Flow locking system and method

Information

  • Patent Grant
  • 10883489
  • Patent Number
    10,883,489
  • Date Filed
    Monday, November 4, 2019
    5 years ago
  • Date Issued
    Tuesday, January 5, 2021
    3 years ago
Abstract
A pumping system and method including a flow locking feature. A pump controller includes a user interface configured to initially receive and set a plurality of programmed flow rate settings, a maximum locked flow rate, and a minimum locked flow rate. The pump controller is also configured to disable resetting of the maximum flow rate and the minimum flow rate once they are initially received and set and to allow resetting of the plurality of programmed flow rate settings throughout operation of the pumping system. The pump controller is further configured to operate a pump motor in order to maintain a first flow rate set by one of the plurality of programmed flow rate settings as long as the first flow rate is between the minimum locked flow rate and the maximum locked flow rate.
Description
BACKGROUND

Conventional pool pumps are operable at a finite number of predetermined speed settings. These speed settings correspond to the range of pumping demands of the pool at the time of installation. Factors such as the volumetric flow rate of water to be pumped, the total head pressure required to adequately pump the volume of water, and other operational parameters determine the size of the pump and the proper speed settings for pump operation. Once the pump is installed, the speed settings may not be readily changed to accommodate changes in the pool conditions and/or pumping demands. For example, flow rates through these pumps change over time because the system's total dynamic head changes as dirt and debris accumulate in the pool filter and strainers. This increase in flow resistance causes the conventional pumps to lose flow as the system gets dirty. Due to this loss of flow and the inability to adjust settings, such systems may not maintain desired turnover rates in the pool. As a result, such systems fail to meet health department requirements for commercial swimming pool applications, which require a minimum number of turnovers per day.


Newer pool pump systems include variable speed drives, allowing them to operate at any number of speeds to maintain the above-described factors independent of changes in the pool conditions and/or pumping demands. These pumps are controlled to run at different speeds and flows to maintain one or more control factors and to accommodate changing water supply needs of a pool, such as periodic operation of a water feature. Current control of such systems only focuses on a number of manual and/or scheduled operations, programmable by a pool user, and generally may not consider overall flow or turnover parameters.


SUMMARY

Some embodiments of the invention provide a pumping system for at least one aquatic application including a pump, a motor coupled to the pump, and a pump controller in communication with the motor. The pump controller includes a user interface configured to initially receive and set a maximum locked flow rate, a minimum locked flow rate, and a plurality of programmed flow rate settings including a first programmed flow rate setting. The pump controller is also configured to disable resetting of the maximum flow rate and the minimum flow rate once they are initially received and set through the user interface and to allow resetting of the plurality of programmed flow rate settings throughout operation of the pumping system. The pump controller is further configured to operate the motor in order to maintain a first flow rate through the pumping system set by the first programmed flow rate setting as long as the first flow rate is between the minimum locked flow rate and the maximum locked flow rate.


Some embodiments of the invention provide a method of operating a controller of a pump including motor for use with a pumping system. The method includes receiving a maximum flow rate and a minimum flow rate and locking the maximum flow rate and the minimum flow rate as permanent parameters of the pumping system. The method also includes receiving a first programmed flow rate setting including at least a first flow rate and receiving a second programmed flow rate setting including at least a second flow rate. The method further includes selecting one of the first flow rate and the second flow rate as a selected flow rate for current pump operation and operating the motor to maintain the selected flow rate as long as the selected flow rate is between the maximum flow rate and the minimum flow rate.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a variable speed pumping system in a pool environment in accordance with one embodiment of the invention.



FIG. 2 is a schematic illustration of example auxiliary devices that can be operably connected to a control/automation system of the variable speed pumping system of FIG. 1.



FIG. 3 is a perspective view of a pool pump for use in one embodiment of the invention.



FIG. 4 is an exploded perspective view of the pool pump of FIG. 3.



FIG. 5A is a front view of a user interface of a pump controller for use with the pool pump of FIG. 1.



FIG. 5B is a perspective view of a control/automation system for use with the variable speed pumping system of FIG. 1.



FIGS. 6A-6B illustrate a flow chart of menu settings of the pump controller of FIG. 5A according to one embodiment of the invention.



FIG. 7 is another front view of a user interface of a pump controller for use with the pool pump of FIG. 3.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.


The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.



