The present invention relates to a flow form tool mandrel. In particular, the invention is directed to a flow form tool mandrel to facilitate the forming of oil holes through the use of a moving tool detail.
Flow forming is a process used to produce a formed metal part. Flow forming is the use of metal forming lathes to extrude a blank or a preform prepared from a desired material into the formed metal part. Flow forming provides the features traditionally provided by a stamping process while providing the additional benefits of improved dimensional capabilities, work hardening up to three-times the initial material properties, and the ability to use the part after formation with limited or no additional machining required.
Typical flow formed parts include gears, clutch drums, and other similar parts that may include oil holes. The conventional means for forming parts having oil holes typically results in undesirable burrs and other surface flaws on the formed part. Therefore, the cost of production and the overall efficiency of the process utilizing the part are adversely affected.
It would be desirable to produce a flowform tool to facilitate a forming of features such as oil holes in a part through the use of a moving tool detail.
Concordant and consistent with the present invention, a flowform tool to facilitate a forming of features such as oil holes in a part through the use of a moving tool detail, has surprisingly been discovered.
In one embodiment, an apparatus comprises: a mandrel having a first end and a second end, the mandrel including a cavity formed therein; a pilot disposed in the cavity formed in the mandrel, a portion of the pilot extending outwardly from the first end of the mandrel; and an insert disposed in a channel formed in the mandrel and through an exterior surface of the mandrel, wherein a portion of the pilot abuts the insert and radial outward movement of the insert is caused by an axial movement of the pilot.
In another embodiment, an apparatus comprises: a mandrel having a first end and a second end, the mandrel having a cavity formed therein; a pilot disposed in the cavity formed in the mandrel, a portion of the pilot extending outwardly from the first end of the mandrel; an ejector couple to a second end of the pilot opposite the first end of the pilot, wherein the ejector controls a movement of the pilot relative to the mandrel; and an insert moveably disposed in a channel formed in the mandrel and through an exterior surface of the mandrel, wherein a portion of the pilot abuts the insert and radially outward movement of the insert is caused by an axial movement of the pilot.
The present invention also includes methods of forming a part.
One method comprises the steps of: providing a blank formed of a flowable material; providing a tool including a mandrel having a first end and a second end, a pilot moveably disposed in a cavity formed in the mandrel, a portion of the pilot extending outwardly from the first end of the mandrel, and an insert moveably disposed in a channel formed through an exterior surface of the mandrel; positioning the blank adjacent the first end of the mandrel; and applying pressure to the blank to cause the material of the blank to flow around the mandrel to form a part, at least a portion of the material flowing over the insert extending generally radially outwardly from the exterior wall of the mandrel.
The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiment when considered in the light of the accompanying drawings in which:
The following detailed description and appended drawings describe and illustrate various embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner. In respect of the methods disclosed, the steps presented are exemplary in nature, and thus, are not necessary or critical.
The flow formed part 22 of the prior art shown in
The process to form the flow formed part 22 is a multi-step process. First, the blank 32 is formed by punching, cutting, or shearing the blank 32 from a sheet stock of material to a predetermined shape. The blank 32 is then disposed in a flow forming apparatus 40. The apparatus 40 includes the tool 10, a plurality of rollers 33, and a pressure plate 34. It is understood that the tool 10 may be a male die, a female die, or a die with both male and female die portions. The pressure plate 34 includes a bearing plate 35, a stem 37 slidably disposed through an aperture (not shown) in the bearing plate 35, an annular shoulder 39 having a cavity 41 adapted to receive at least a portion of the stem 20 of the tool 10, and a hydraulic cylinder (not shown) adapted to apply a force on the stem 37 to cause it to slidably reposition. It is understood that the hydraulic cylinder may be any means of providing a force to slidably position the stem 37 of the pressure plate 34. The blank 32 is disposed on the stem 20 of the tool 10 with the stem 20 positioned through the aperture 30 of the blank 32. The stem 20 of the tool 10 and the pressure plate 34 are slidably positioned such that the stem 20 of the tool 10 is received by the cavity 41 formed in the annular shoulder 39. The tool 10 and pressure plate 34 are then clamped together such that the blank 32 is disposed between the first end 12 of the tool 10 and the annular shoulder 39 of the pressure plate 34. The tool 10, the blank 32, and the stem 37 are then caused to axially rotate relative to the bearing plate 35 while the hydraulic cylinder applies a constant pressure on the stem 37 to maintain a position of the pressure plate 34 and tool 10 during a flow forming operation. Next, the rollers 33 are caused to apply pressure to the blank 32 to deform the blank 32 and cause the blank 32 to flow into the spline forming recesses 16 formed in the tool 10. As the pressure on the blank 32 caused by the rollers 33 increases, the temperature of the blank 32 increases and the blank 32 becomes more malleable to facilitate the flow of the material that forms the blank 32 into the spline forming recesses 16 of the tool 10. Once the material has been caused to fill the spline forming recesses 16, the tool 10 is removed from the flow formed part 22 resulting in a part having an annular array of splines 24 formed thereon, as illustrated in FIG.
