This disclosure relates generally to gas turbine engines and, more particularly, to cooling techniques for the airfoil sections of turbine blades and/or vanes of the engine. In particular, the present application is directed to an insert for use in convective cooling of the airfoils of the gas turbine engine which are exposed to high-temperature working fluid flow.
In general, gas turbine engines are built around a power core comprising a compressor, a combustor and a turbine, which are arranged in flow series with a forward (upstream) inlet and an aft (downstream) exhaust. The compressor compresses air from the inlet, which is mixed with fuel in the combustor and ignited to produce hot combustion gases. The hot combustion gases drive the turbine section, and are exhausted with the downstream flow.
The turbine drives the compressor via a shaft or a series of coaxially nested shaft spools, each driven at different pressures and speeds. The spools employ a number of stages comprised of alternating rotor blades and stator vanes. The vanes and blades typically have airfoil cross sections, in order to facilitate compression of the incoming air and extraction of rotational energy in the turbine.
High combustion temperatures also increase thermal and mechanical loads, particularly on turbine airfoils downstream of the combustor. This reduces service life and reliability, and increases operational costs associated with maintenance and repairs.
Accordingly, it is desirable to provide cooling to the airfoils of the engine.
In one embodiment, a baffle insert for a component of a gas turbine engine is provided. The baffle insert having: a first fluid conduit having a first interior cavity extending therethrough; a second fluid conduit having a second interior cavity extending therethrough; and a member located between the first fluid conduit and the second fluid conduit, wherein the member fluidly couples the first interior cavity to an exterior of the second fluid conduit, and wherein the member fluidly couples the second interior cavity to an exterior of the first fluid conduit and wherein the first interior cavity is isolated from the second interior cavity.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first fluid conduit may be aligned with the second fluid conduit and the first fluid conduit is located above the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the member may be configured to have a peripheral dimension that is greater than a peripheral dimension of the first fluid conduit and a peripheral dimension of the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first fluid conduit may have a first configuration and the second fluid conduit may have a second configuration, wherein the first configuration is similar to the second configuration.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the member may be configured to have a peripheral dimension that is greater than a peripheral dimension of the first fluid conduit and a peripheral dimension of the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first fluid conduit may have a peripheral dimension that is less than a peripheral dimension of the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the member may be configured to have a peripheral dimension that is greater than a peripheral dimension of the first fluid conduit and a peripheral dimension of the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first fluid conduit may be aligned with the second fluid conduit and the first fluid conduit is located above the second fluid conduit.
In yet another embodiment, a component for a gas turbine engine is provided, the component having: an internal cooling cavity extending through an interior of the component; and a baffle insert configured to be inserted into the internal cooling cavity, the baffle insert comprising: a first fluid conduit having a first interior cavity extending therethrough; a second fluid conduit having a second interior cavity extending therethrough; and a member located between the first fluid conduit and the second fluid conduit, wherein the member fluidly couples the first interior cavity to an exterior of the second fluid conduit, and wherein the member fluidly couples the second interior cavity to an exterior of the first fluid conduit and wherein the first interior cavity is isolated from the second interior cavity.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first fluid conduit may be aligned with the second fluid conduit and the first fluid conduit may be located above the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the member may be configured to have a peripheral dimension that is greater than a peripheral dimension of the first fluid conduit and a peripheral dimension of the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first fluid conduit may have a first configuration and the second fluid conduit may have a second configuration, wherein the first configuration is similar to the second configuration.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the member may be configured to have a peripheral dimension that is greater than a peripheral dimension of the first fluid conduit and a peripheral dimension of the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first fluid conduit may have a peripheral dimension that is less than a peripheral dimension of the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the member may be configured to have a peripheral dimension that is greater than a peripheral dimension of the first fluid conduit and a peripheral dimension of the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first fluid conduit may be aligned with the second fluid conduit and the first fluid conduit is located above the second fluid conduit and wherein the member has a plurality of openings extending therethrough for fluidly coupling the first interior cavity to the exterior of the second fluid conduit, and fluidly coupling the second interior cavity to the exterior of the first fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the component may be an airfoil of either a vane or a rotating blade of a gas turbine engine.
