The present invention relates in general to the field of proton exchange membrane (“PEM”) fuel cell systems, and more particularly, to an improved PEM fuel cell system having improved discrete fuel cell modules with improved mass transport for ternary reaction optimization and a method for manufacturing same.
A fuel cell is an electrochemical device that converts fuel and oxidant into electricity and a reaction by-product through an electrolytic reaction that strips hydrogen molecules of their electrons and protons. Ultimately, the stripped electrons are collected into some form of usable electric current, by resistance or by some other suitable means. The protons react with oxygen to form water as a reaction by-product.
Natural gas is the primary fuel used as the source of hydrogen for a fuel cell. If natural gas is used, however, it must be reformed prior to entering the fuel cell. Pure hydrogen may also be used if stored correctly. The products of the electrochemical exchange in the fuel cell are DC electricity, liquid water, and heat. The overall PEM fuel cell reaction produces electrical energy equal to the sum of the separate half-cell reactions occurring in the fuel cell, less its internal and parasitic losses. Parasitic losses are those losses of energy that are attributable to any energy required to facilitate the ternary reactions in the fuel cell.
Although fuel cells have been used in a few applications, engineering solutions to successfully adapt fuel cell technology for use in electric utility systems have been elusive. The challenge is for the generation of power in the range of 1 to 100 kW that is affordable, reliable, and requires little maintenance. Fuel cells would be desirable in this application because they convert fuel directly to electricity at much higher efficiencies than internal combustion engines, thereby extracting more power from the same amount of fuel. This need has not been satisfied, however, because of the prohibitive expense associated with such fuel cell systems. For example, the initial selling price of the 200 kW PEM fuel cell was about $3500/kW to about $4500/kW. For a fuel cell to be useful in utility applications, the life of the fuel cell stack must be a minimum of five years and operations must be reliable and maintenance-free. Heretofore known fuel cell assemblies have not shown sufficient reliability and have disadvantageous maintenance issues. Despite the expense, reliability, and maintenance problems associated with heretofore known fuel cell systems, because of their environmental friendliness and operating efficiency, there remains a clear and present need for economical and efficient fuel cell technology for use in residential and light-commercial applications.
Fuel cells are usually classified according to the type of electrolyte used in the cell. There are four primary classes of fuel cells: (1) proton exchange membrane (“PEM”) fuel cells, (2) phosphoric acid fuel cells, and (3) molten carbonate fuel cells. Another more recently developed type of fuel cell is a solid oxide fuel cell. PEM fuel cells, such as those in the present invention, are low temperature low pressure systems, and are, therefore, well-suited for residential and light-commercial applications. PEM fuel cells are also advantageous in these applications because there is no corrosive liquid in the fuel cell and, consequently, there are minimal corrosion problems.
Characteristically, a single PEM fuel cell consists of three major components—an anode gas dispersion field (“anode”); a membrane electrode assembly (“MEA”); and a cathode gas and liquid dispersion field (“cathode”). As shown in
The anode gas flow field and cathode gas and liquid flow field are typically comprised of pressed, polished carbon sheets machined with serpentine grooves or channels to provide a means of access for the fuel and oxidant streams to the anode and cathode catalytic active layers. The costs of manufacturing these plates and the associated materials costs are very expensive and have placed constraints on the use of fuel cells in residential and light-commercial applications. Further, the use of these planar serpentine arrangements to facilitate the flow of the fuel and oxidant through the anode and cathode has presented additional operational drawbacks in that they unduly limit mass transport through the electrodes, and therefore, limit the maximum power achievable by the fuel cell.
One of the most problematic drawbacks of the planar serpentine arrangement in the anode and cathode relates to efficiency. In conventional electrodes, the reactants move through the serpentine pattern of the electrodes and are activated at the respective catalytic layers located at the interface of the electrode and the electrolyte. The actual chemical reaction that occurs at the anode catalyst layer is: H2→2H++2e−. The chemical reaction at the cathode catalyst layer is: 2H++2e−+½O2→H2O. The overall reaction is: H2+½O2→H2O. The anode disburses the anode gas onto the surface of the active catalyst layer comprised of a platinum catalyst electrolyte, and the cathode disburses the cathode gas onto the surface of the catalytic active layer of the electrolyte. However, when utilizing a conventional serpentine construction, the anode gas and the cathode gas are not uniformly disbursed onto the electrolyte. Nonuniform distribution of the anode and cathode gas at the membrane surface results in an imbalance in the water content of the electrolyte. This results in a significant decrease in efficiency in the fuel cell.
The second most problematic drawback associated with serpentine arrangements in the electrodes relates to the ternary reactions that take place in the fuel cell itself. Serpentine arrangements provide no pressure differential within the electrodes. This prohibits the necessary ternary reactions from taking place simultaneously. This is particularly problematic in the cathode as both a liquid and a gas are transported simultaneously through the electrode's serpentine pattern.
Another shortcoming of the conventional serpentine arrangement in the anode in particular is that the hydrogen molecules resist the inevitable flow changes in the serpentine channels, causing a build-up of molecular density in the turns in the serpentine pattern, resulting in temperature increases at the reversal points. These hot spots in the serpentine arrangement unduly and prematurely degrade the catalytic active layer and supporting membrane.