The mandrel 102 has a first end 110 and a second end 112. As shown in
The pilot 104 is moveably disposed in the cavity 114 formed in the mandrel 102. A first end 124 (i.e. stem) of the pilot 104 extends through the aperture 118 formed in the first end 110 of the mandrel 102. The first end 124 of the pilot 104 is configured to be inserted into an aperture of a blank 126 prepared from a desired material (shown in
In the embodiment shown, the pilot 104 is generally cylindrical and includes a portion 128 having a generally cylindrical, ring-like shape disposed between the first end 124 and a second end 130 thereof. A diameter of the portion 128 is typically greater than a diameter of at least one of the first end 124 of the pilot 104 and the second end 130 of the pilot 104. However, it is understood that the portion 128 can have any shape, size, and diameter. A camming surface 132 of the portion 128 is beveled at a pre-determined angle relative to an outer wall 134 of the portion 128. As a non-limiting example, the beveled camming surface 132 extends about the entire circumference of the portion 128. As a further non-limiting example, any part of the portion 128 can include a bevel or angled portion(s) configured to engage each of the inserts 108.
The ejector 106 is coupled to the second end 130 of the pilot 104. The ejector 106 controls a movement of the pilot 104 relative to the mandrel 102. As a non-limiting example, a plurality of threaded fasteners 135 can be used to coupled the ejector 106 to the pilot 104. However, other means of coupling the ejector 106 to the pilot 104 can be used. It is further understood that a movement of the pilot 104 within the mandrel 102 can be controlled by other means such as a spring (not shown) disposed in contact with the pilot 104 to impart motion thereto.
Each of the inserts 108 is moveably disposed in one of a plurality of radially outwardly extending channels 136 formed in the mandrel 102 and through the exterior surface 120 of the mandrel 102. It is understood that any number of the inserts 108 can be provided. Each of the inserts 108 includes a first end 137 disposed adjacent the pilot 104 and a second end 138 disposed opposite the first end 137. As a non-limiting example, the second end 138 of each of the inserts 108 includes at least one of a curved or angled contour. As a further non-limiting example, the second end 138 of each of the inserts 108 includes a plateau-like contour having a pair of angled surfaces (i.e. entry angle surface and exit angle surface) and a planar surface interposed between each of the angled surfaces, the planar surface generally parallel to the exterior surface 120 of the mandrel 102. However, the second end 138 of each of the inserts 108 can have any contour and shape.
In certain embodiments, a retaining element 140 is disposed in the cavity 114 formed in the mandrel 102. Specifically, the retaining element 140 is disposed adjacent each of the inserts 108 to limit a radial movement of the inserts 108 relative to the mandrel 102. As a non-limiting example, the retaining element 140 has an annular shape with an outside diameter less than an inside diameter of the cavity 114 formed in the mandrel 102. As a further non-limiting example, each of the inserts 108 includes a notched portion 141 and at least a portion (e.g. a reciprocal notch formed in the retaining element 140) of the retaining element 140 is disposed adjacent the notched portion 141 of each of the inserts 141 to limit a radial movement of the inserts 141 relative to the mandrel 102. It is understood that a length of the notched portion 141 of each of the inserts 108 can define a range of radial movement of the inserts 108 relative to the mandrel 102.
