding block 211 to ensure that there is sufficient clearance 104 between the chassis/body 2 and the underside of the grounding block 211 such that flexation or vibration of the block and or chassis/body does not cause the block to impact the chassis/body 2, thereby causing a rattle.
The grounding block 211 includes one or more bolt holes (101,102) completely through the grounding block 211 via the upper surface to accommodate terminal bolts (6, 8). The diameter of the bolt holes may differ to accommodate different size bolts such as a 6 mm (“M6”) and/or 8 mm (“M8”) bolts. The bolts (6, 8) secure an electrical wire 105 to the grounding block 211. The electrical wire 105 comprises an attachment eye with a tab 109 that engages a surface if he grounding block 211 that is prepared to engage the tab 109.
Further, the height (H) of the grounding block 211 may be increased or decreased to accommodate the length of a standard bolt of a specific size, such that the upper surface comprises two or more parallel planes (A, B). For example the standard M8 bolt 8 is longer than the standard M6 bolt so that the height of the block at plane B is increased to provide sufficient clearance for the bolt to avoid contacting the chassis/body 2 when properly and fully inserted.
The grounding block 311 is depicted as essentially a rectangular solid, the top surface 312 of which is configured into a triangular or sawtooth shape. Material is removed on the underside of the grounding block 311 to ensure that there is sufficient clearance 104 between the chassis/body 2 and the underside of the grounding block 311 such that flexation or vibration of the grounding block 311 or the chassis/body 2 does not cause the block to impact the chassis/body 2 thereby causing a rattle.
The grounding block 311 includes one of more triangular structures with a face that is formed at an angle of θn relative to a plane parallel to a plane formed between the flanges 106. Angel θn may be any angle that may be necessary or desirable to facilitate the ergonomic attachment of an electric cable 105 into the grounding block 311.
One or more bolt holes (101,102) are formed completely through the top surface 312 of the grounding block 311 normal to one or both upper faces (C, D) of the triangular structure to accommodate the insertion of terminal bolts (6, 8). The diameter of the bolt holes (101, 102) may differ to accommodate different size bolts such as a 6 mm (“M6”) and/or 8 mm (“M8”) bolts. The bolts (6, 8) attach the electrical wire 105 to the grounding block 311. The electrical wire 105 comprises an attachment eye with a tab 109 that engages a surface of the grounding block 311 that is prepared to engage eh tab 109.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the disclosure in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the disclosure as set forth in the appended claim and the legal equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3029405 | Buchanan | Apr 1962 | A |
3169353 | Krulwich | Feb 1965 | A |
3363715 | Langdon | Jan 1968 | A |
4201433 | Caldwell | May 1980 | A |
5941716 | Yoshigi | Aug 1999 | A |
6031185 | Bouveret et al. | Feb 2000 | A |
6241200 | Camporeale et al. | Jun 2001 | B1 |
6976884 | Lee | Dec 2005 | B1 |
7241151 | Bradshaw | Jul 2007 | B1 |
7492996 | Kowalczyk et al. | Feb 2009 | B2 |
7537467 | Gretz | May 2009 | B1 |
7621787 | Lu | Nov 2009 | B2 |
7805064 | Ragay et al. | Sep 2010 | B2 |
7867044 | Lee | Jan 2011 | B2 |
7993155 | Heichal et al. | Aug 2011 | B2 |
8480414 | Carnevale et al. | Jul 2013 | B2 |
20010029120 | Miyazaki et al. | Oct 2001 | A1 |
20040203269 | Kameyama et al. | Oct 2004 | A1 |
20060022522 | Plummer | Feb 2006 | A1 |
20080210725 | Birtwisle et al. | Sep 2008 | A1 |
20080266198 | Walker et al. | Oct 2008 | A1 |
20090156065 | Lee | Jun 2009 | A1 |
20110299246 | Van Giesen et al. | Dec 2011 | A1 |
20120206852 | Fitz | Aug 2012 | A1 |
20120264327 | Carnevale et al. | Oct 2012 | A1 |
20140069227 | Kawaguchi | Mar 2014 | A1 |
20140148026 | Nomura et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
102082332 | Jun 2011 | CN |
2009283375 | Dec 2009 | JP |
2013073738 | Apr 2013 | JP |
Entry |
---|
Chinese Patent and Trademark Office, Office Action for China Patent Application No. 201410502340.4 mailed Feb. 1, 2016. |
Number | Date | Country | |
---|---|---|---|
20150087168 A1 | Mar 2015 | US |