FIG. 1 illustrates a schematic of a variable-speed pumping system 10, according to one embodiment of the invention, in connection with a pool 12. The pumping system 10 can include a filter 14, a heat pump 16, a chlorinator 18, a control/automation system 20, and a pump unit 22 with a user interface 24, a pump controller 26 including a variable speed drive (VSD) 28, a motor 30, and a pump 32. The pool 12 can be any aquatic application including, but not limited to, a commercial or residential swimming pool, spa, and/or whirlpool bath, and can include a water feature 34 including one or more waterfalls, spillways, etc., a main return 36 including one or more pool inlets, a main drain 38 including one or more drains, a skimmer drain 40, and/or a suction cleaner 42. The skimmer drain 40 can collect coarse debris from water being withdrawn from the pool 12 and the suction cleaner 42 can be a manual or automatic pool cleaner and can vacuum debris from various submerged surfaces of the pool 12.


Water can be circulated through the pool 12 by the pumping system 10 through an outlet line 44 connected to the water feature 34 and/or the main return 36 (e.g., supplying water to the pool 12) and an inlet line 46 connected to the skimmer drain 40, the suction cleaner 42, and/or the main drain 38 (e.g., receiving or withdrawing water from the pool 12). More specifically, as shown in FIG. 1, the pump 32 can move water from the inlet line 46 to the outlet line 44, and the filter 14, the heat pump 16, and the chlorinator 18 can be connected between the pump 32 and the outlet line 44 to treat the water before it is supplied back to the pool 12. As a result, the pool components receiving water (i.e., the skimmer drain 40, the suction cleaner 42, and/or the main drain 38), the pump 32, the filter 14, the heat pump 16, the chlorinator 18, and the pool components supplying water (i.e., the water feature 34 and/or the main return 38) form a fluid circuit or pathway, as designated by solid line connections in FIG. 1, for circulating water through the pool 12. In some embodiments, some pool components, such as the water feature 34 and/or the suction cleaner 42, are capable of being shut off manually or automatically so that they do not supply water to or receive water from the pool 12 (e.g., so that they are no longer part of the fluid circuit). In addition, in some embodiments, components such as the heat pump 16 and/or the chlorinator 18 may not be included within the pumping system 10 and the fluid circuit.


Components of the pumping system 10 can be connected through fluid connections (i.e., designated by solid lines in FIG. 1), and/or mechanical or electrical connections (i.e., designated by dashed lines in FIG. 1). With respect to the pump unit 22, the pump 32 can be a centrifugal pump and can be driven by the pump motor 30, such as a permanent magnet motor, an induction motor, a synchronous motor, or an asynchronous motor. The pump motor operation can be infinitely variable within a range of operations (i.e., zero to maximum operation). In the case of a synchronous motor 30, the steady state speed of the motor 30 (in rotations per minute, or RPM) can be referred to as the synchronous speed. Further, in the case of a synchronous motor 30, the steady state speed of the motor 30 can also be determined based upon the operating frequency in hertz (Hz). The pump controller 26 can control the pump motor 30 and thus control the pump 32. The pump controller 26 can include the variable speed drive 28, which can provide infinitely variable control of the pump motor 30 (i.e., can vary the speed of the pump motor 30). Regarding operation of the variable speed drive 28, a single phase AC current from a source power supply can be converted into a three-phase AC current. The variable speed drive 28 can supply the three-phase AC electric power at a changeable frequency to the pump motor 30 in order to drive the pump motor 30. For example, the pump controller 26 and the variable speed drive 28 can operate the motor 30 as described in U.S. Pat. No. 7,857,600, entitled “Pump Controller System and Method,” the entire contents of which are incorporated herein by reference.


The pump controller 26 can receive input from a user interface 24 in communication with the pump controller 26 (e.g., through physical or wireless connections). In addition, the pump controller 26 can be coupled to, such as physically attached or connected to, the pump 32 and/or the motor 30. In some embodiments, the pump controller 26 can control the pump 32 based on input from the user interface 24 as well as input or feedback from the motor 30. More specifically, the pump controller can monitor one or more performance values or characteristics of the pumping system 10 based on input from the motor 30 and can control the motor 30, and thus the pump 32, based on the monitored values or characteristics, thereby providing a feedback loop for controlling the motor 30. Various parameters (e.g., that are calculated, provided via a look-up table, graph or curve, such as a constant flow curve, etc.) can be used to determine the performance characteristics, such as input power consumed by the motor 30, motor speed, flow rate and/or flow pressure.