In yet another embodiment, a method of exchanging a cooling flow through a component of a gas turbine engine is provided. The method including the steps of: directing a first flow of a cooling fluid through a baffle insert located in an internal cooling cavity extending through an interior of the component; directing a second flow of the cooling fluid through the baffle insert, wherein the first flow of the cooling fluid passes through a first fluid conduit having a first interior cavity extending therethrough and the second flow of the cooling fluid passes through a second fluid conduit having a second interior cavity extending therethrough, wherein the first flow of cooling fluid is surrounded by the second flow of cooling fluid when the first flow of cooling fluid is located in the first interior cavity such that the first flow of cooling fluid is thermally insulated by the second flow of cooling fluid; and exchanging the locations of the first flow of the cooling fluid with respect to the second flow of the cooling fluid by passing the first flow of the cooling fluid and the second flow of the cooling fluid through a member located between the first fluid conduit and the second fluid conduit, wherein the member fluidly couples the first interior cavity to an exterior of the second fluid conduit, and wherein the member fluidly couples the second interior cavity to an exterior of the first fluid conduit and wherein the second flow of cooling fluid is surrounded by the first flow of cooling fluid when the second flow of cooling fluid is located in the second interior cavity such that the second flow of cooling fluid is thermally insulated by the first flow of cooling fluid.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the first fluid conduit may be aligned with the second fluid conduit and is located above the second fluid conduit.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, the component may be an airfoil of either a vane or a rotating blade of a gas turbine engine.
The subject matter which is regarded as the present disclosure is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Various embodiments of the present disclosure are related to cooling techniques for airfoil sections of gas turbine components such as vanes or blades of the engine. In particular, the present application is directed to an insert or baffle or baffle insert used in conjunction with cooling passages of the airfoil.
In order to provide cooling air to the vane 24, a plurality of cooling openings or cavities 26 are formed within an airfoil 28 of the vane 24. The cooling openings or cavities 26 are in fluid communication with a source of cooling air so that thermal loads upon the vane can be reduced. In one non-limiting example, the cooling air is provided from a compressor section of the gas turbine engine.
The airfoil 28 extends axially between a leading edge 25 and a trailing edge 27 and radially between platforms 29 and 31. The internal cooling passages 26 are defined along internal surfaces 36 of the airfoil section 28, as seen at least in
In the illustrated embodiment of
In other embodiments, airfoil 28 may be configured for use in an industrial gas turbine engine, and platforms 29, 31 are modified accordingly. Alternatively, airfoil 28 may be formed as a rotating blade, for example blade 14 illustrated in
Airfoil 28 is exposed to a generally axial flow of combustion gas F, which flows across airfoil section 28 from leading edge 25 to trailing edge 27. Flow F has a radially inner flow margin at inner platform 29 and a radially outer flow margin at outer platform 31, or, in blade embodiments, at the blade tip.
To protect airfoil 28 from wear and tear due to the working fluid flow, its various components may be manufactured from durable, heat-resistant materials such as high-temperature alloys and superalloys. Surfaces that are directly exposed to hot gas may also be coated with a protective coating such as a ceramic thermal barrier coating (TBC), an aluminide coating, a metal oxide coating, a metal alloy coating, a superalloy coating, or a combination thereof.
Airfoil 28 is manufactured with internal cooling passages 26. The cooling passages are defined along internal surfaces forming channels or conduits for cooling fluid flow through airfoil section 28. In turbofan embodiments, the cooling fluid is usually provided from a compressed air source such as compressor bleed air. In ground-based industrial gas turbine embodiments, other fluids may also be used.
