The present disclosure relates to a differential case assembly and, more particularly, to a differential case assembly for use in a motorized vehicle.
A differential is a device, usually employing gears, that is capable of transmitting torque and permitting rotation of different shafts at different speeds. Known differentials have cases that are cast from metals such as iron, and are often heavy and volumetrically undesirable. Assembly of known differentials can be difficult, oftentimes requiring bolting as well as welding. The use of “feed-in and rotate processes” when cast iron differential cases are manufactured is also known. Welding of the differentials formed from cast iron, in particular, can undesirably require the use of filler wire to provide an acceptable weld.
A particular differential case assembly is described in Assignee's co-pending U.S. Patent Application Publication No. 20110263374 to Cripsey, filed on Apr. 26, 2011, the entire disclosure of which is hereby incorporated herein by reference. The differential case assembly includes a differential case having an open end and a side wall with an interior surface, A plurality of major internal splines is formed on the interior surface of the side wall. The differential case assembly further includes a gear assembly. The gear assembly has a retainer insert and a cross pin. The retainer insert is disposed adjacent the interior surface of the side wall between a pair of the major internal splines. The retainer insert has a hole formed therein. The cross pin has an end mounted in the hole of the retainer insert. The cross pin aligns the gear assembly within the differential case.
There is a continuing need for a differential case assembly that is lighter compared to known cast iron designs, minimizes a required packaging space, minimizes assembly complexity, and can be employed with different numbers of gears. A differential case assembly that facilitates welding and eliminates a need for multiple nuts/bolts in the assembly process is also desired.
In concordance with the instant disclosure, a differential case assembly that is lighter compared to known cast iron designs, minimizes a required packaging space, minimizes assembly complexity, can be employed with different numbers of gears, facilitates welding, and eliminates a need for multiple nuts/bolts in the assembly process, is surprisingly discovered.
In one embodiment, a differential case assembly includes a differential case and an integral end cap and ring gear assembly. The differential case has an open end and a side wall with an exterior surface. The integral end cap and ring gear assembly is disposed over the open end of the differential case and adjacent the exterior surface. A first interior portion of the integral end cap and ring gear assembly abuts the exterior surface of the differential case to define a weld joint interface. A second interior portion of the integral end cap and ring gear assembly is spaced apart from the exterior surface and defines a void therebetween. The void permits a welding operation of the differential case to the integral end cap and ring gear assembly at the weld joint interface.
In another embodiment, a differential case assembly includes a differential case and an integral end cap and ring gear assembly. The differential case has an open end and a side wall with an exterior surface. The integral end cap and ring gear assembly is disposed over the open end of the differential case and adjacent the exterior surface. A first interior portion of the integral end cap and ring gear assembly abuts the exterior surface of the differential case to define a weld joint interface. The integral end cap and ring gear assembly has a plurality of slots formed therein that permit access to both the differential case and the integral end cap and ring gear assembly for a welding operation at the weld joint interface.
In a further embodiment, a method for manufacturing a differential case assembly includes the steps of: providing a differential case having an open end and a side wall with an exterior surface; and disposing an integral end cap and ring gear assembly over the open end of the differential case and adjacent the exterior surface. A first interior portion of the integral end cap and ring gear assembly abuts the exterior surface of the differential case to define a weld joint interface. The integral end cap and ring gear assembly further includes at least one of a second interior portion spaced apart from the exterior surface and defining a void therebetween, and a plurality of slots. Each of the void and the slots permits a welding operation of the differential case to the integral end cap and ring gear assembly at the weld joint interface. The method further includes the step of welding the differential case with the integral end cap and ring gear assembly at the weld joint interface.
The above, as well as other advantages of the present disclosure, will become readily apparent to those skilled in the art from the following detailed description, particularly when considered in the light of the drawings described herein.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should also be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. In respect of the methods disclosed, the order of the steps presented is exemplary in nature, and thus, is not necessary or critical.
The differential case assembly 2 includes a differential case 4, an end cap 6, a ring gear 8, and a gear assembly 10. The differential case 4, the end cap 6, and the ring gear 8 cooperate to house the gear assembly 10. It should be understood that the gear assembly 10 may have a cross pin, for example, as disclosed in Assignee's co-pending U.S. patent application Ser. No. 13/094,406, or may be pinless, for example, as disclosed in Assignee's co-pending pending U.S. patent application Ser. No. 13/174,971, the entire disclosures of which are hereby incorporated herein by reference.