For example, in some embodiments, physical sensors are not used to sense the pressure and/or flow rate in the pumping system 10. Rather, motor power consumption (e.g., current draw) is used to monitor the performance of the motor 30 and the pump 32. Since the power consumption of the motor 30 has a relationship to the flow rate and pressure through the pump 32, pressure and/or flow rate can be calculated or determined allowing sensor-less control of the motor 30 and the pump 32. In other words, motor power consumption can be used to determine flow rate or pressure instead of using flow rate sensors or pressure sensors in locations throughout the pumping system 10. In addition, in some embodiments, the pump controller 26 can repeatedly monitor the motor 30 (such as the input power consumed by or the speed of the motor 30) to sense or determine an obstruction within the fluid circuit (e.g., along the inlet line upstream from the pump or along the outlet line downstream from the pump). For example, with respect to monitoring the motor 30 to sense or determine an obstruction, the pump controller 26 can operate in accordance with that described in U.S. Pat. No. 8,313,306 (entitled “Method of Operating a Safety Vacuum Release System”) and United States Patent Publication No. 2007/0183902 (entitled “Anti-Entrapment and Anti-Dead Head Function”), the entire contents of which are incorporated herein by reference.


The pump controller 26 can also be connected to the control/automation system 20, for example in a manner to enable two-way communication between the pump controller 26 and the control/automation system 20. The control/automation system 20 can be an analog or digital control system that can include programmable logic controllers (PLC), computer programs, or the like that are pre-configured for controlling the pump 32. In some embodiments, the pump controller 26 and the control/automation system 20 can operate according to a master/slave relationship. For example, when the pump controller 26 is not connected to the control/automation system 20, the pump controller 26 can automatically control all functions of the pump unit 22. However when the control/automation system 20 is connected to the pump controller 26, the control/automation system 20 can automatically operate as a master controller and the pump controller 26 can automatically operate as a slave controller. In this manner, the master controller (i.e., the control/automation system 20) can have control over certain functions of the slave controller (i.e., the pump controller 26), such as functions related to optimization of energy consumption of the motor 30. As a result, the master controller can control the slave controller to operate the pump motor 30 and the pump 32 in a way to optimize energy consumption of the motor 30 or perform other operations specified by the user.


In some embodiments, the control/automation system 20 can be operably connected to or in communication with one or more auxiliary devices in order to operate the auxiliary devices and/or receive input or feedback from the auxiliary devices. As shown in FIGS. 1 and 2, the auxiliary devices can include various mechanical, electrical, and/or chemical devices including, but not limited to, the pump unit 22 (e.g., via the pump controller 26, as described above), the filter 14, the heat pump 16, the chlorinator 18 and/or another chemical dispersion device (not shown), the water feature 34, the suction cleaner 42, a water heater 48, one or more lighting devices 50, a remote keypad 52 (e.g., including a user interface, such as a keypad 54, buttons, touch screen, etc., for receiving user input and/or a display 56), a second pump 58 and/or a second pump motor 60, one or more sensors 62 associated with the pool 12 or the pumping system 10, one or more electrical or mechanical relays 64 or switches 66 associated with the pool 12 or the pumping system 10, one or more electrically or mechanically operated water valves 68 associated with the pool 12 or the pumping system 10, an electrical or mechanical timing device 70, and/or a personal computer 72. Connections between the control/automation system 20 and the auxiliary devices can be wired or wireless and can enable two-way communication between the control/automation system 20 and the auxiliary devices. For example, the remote keypad 54 can be a wireless keypad positioned away from the control/automation system 20 and/or the pump controller 26. In another example, the personal computer 72 can be connected to the control/automation system 20 through a wired or wireless computer network, such as a local area network. In addition, in some embodiments, one or more of the auxiliary devices can be connected to the pump controller 26 rather than the control/automation system 20, for example through a communications panel or junction box (not shown).


Two-way communication between the control/automation system 20 and the auxiliary devices (or the pump controller 26 and the auxiliary devices) can allow for control of the motor 30, and thus the pump 32, based on input or feedback from the auxiliary devices. More specifically, inputs from the auxiliary devices, such as a desired flow rate necessary for operation of the water heater 48, a user input from the remote keypad 52, etc., can be used to control operation of the motor 30 and the pump 32. Other parameters used by the control/automation system 20 (and/or the pump controller 26) for controlling operation of the pump motor 30 and the pump 32 can include, but are not limited to, water flow rate, water pressure, motor speed, and power consumption, as discussed above, as well as filter loading, chemical levels, water temperature, alarms, operational states, time, energy cost, turnovers per day, relay or switch positions, and/or other parameters (e.g., sensed, determined, calculated, obtained, etc.) that indicate performance of the pumping system 10.