In certain embodiments, a locking element 142 is disposed in the cavity 114 formed in the mandrel 102 to abut the retaining element 140. As a non-limiting example, the locking element 142 is secured to the mandrel 102 (e.g. disposed in a groove or channel formed in the mandrel 102). The locking element 142 is spaced from the inserts 108 by a pre-determined distance and maintains a position of the retaining element 140 relative to the mandrel 102 and the inserts 108.
The process to form a part using the tool 100 is a multi-step process. First, the blank 126 is formed by punching, cutting, or shearing the blank 126 from a sheet stock of material to a predetermined shape. The blank 126 is then disposed in a flow forming apparatus (not shown) similar to the apparatus 40 illustrated in
In the embodiment shown, the ejector 106 and the pilot 104 are retracted in an axial direction away from the blank 126. As the pilot 104 moves within the cavity of the mandrel 102, the caroming surface 132 of the pilot 104 applies a force to each of the inserts 108 to cause the inserts 108 to move in a radially outward direction relative to the mandrel 102. It is understood that the beveled contour of the camming surface 132 of the pilot 104 generates a force component in the radially outward direction on the first end 137 of the inserts 108 while the channels 136 formed in the mandrel 102 guide the inserts 108. As shown in
The tool 100 and the blank 126 are then caused to rotate. Next, the rollers are caused to apply a pressure to the blank 126 to deform the blank 126 and cause the blank 126 to flow around the exterior surface 120 of the mandrel 102 (including the tool detail 122) and the second end 138 of each of the inserts 108. As the pressure on the blank 126 caused by the rollers increases, a temperature of the blank 126 increases and the blank 126 becomes malleable to facilitate the flow of the material that forms the blank 126 around the exterior surface 120 of the mandrel 102. It is understood that the contour of the second end 138 of each of the inserts 108 allows the malleable material of the blank 126 to be formed thereover.
Once the material of the blank 126 has been caused to form around the exterior surface 120 of the mandrel 102, the part formed from the blank 126 includes features 144 (e.g. indentations, oil holes, and the like) formed therein due to the contour/profile of the second end 138 of the inserts 108 and the tool detail 122 formed on the mandrel 102.
The ejector 106 and the pilot 104 are then extended toward the first end 110 of the mandrel 102. As the pilot 104 moves toward the first end 110 of the mandrel 102, the inserts 108 typically stay in the extended position and a gap is formed between the pilot 104 and each of the inserts 108. The part formed from the blank 126 is then removed from the mandrel 102 (e.g. by a stripper plate 144 know in the art). As the part formed from the blank 126 moves along the mandrel 102 toward the first end 110 of the mandrel 102, the part formed from the blank 126 applies a force to the second end 138 of each of the inserts 108 to cause the inserts 108 to move radially inwardly relative to the mandrel 102. It is understood that the contour/profile of the second end 138 of each of the inserts 108 can be configured to engage the part formed from the blank 126 to generate a force component in a radially inward direction relative to the mandrel 102 as the part is removed from the mandrel 102. Once the part formed from the blank 126 is completely removed from the mandrel 102, the features 144 (e.g. indentations, oil holes, and the like) formed in the part can be machined to remove excess material on an outside of the part (e.g. to create a smooth through-hole).
The tool 100 of the present invention allows forming of features such as oil holes through the use of moving tool details (i.e. the inserts 108). The contour/profile of the inserts 108 can be configured to create the features 144 having any shape, size, and location. The tool 100 including the moveable inserts 108 can be applied to the blank 126 to create a single or multiple rows of features such as oil holes.
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.
This application is entitled to the benefit of, and claims priority to, U.S. provisional patent application Ser. No. 61/299,374 filed Jan. 29, 2010, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61299374 | Jan 2010 | US |