As shown in
The end cap 6 and the ring gear 8 may be provided as a one piece, integral end cap and ring gear assembly 6, 8. The integral end cap and ring gear assembly 6,8 are disposed over the open end 12 of the differential case 4 and adjacent the exterior surface 16 of the side wall 14. For example, the integral end cap and ring gear assembly 6, 8 may have an outwardly extending edge portion that permits the integral end cap and ring gear assembly 6, 8 to be placed over top of the differential case 4, while also disposing the outwardly extending edge portion adjacent the side wall 14 of the differential case 4. The integral end cap and ring gear assembly 6, 8 may be cold formed or hot formed, or formed by another suitable process, within the scope of the present disclosure.
With reference to
The abutting of the exterior surface 16 and the first interior portion 18 defines a weld joint interface 22 of the differential case assembly 2. The second interior portion 20 of the integral end cap and ring gear assembly 6, 8 is spaced apart from the exterior surface 16. The second interior portion 20 and the exterior surface 16 together define a void 24 therebetween. The void 24 permits the welding operation of the differential case 4 to the integral end cap and ring gear assembly 6, 8 from “below” the differential case assembly 2, at the weld joint interface 22.
As illustrated in
As a nonlimiting example, the vertical plane V may be substantially parallel to exterior surface 16 of the side wall 14 adjacent the second interior portion 20 of the integral end cap and ring gear assembly 6, 8. The angle may particularly be up to about 15 degrees, more particularly between about 5-10 degrees, and most particularly about 7.5 degrees. One of ordinary skill in the art may select other suitable angles for the acute angle of the plane A, as desired.
Referring further to
As also shown in
Referring now to
In a particular embodiment illustrated in
The present disclosure also includes a method for manufacturing the differential case assembly 2. The method first includes the steps of providing the differential case 4 and disposing the integral end cap and ring gear assembly 6, 8 over the open end 12 of the differential case 4 and adjacent the exterior surface 16 of the side wall 14 of the differential case 4. The disposing of the integral end cap and ring gear assembly 6, 8 over the open end 12 of the differential case 4 results in an abutting of the differential case 4 and the integral end cap and ring gear assembly 6, 8, and the subsequent formation of a weld joint interface 22.
The differential case assembly 2 may be configured for at least one of the “below” welding operation and the “above” welding operation at the weld joint interface 22, as described hereinabove. Accordingly, the method for manufacturing the differential case assembly 2 further includes the step of welding the differential case 4 with the integral end cap and ring gear assembly 6, 8 at the weld joint interface 22, either through the void 24 below the weld joint interface 22 or through the slots 32 above the weld joint interface 22.
In particular embodiments, the welding operation is a laser welding operation. However, one of ordinary skill in the art may select other suitable means for welding during the welding operation, as desired.
Advantageously, the differential case assembly 2 of the present disclosure is less massive and more volumetrically efficient than differentials for motorized vehicles that are known in the art. Furthermore, the differential case assembly 2 may be manufactured without the use of screws, bolts, rivets, or the like.
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes may be made without departing from the scope of the disclosure, which is further described in the following appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/499,929 filed on Jun. 22, 2011. The entire disclosure of the above application is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4125026 | Torii et al. | Nov 1978 | A |
5320587 | Bodtker et al. | Jun 1994 | A |
6589671 | Kehrer | Jul 2003 | B1 |
6863636 | Huber et al. | Mar 2005 | B2 |
7008345 | Phelan et al. | Mar 2006 | B2 |
7021171 | Huber et al. | Apr 2006 | B2 |
7213435 | Huber et al. | May 2007 | B2 |
7328492 | Huber et al. | Feb 2008 | B2 |
7341539 | Huber et al. | Mar 2008 | B2 |
7766575 | Huber et al. | Aug 2010 | B2 |
20030200832 | Ootsuka | Oct 2003 | A1 |
20040116235 | Szuba | Jun 2004 | A1 |
20050009662 | Sudou | Jan 2005 | A1 |
20060063634 | Szuba | Mar 2006 | A1 |
20080188343 | Pan et al. | Aug 2008 | A1 |
20090205463 | Gianone et al. | Aug 2009 | A1 |
20090217725 | Cripsey et al. | Sep 2009 | A1 |
20090266198 | Nosakowski | Oct 2009 | A1 |
20100062892 | Vogel et al. | Mar 2010 | A1 |
20100130325 | Gutmann | May 2010 | A1 |
20110263374 | Cripsey et al. | Oct 2011 | A1 |
20120000314 | Cripsey et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
102008017221 | Oct 2008 | DE |
1719572 | Aug 2006 | EP |
1719572 | Nov 2006 | EP |
Entry |
---|
Translation of EP 1719572, obtained May 3, 2013. |
Number | Date | Country | |
---|---|---|---|
20120325047 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61499929 | Jun 2011 | US |