In a general example, information entered into the remote keypad 52 by a user can be received by the control/automation system 20, and the control/automation system 20 (i.e., acting as the master controller) can control the pump controller 26 (i.e., acting as the slave controller) to operate the motor 30 and the pump 32 based on the input information. The control/automation system 20 can also provide information back to the remote keypad 52 to display to the user, for example via the display 56. In a more specific example with respect to turnovers per day, the pumping system 10 (i.e., the control/automation system 20 and/or the pump controller 26) can be preconfigured to permit a user to input, via the user interface 24 or the remote keypad 52, a desired number of turnovers (i.e., number of times water is re-circulated through the fluid circuit). The control/automation system 20 and/or the pump controller 26 can then operate the motor 30 and the pump 32 to perform the desired number of turnovers within a predetermined amount of time, such as a 24-hour period. In another example, the control/automation system 20 can receive information from one or more auxiliary devices that the water heater 48 is operating or needs to operate, and can alter the performance of the pumping system 10 (e.g., alter a speed of the pump motor 30) to provide an increased flow rate necessary for proper operation of the water heater 48.



FIGS. 3 and 4 illustrate the pump unit 22, according to one embodiment of the invention, including the pump 32, the pump controller 26, the user interface 24, and the motor 32 for use with the pumping system 10 described above. The pump 32 can be configured for use in any suitable aquatic application, including pools, spas, and/or water features. The pump 32 can include a housing 74 and can be connected to the motor 30. In some embodiments, the motor 30 can be a variable speed motor, as described above, and the pump controller 26 can include a variable speed drive to drive the motor 30. In one embodiment, the motor 30 can be driven at four or more different pre-set speeds. The housing 74 can include an inlet 76, an outlet 78, a basket 80, a lid 82, and a stand 84. The stand 84 can support the motor 30 and can be used to mount the pump 32 on a suitable surface (not shown).


In some embodiments, the pump controller 26 can be coupled to (e.g., physically attached or fastened to) the pump 32 and/or the motor 30. For example, as shown in FIGS. 3 and 4, the pump controller 26 and the user interface 24 can be enclosed in a case 86 that can be mounted on the motor 30. The case 86 can include a field wiring compartment 88 and a cover 90. The cover 90 can be opened and closed to allow access to the pump controller 26 (and specifically, the user interface 24) and protect it from moisture, dust, and other environmental influences. In some embodiments, the field wiring compartment 88 can include a power supply to provide power to the motor 30 and the pump controller 26. In addition, the motor 30 can include a coupling 92, as shown in FIG. 4, to connect to the pump controller 26. In other embodiments, the pump controller 26 and/or the user interface 24 can be removable from the motor 30 and/or the pump 32. For example, in such embodiments, the pump controller 26 and/or the user interface 24 can be configured for mounting to the motor 30, the pump 32, and/or a wall and can be removable so that the pump controller 26 and/or the user interface 24 can be removed and remounted the motor 30, the pump 32, and/or a wall if desired by a user.


As shown in FIG. 4, the pump 32 can include a seal plate 94, an impeller 96, a gasket 98, a diffuser 100, and a strainer 102. The strainer 102 can be inserted into the basket 80 and can be secured by the lid 82. In some embodiments, the lid 82 can include a cap 104, an O-ring 106, and a nut 108. The cap 104 and the O-ring 106 can be coupled to the basket 80 by screwing the nut 108 onto the basket 80. The O-ring 106 can seal the connection between the basket 80 and the lid 82. An inlet 110 of the diffuser 100 can be fluidly sealed to the basket 80 with a seal 112. In some embodiments, the diffuser 100 can enclose the impeller 96. An outlet 114 of the diffuser 100 can be fluidly sealed to the seal plate 94. The seal plate 94 can be sealed to the housing 74 with the gasket 98. The motor 30 can include a shaft 116, which can be coupled to the impeller 96. The motor 30 can rotate the impeller 96, drawing fluid from the inlet 46 through the strainer 72 and the diffuser 70 to the outlet 48 (i.e., to drive the pump 32). With respect to the pumping system 10 of FIG. 1, the inlet 76 and the outlet 78 of the pump 32 can be connected to the inlet line 46 and the outlet line 44, respectively, of the pumping system 10.