In the typical PEM fuel cell assembly, a PEM fuel cell is housed within a frame that supplies the necessary fuel and oxidant to the flow fields of the fuel cell. These conventional frames typically comprise manifolds and channels that facilitate the flow of the reactants. However, usually the channels are not an integral part of the manifolds, which results in a pressure differential along the successive channels.
As a single PEM fuel cell only produces about 0.30 to 0.90 volts D.C. under a load, the key to developing useful PEM fuel cell technology is being able to scale-up current density in individual PEM cell assemblies to produce sufficient current for larger applications without sacrificing fuel cell efficiency. Commonly, fuel cell assemblies are electrically connected in nodes that are then electrically connected in series to form “fuel cell stacks” by stacking individual fuel cell nodes. Two or more nodes can be connected together, generally in series, but sometimes in parallel, to efficiently increase the overall power output.
Conventional PEM fuel stacks often flood the cathode due to excess water in the cathode gas flow field. Flooding occurs when water is not removed efficiently from the system. Flooding is particularly problematic because it impairs the ability of the reactants to adequately diffuse to the catalytic active layers. This significantly increases the internal resistance of the cathode which ultimately limits the cell voltage potential. Another problem is dehydration of the polymeric membranes when the water supply is inadequate. Insufficient supply of water can dry out the anode side of the PEM-membrane electrolyte, causing a significant rise in stack resistance and reduced membrane durability.
Further, conventional PEM fuel cells and stacks of such fuel cell assemblies are compressed under a large load in order to ensure good electrical conductivity between cell components and to maintain the integrity of compression seals that keep various fluid streams separate. A fuel cell stack is usually held together with extreme compressive force, generally in excess of 40,000 psi, using compression assemblies, such as tie rods and end plates. If tie rods are used, the tie rods generally extend through holes formed in the peripheral edge portion of the stack end plates and have associated nuts or other fastening means assembling the tie rods to the stack assembly to urge the end plates of the fuel stack assembly toward each other. Typically, the tie rods are external, i.e., they do not extend through the fuel cell electrochemically active components. This amount of pressure that must be used to ensure good electrochemical interactions presents many operational difficulties. For example, if the voltage of a single fuel cell assembly in a stack declines significantly or fails, the entire stack must be taken out of service, disassembled, and repaired, resulting in significant repair costs and down-time. Second, inadequate compressive force can compromise the seals associated with the manifolds and flow fields in the central regions of the interior distribution plates, and also compromise the electrical contact required across the surfaces of the plates and MEAs to provide the serial electrical connection among the fuel cells that make up the stack. Third, the extreme compressive force used unduly abrades the surfaces of the fuel cell modules within the stack, resulting in wear of components in the fuel cell assemblies such as the catalyst layers of the electrolyte, thereby leading to increased losses in fuel cell stack and fuel cell assembly efficiency.
Accordingly, there is a need for an economical and efficient fuel cell assembly and fuel cell stack assembly with an optimized supply and mass transport system. Herein provided are improvements to the anode gas flow field and the cathode gas and liquid flow field. Further, maintenance and inspection of the fuel cell system of the present invention are less burdensome as very little compressive force is needed to ensure good electrochemical connection, enabling these fuel cell systems to be used effectively in residential and light-commercial applications. As a result, significant improvement in power density, efficiency, and life of the fuel cell are provided at the cell and stack level.
In one embodiment, the present invention comprises an improved gas flow field for a fuel cell assembly comprising a three-dimensional open cell foamed structure suitable for gas diffusion. In another embodiment, a method for making a three-dimensional open-cell foamed gas flow field is disclosed. Another embodiment of the present invention comprises a PEM fuel cell assembly having gas diffusion layer, gas and liquid diffusion layer, an anode gas flow field, and a cathode gas and liquid flow field. In still another embodiment, an improved fuel cell stack assembly is disclosed wherein the fuel cell assemblies of the stack comprise an open-cell foamed gas flow field and an open-cell foamed gas and liquid flow field. The present invention also provides for improved distribution for a fuel cell assembly providing for improved transport of the reactants to the fuel cell.
One advantage of the present invention is that these improvements increase the life and decrease the maintenance operations for a fuel cell. This enables the fuel cells to be used in residential and light-commercial applications effectively.
Another advantage is that the invention achieves optimal mass transport through the open cell foamed flow fields and the distribution frame of the present invention. This increases the overall efficiency and maximum power achievable by the fuel cell. Further, the anode gas and cathode gas are uniformly disbursed on the catalytic active layers of the electrolyte, resulting in optimal water balance in the fuel cell system. Flooding and drying out of the electrolyte are thereby avoided. In addition, hot spots that distort the fuel cell, resulting in maintenance to replace the damaged cell, are avoided. Maximum power is, thus, achievable.