In
In one implementation, baffle inserts 32 are inserted into the openings or cavities 26 in order to create smaller air passages 34 between an inner wall or surface 36 of the airfoil and an exterior surface 38 of the baffle insert 32. This will increase the Mach numbers of the air flowing in the smaller air passages 34 and will increase the heat transfer achieved by the cooling air passing through passages 34. In various embodiments disclosed herein the baffle insert 32 will produce or create Mach acceleration in the convective flow, increasing the heat transfer coefficient by generating greater turbulence and other flow interactions in the region between an exterior surface 38 of the baffle insert 32 and the internal airfoil surface 36 of cavities or openings 26. For example, augmentors such as trip strips and ribs, may be formed on the exterior surface 38 of the baffle insert 32 and/or the interior surface 36 of the airfoil in order to increase turbulence and improve internal cooling. In addition, pedestals may extend from and/or between the exterior surface 38 of the baffle insert 32 and/or the interior surface 36 of the airfoil in order to increase air flow turbulence and improve internal cooling.
By increasing the heat transfer coefficient of the cooling air passing through passages 34, this enhances convective cooling within the airfoil and lowers operating temperatures, increasing service life of the airfoil. Baffle insert 32 also reduces the cooling flow required to achieve these benefits, improving cooling efficiency and reserving capacity for additional downstream cooling loads.
Referring now to
Although,
In accordance with various embodiments of the present disclosure and referring at least to
In one embodiment and as at least illustrated in
As such and as disclosed herein, a pair of isolated airstreams are provided and illustrated by arrows 70, 72. This is particularly useful in the event if the cooling requirements of the component are high at the beginning of the channel (e.g., proximate to the first fluid conduit 42) as too much heat may be transferred into the coolant, and therefore heat cannot be removed from the end of the channel (e.g., proximate to the second fluid conduit 44) if no member 48 is employed. However, the member 48 allows an alternate source of cooling to be added to the passage 34 of the channel 26 from the interior 42 of the first fluid conduit 40 while the previously supplied coolant surrounding the exterior 52 of the first fluid conduit is redirected from the passage 34 of the channel into the interior 46 of the second fluid conduit 44. These two flow streams are illustrated by arrows 70 and 72 in the attached FIGS.
Accordingly, the first fluid conduit 40 acts as a shielded conduit or insulator allowing some air illustrated by arrow 72 to initially bypass the heat drawing internal walls of the airfoil 28 by locating it more centrally within baffle 32. This allows for a lower temperature coolant to be passed on to the heat drawing internal walls of the airfoil 28 after it has exited from the cavity 42 of the first fluid conduit 40 via the conduits 56 of the member 48. In turn, the previously heated air is transferred from the heat drawing walls to the internal cavity 46 of the second fluid conduit via openings 58 in the member 48.
The added cooling air transferred from the first cavity 42 can offset the additional heat picked by the air travelling along path 70 that might be a byproduct of the baffle's use (e.g., creation of smaller air passages 34). In addition, the baffle profile may be tailored to adjust the mass flux through the cooling circuit, which may allow for the effective management of heat transfer, heat pick-up and pressure loss in the cavity. In addition, and in one embodiment, the first fluid conduit 40 may have a plug 74 that seals a bottom of the first interior cavity 42 so that flow stream 72 is directed to an exterior 50 of the second fluid conduit 44. In addition and in one embodiment, the first fluid conduit 40 may be smaller than the second fluid conduit 44 and extend into the second interior cavity 46.
Referring now to
While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments. Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3540810 | Kercher | Nov 1970 | A |
4025226 | Hovan | May 1977 | A |
4288201 | Wilson | Sep 1981 | A |
4798515 | Hsia | Jan 1989 | A |
5120192 | Ohtomo | Jun 1992 | A |
5464322 | Cunha et al. | Nov 1995 | A |
6905301 | Tiemann | Jun 2005 | B2 |
7104756 | Harding | Sep 2006 | B2 |
8864438 | Lee et al. | Oct 2014 | B1 |
9435212 | Scribner | Sep 2016 | B2 |
20100054915 | Devore et al. | Mar 2010 | A1 |
20140075947 | Gautschi et al. | Mar 2014 | A1 |
20150226085 | Spangler et al. | Aug 2015 | A1 |
20150285096 | Spangler | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
2015023338 | Feb 2015 | WO |
Entry |
---|
European Search Report for Application No. EP 17 15 1466. |
Number | Date | Country | |
---|---|---|---|
20170204731 A1 | Jul 2017 | US |