FIG. 5A illustrates the user interface 24 for the pump controller 26 in accordance with one embodiment of the invention. The user interface 24 can include a display 118, at least one speed button 120, navigation buttons 122, a start-stop button 124, a reset button 126, a manual override button 128, and a “quick clean” button 130. The manual override button 128 can also be considered a “time out” button. In some embodiments, the navigation buttons 122 can include a menu button 132, a select button 134, an escape button 136, an up-arrow button 138, a down-arrow button 140, a left-arrow button 142, a right-arrow button 144, and an enter button 146. The navigation buttons 122 and the speed buttons 120 can be used to program a schedule into the pump controller 26. In some embodiments, for example, the display 108 can include a lower section 148 to display information about a parameter and an upper section 150 to display a value associated with that parameter. In some embodiments, the user interface 24 can include light emitting diodes (LEDs) 152 to indicate normal operation and/or a detected error of the pump 32.



FIG. 5B illustrates the control/automation system 20 according to one embodiment of the invention. As discussed above, the control/automation system 20 can communicate with the pump controller 26. Furthermore, as discussed above, the control/automation system 20 can control the pump 32 through a master/slave relationship with the pump controller 26. The control/automation system 20 can also be used to program the pump controller 26, for example, if the pump 32 is installed in a location where the user interface 24 is not conveniently accessible.


In some embodiments, generally, the pump controller 26 can automatically operate the pump 32 according to at least one programmed schedule (for example, designating a speed or flow rate of the pump 32 and/or the motor 30 as well as a scheduled start time, a scheduled stop time, and/or a duration). If two or more schedules are programmed into the pump controller 26, the schedule running the pump 32 at the highest speed can have priority over the remaining schedules. In some embodiments, the pump controller 26 can allow manual operation of the pump 32. If the pump 32 is manually operated and is overlapping a scheduled run, the scheduled run can have priority over the manual operation independent of the speed of the pump 32. In some embodiments, the pump controller 26 can include a manual override (e.g., through the manual override or “time out” button 128). The manual override can interrupt the scheduled and/or manual operation of the pump 32 to allow for cleaning and maintenance procedures of the pool 12 for example. Furthermore, in some embodiments, the pump controller 26 can monitor the operation of the pump 32 and can indicate abnormal conditions of the pump 32 and/or the pumping system 10, as discussed above.


More specifically, FIGS. 6A-6B illustrate a menu 154 for the pump controller 26 according to one embodiment of the invention. In some embodiments, the menu 154 can be used to program various features of the pump controller 26. For example, the menu 154 can include a hierarchy of categories 156, parameters 158, and values 160, any one of which can be displayed by the display 118 of the user interface 24 so that a user or installer can program the various features on the pump controller 26. For example, from a main screen 162 on the display 118, an operator can enter the menu 154 by pressing the menu button 132. The operator can scroll through the categories 156 (i.e., so that the display visually scrolls through the menu 154) using the up-arrow button 138 and the down-arrow button 140. In some embodiments, the categories 156 can include settings 164, speed 166, external control 168, features 170, priming 172, anti freeze 174, and flow lock 176 (in any order). In some embodiments, the operator can enter a category 156 by pressing the select button 134. The operator can scroll through the parameters 158 within a specific category 156 using the up-arrow button 138 and the down-arrow button 140. The operator can select a parameter 158 by pressing the select button 134 and can adjust the value 160 of the parameter 158 with the up-arrow button 138 and/or the down-arrow button 140. In some embodiments, the value 160 can be adjusted by a specific increment or the user can select from a list of options. The user can save the value 160 by pressing the enter button 146. By pressing the escape button 136, the user can exit the menu 154 without saving any changes.


In some embodiments, the settings category 164 can include a time setting 178, a minimum speed setting 180, a maximum speed setting 182, and a SVRS automatic restart setting 184, as well as other settings parameters 186. The time setting 178 can be used to run the pump 32 on a particular schedule. The minimum speed setting 180 and the maximum speed setting 182 can be adjusted according to the volume of the aquatic applications. An installer of the pump 32 can provide the minimum speed setting 180 and the maximum speed setting 182, for example, upon installation of the pump 32. The pump controller 26 can automatically prevent the minimum speed setting 180 from being higher than the maximum speed setting 182. The minimum and maximum speed settings 180, 182 can be set so that the pump 32 will not operate outside of these speeds in order to protect flow-dependent devices with minimum speeds and pressure-sensitive devices (e.g., filters) with maximum speeds. The SVRS automatic restart setting 184 can provide a time period before the pump controller 26 will resume normal operation of the pump 32 after an obstruction along the inlet line 46 (for example, at the main drain 38) has been detected and the pump 32 has been stopped, in accordance with a safety vacuum release system feature of the pumping system 10. In some embodiments, there can be two minimum speed settings, such as one for dead head detection (e.g., a higher speed) and one for dynamic detection (e.g., a lower speed), as described in U.S. Pat. No. 8,313,306 (entitled “Method of Operating a Safety Vacuum Release System”).