Other advantages of the present invention will be apparent to those ordinarily skilled in the art in view of the following specification claims and drawings.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like numbers indicate like features, and wherein:
When the fuel cell assembly of the present invention is assembled as in the embodiments depicted in
Suitable construction materials for the three-dimensional open-cell foamed gas flow fields and gas and liquid flow fields are conducive to flow distribution and possess good electrical conductivity properties. These may include: plastics, carbon filament, stainless steel and its derivatives, epitaxial substrates, nickel and its alloys, gold and its alloys, and copper and its alloys. Iridium may also be used if it has sufficient electrochemical properties. In one embodiment of the present invention, the anode gas flow field and the cathode gas and liquid flow fields are made from open-cell foamed nickel. The open-cell foamed nickel flow fields are produced by electroplating nickel over a particulate plastic so that the voids created by the tangential intersections in the particulate plastic structure are filled with nickel. Although polystyrene may be used in this method of producing the foamed flow field structure, other materials, such as other particulate thermoplastic resinous materials, would also be suitable in this process. Another suitable material, for example, would be Isinglass. If nickel is used, the nickel may be enhanced with 2.0% by weight of cobalt. The addition of cobalt enhances the mechanical strength of the nickel and reduces the drawing properties of the nickel. The addition of cobalt also strengthens the lattice structure of the finished open-cell foamed flow field. Once the nickel has cooled, the polystyrene plastic may be blown out of the foam with hot carbon dioxide gas or air leaving a three-dimensional nickel open-cell foamed flow field structure having substantially five-sided geometrically-shaped orifices. The nickel foamed flow field is autocatalytically microplated with up to 15 microns of gold, iridium, copper or silver. Preferably, the flow field is microplated, with between 0.5 to 2.0 microns of gold.
As shown in
Shown in
Shown in
Although the present disclosure has been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereto without departing from the spirit and the scope of the invention as defined by the appended claims.
This application is a continuation of application Ser. No. 09/669,344, filed Sep. 26, 2000 now U.S. Pat. No. 6,531,238.
Number | Name | Date | Kind |
---|---|---|---|
3616841 | Walz | Nov 1971 | A |
3617385 | Gray | Nov 1971 | A |
3814631 | Warszawski et al. | Jun 1974 | A |
4058482 | Baris et al. | Nov 1977 | A |
4124478 | Tsien et al. | Nov 1978 | A |
4125676 | Maricle et al. | Nov 1978 | A |
4175165 | Adlhart | Nov 1979 | A |
4214969 | Lawrance | Jul 1980 | A |
4274939 | Bjäreklint | Jun 1981 | A |
4496437 | McIntyre et al. | Jan 1985 | A |
H16 | Kaun | Jan 1986 | H |
4758481 | Fauvel | Jul 1988 | A |
4818741 | Herscovici | Apr 1989 | A |
4876115 | Raistrick | Oct 1989 | A |
4910099 | Gottesfeld | Mar 1990 | A |
5079105 | Bossel | Jan 1992 | A |
5364712 | Townsend | Nov 1994 | A |
5366819 | Hartvigsen et al. | Nov 1994 | A |
5418079 | Diethelm | May 1995 | A |
5482792 | Faita et al. | Jan 1996 | A |
5565072 | Faita et al. | Oct 1996 | A |
5578388 | Faita et al. | Nov 1996 | A |
5589285 | Cable et al. | Dec 1996 | A |
5763114 | Khandkar et al. | Jun 1998 | A |
5853910 | Tomioka et al. | Dec 1998 | A |
5879826 | Lehman et al. | Mar 1999 | A |
5942350 | Roy et al. | Aug 1999 | A |
6007932 | Steyn | Dec 1999 | A |
6022634 | Ramunni et al. | Feb 2000 | A |
6051117 | Novak et al. | Apr 2000 | A |
6140266 | Corrigan et al. | Oct 2000 | A |
6146780 | Cisar et al. | Nov 2000 | A |
6232010 | Cisar et al. | May 2001 | B1 |
6238819 | Cahill et al. | May 2001 | B1 |
6280870 | Eisman et al. | Aug 2001 | B1 |
6284399 | Oko et al. | Sep 2001 | B1 |
6344290 | Bossel | Feb 2002 | B1 |
6372376 | Fronk et al. | Apr 2002 | B1 |
6387556 | Fuglevand et al. | May 2002 | B1 |
6387557 | Krasij et al. | May 2002 | B1 |
6399234 | Bonk et al. | Jun 2002 | B1 |
6403249 | Reid | Jun 2002 | B1 |
6410180 | Cisar et al. | Jun 2002 | B1 |
6413664 | Wilkinson et al. | Jul 2002 | B1 |
6531238 | King | Mar 2003 | B1 |
6656624 | King | Dec 2003 | B1 |
20020068208 | Dristy et al. | Jun 2002 | A1 |
20040048138 | King | Mar 2004 | A1 |
20040048139 | King | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
19812155 | Sep 1999 | DE |
0 709 907 | May 1996 | EP |
05041239 | Jun 1993 | JP |
63232275 | Sep 1998 | JP |
WO 9620509 | Jul 1996 | WO |
WO 9724474 | Jul 1997 | WO |
WO 0072373 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040048140 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09669344 | Sep 2000 | US |
Child | 10267559 | US |