In some embodiments, the speed category 166 can be used to input data for running/operating the pump 32 manually and/or automatically (i.e., via programmed speed settings). In some embodiments, the pump controller 26 can store a number of pre-set speeds/speed settings (such as eight). In this example, each of the first four speeds/speed settings in a first set of speeds 188 (“Speed 1-4”) can be set as manual speeds, scheduled speeds (e.g., speeds with set start and stop times), and/or countdown/timer speeds (e.g., speeds with a time duration). Each of the second four speeds/speed settings in a second set of speeds 190 (“Speed 5-8”) can be set scheduled speeds (e.g., speeds with set start and stop times). As a result, speeds 5-8 can be programmed to operate in a scheduled mode only, while speeds 1-4 can be programmed to operate in a manual, scheduled, or countdown mode. In some embodiments, for the manual mode, only a speed can be programmed. For the scheduled modes, a speed, a start time, and a stop time can be programmed. For the countdown timer mode, a speed and a duration can be programmed. Thus, each speed setting can include a speed, a start time, a stop time, and/or a duration depending on the respective mode.


In some embodiments, the speeds/speed settings from both sets 188, 190 can be programmed into the pump controller 26 using the up-arrow button 138, the down-arrow button 140, and the enter button 146 to select the above-described values. Once programmed, the first set of speeds 188 (speeds 1-4) can be accessed by pressing one of the speed buttons 120 on the user interface 24. As discussed above, if two or more schedules are programmed into the pump controller 26 for the same time, the schedule running the pump 32 at the highest speed can have priority over the remaining schedules. Not all of speeds 5-8 in the second set of speeds 162 must be programmed to run on a schedule. For example, one or more of speeds 5-8 can be disabled.


The external control category 168 can include various programs 192 with speed settings that can run when commanded by the control/automation system 20. In the example shown, four programmed speeds can be included (i.e., programs 1-4). In one embodiment, these four programmed speeds can default at 1100 RPM, 1500 RPM, 2350 RPM, and 3110 RPM, respectively. Each program 192 can be accessible to individually set a new speed using the up-arrow button 138, the down-arrow button 140, and the enter button 146. In other embodiments, the number of programs 192 can be equal to the number of scheduled runs programmed in the second set of speeds 190 (speeds 5-8).


In addition, in some embodiments, the speed category 166 and the external control category 168 can alternatively be programmed with flow rates/flow rate settings instead of speeds/speed settings. For example, the speed category 166 can have an additional mode parameter that allows a user to select a “flow control mode” (i.e., where flow rates are set) or a “speed control mode” (i.e., where speeds are set, as described above). In the flow control mode, flow rates can be set in accordance with the speed settings described above (e.g., where speeds 1-4, speeds 5-8, and/or externally controlled programmed speeds of the programs 192 are instead flows 1-4, flows 5-8, and/or externally controlled programmed flows of the programs 192). Flows 1-4 can be programmed to operate in a manual, scheduled, or countdown mode, flows 5-8 can be programmed to operate in a scheduled mode, and the externally controlled programmed flows can be programmed to operate in a scheduled mode. Thus, each flow rate setting can include a flow rate, a start time, a stop time, and/or a duration depending on the respective mode. Flows 1-4 can also be accessed or selected through the navigation buttons 92 on the user interface 88. Accordingly, the pumping system 10, and in particular the pump controller 26, can operate to maintain a constant pump speed (i.e., in the speed control mode) and/or can operate to maintain a constant flow rate of water within the fluid circuit, or across the filter 14 (i.e., in the flow control mode).


Furthermore, in the flow control mode, the pump controller 26 continuously or periodically adjusts the speed of the motor 30 in order to maintain the set flow rates/flow rate settings. More specifically, the amount of water that can be moved and/or the ease by which the water can be moved is dependent in part upon the current state (e.g., quality, cleanliness) of the filter 14. In general, a clean (e.g., new, fresh, or backwashed) filter 14 provides a lesser impediment to water flow than a filter that has accumulated filter matter (e.g., a dirty filter 14). Therefore, for a constant flow rate through a filter 14, a lesser pressure is required to move the water through a clean filter 14 than a pressure that is required to move the water through a dirty filter 14. Another way of considering the effect of dirt accumulation is that if pressure is kept constant, the flow rate will decrease as the dirt accumulates and hinders (e.g., progressively blocks) the flow. Maintenance of a constant flow volume despite an increasing impediment caused by filter dirt accumulation can require an increasing pressure and is the result of increasing force from the pump motor 30. Some embodiments of the invention control the pump 32, and more specifically control the speed of the pump motor 30, to provide the increased force that provides the increased pressure to maintain the constant flow.


For example, as discussed above, the pump controller 26 can determine flow rates based on power consumption of the motor and/or the speed of the motor. Thus, in order to operate the pump 32 at a programmed flow rate, the pump controller 26 can execute one of the following flow control procedures. First, the pump controller 26 can determine (e.g., receive, obtain, or calculate) a current speed of the motor 30, determine a reference power consumption based on the current speed of the motor 30 and the programmed flow rate, and determine (e.g., receive, obtain, or calculate) the current power consumption of the motor 30. The pump controller 26 can then calculate a difference value between the reference power consumption and the current power consumption and use proportional (P), integral (I), and/or derivative (D) control (e.g., P, I, PI, PD, PID) based on the difference value to generate a new speed of the motor 30 that will achieve the programmed flow rate. The pump controller 26 can then adjust the current speed of the motor 30 to the new speed to maintain the programmed flow rate. Alternatively, the pump controller 26 can determine (e.g., receive, obtain, or calculate) a current speed of the motor 30, the current power consumption of the motor 30, and the current flow rate through the pumping system 10 (i.e., based on the current power consumption and/or the current speed). The pump controller 26 can then calculate a difference value between the reference power consumption and the current power consumption and use proportional, integral, and/or derivative control based on the difference value to generate a new speed of the motor 30 that will achieve the programmed flow rate. The pump controller 26 can then adjust the current speed of the motor 30 to the new speed to maintain the programmed flow rate. In some embodiments, the pump controller 26 can execute the flow control procedures as described in U.S. Pat. No. 7,845,913, entitled “Flow Control,” the entire contents of which are incorporated herein by reference.


The ability to maintain a constant flow is useful to achieve a specific flow volume during a period of time. For example, as discussed above, it may be desirable to perform a specific number of turnovers within a predetermined time period, such as one day. The desired number of turnovers may be related to the necessity to maintain a desired water clarity, despite the fact that the filter of the pumping system will progressively increase dirt accumulation. Conversely, in existing single speed pumps, flow rates change over time because the resistance, or total dynamic head (TDH), of the pumping system changes as dirt and debris accumulate in the filter and system strainers. This increase in flow resistance causes the conventional single speed pump to lose flow as the system gets dirty, enough so that desired turnovers are not achieved as a result of the loss of flow.


Referring back to FIG. 6A, the features category 170 can be used to program a manual override. In some embodiments, the parameters can include a “time out” program 194 and a “quick clean” program 196. The “time out” program 194 can interrupt the operation of the pump 32 and/or motor 30 for a certain amount of time, which can be programmed into the pump controller 26. The “time out” program 194 can be selected by pressing the “time out” button 128 on the user interface 24. The “time out” program 194 can be used to stop operation of the pump 32 so that a user can clean the pool or spa and/or to perform maintenance procedures. The “quick clean” program 196 can include a speed setting and a duration setting. The “quick clean” program 196 can be selected by pressing the “quick clean” button 130 located on the user interface 24. When pressed, the “quick clean” program 196 can have priority over the scheduled and/or manual operation of the pump 32. After the pump 32 has been operated for the time period of the duration setting, the pump 32 can resume to the scheduled and/or manual operation. If the SVRS has been previously triggered and the time period for the SVRS automatic restart 184 has not yet elapsed, the “quick clean” program 196 may not be initiated by the pump controller 26.


In the priming category 172, the priming of the pump 32 can be enabled or disabled at setting 200. The priming sequence of the pump 32 can remove substantially all air in the pump 32 in order to allow water to flow through the pump 32 and/or the fluid circuit. If priming is enabled, a maximum duration for the priming sequence (“max priming time”) can be programmed into the pump controller 26 at setting 202. This is the maximum duration that the pump 32 will try to prime before giving an error. In some embodiments, the priming sequence can be run/driven at the maximum speed 182. In another example, the pump 32 can be run at a first speed (e.g., 1800 RPM) for a first duration (e.g., about three seconds). If there is sufficient flow through the pump 32, priming is completed. If not, the pump 32 can be run at the maximum speed 182 for a priming delay time (such as about 20 seconds, set at setting 204). If there is sufficient flow through the pump 32 at this point, priming is completed. If not, the pump 32 can continue to be run at the maximum speed 182 for an amount of time set by the maximum priming time setting 202. If there is still not sufficient flow when the maximum priming time setting 202 has expired, a dry priming alarm can be reported (e.g., via the LEDs 152 and/or the display 118). In addition, a priming sensitivity value from 1% to 100% can be selected at setting 206. This priming sensitivity value affects the determination of whether flow is sufficient to consider priming completed. Lower sensitivity values increase the amount of flow needed for the pump 32 to sense that it is primed, while higher sensitivity values decrease the amount of flow needed for the pump 32 to sense that it is primed.


In some embodiments, an internal temperature sensor of the pump 32 can be connected to the pump controller 26 in order to provide an anti-freeze operation for the pumping system 10 and the pump 32. In the anti-freeze category 174, an enable/disable setting 208 can be set to enable or disable the anti-freeze operation. Furthermore, a speed setting 210 and a temperature setting 212 at which the pump 32 can be activated to prevent water from freezing in the pumping system can be programmed into the pump controller 26. If the temperature sensor detects a temperature lower than the temperature setting 212, the pump 32 can be operated according to the speed setting 210. In some embodiments, the internal temperature sensor can sense a temperature of the motor 30 and/or the variable speed drive of the pump controller 26. For example, the internal temperature sensor can be embedded within a heat sink positioned between the pump controller/variable speed drive and the motor 30.


As shown in FIG. 6B, the menu 154 can include the flow lock category 176 for the pump 32 to operate with a flow locking feature. Generally, this flow locking feature can allow a user to program a minimum and maximum flow rate into the pumping system 10 that cannot be changed, thereby “locking the flow.” In some embodiments, this feature can be active when the pump 32 and the motor 30 are being controlled in the speed control mode in accordance with the speed settings described above (e.g., the first set of speeds 160, the second set of speeds 162, or the externally programmed speeds 164). This can allow the pump controller 26 to take flow rate and/or turnover rates into consideration even when operating to maintain pump speeds, as further described below. In addition, the flow locking feature can be active when the pump 32 and the motor 30 are being controlled in the flow control mode in accordance with one of the flow rate settings described above.


In one embodiment, when the flow locking feature is activated, an installer can follow a series of questions to set the minimum and maximum flow rates. In other words, the pump controller 26 and the menu 154 can provide additional checkpoints or methods to ensure that the minimum and maximum flow rates are not accidentally locked. Also, in some embodiments, once the minimum and maximum flow rates are locked, they cannot be changed by another installer or pool user. For example, as shown in the menu 154 of FIG. 6B, the flow locking category 176 can include a “set min flow” setting 212, a “set max flow” setting 214, an “activation” setting 216, a “permanently lock flow” setting 218, a “min/max flow acceptable” setting 220, and an “enable/disable” setting 222. As a result, an installer must first set the flow rates, activate the flow rates, permanently lock the flow rates, accept the flow rates, and enable the flow rates in order for the minimum and maximum flow rates to be locked. This can prevent accidentally locking of flow rates, since the pump controller 26 does not allow resetting of the minimum and maximum flow rates once they are initially locked. Once the series of settings are completed, the set minimum and maximum flow rates can become permanent parameters of the pumping system 10. In some embodiments, the minimum and maximum flow rates can be in a range from about 20 gallons per minute (GPM) to about 130 GPM or from about 20 GPM to about 140 GPM.


Once the pump controller 26 receives and sets the minimum and maximum flow rates, the pump controller 26 can disable further resetting of these flow rates, as described above. However, a user can continue to input and reprogram speed settings or flow rate settings (e.g., of the first set of speeds or flow rates 188, the second set of speeds or flow rates 190, or the externally programmed speeds or flow rates 192). The pump controller 26 can continue to operate as described above (for example, selecting a programmed flow rate based on a manual or scheduled run, or selecting a programmed flow rate requiring a highest motor speed if multiple scheduled runs are to take place at the same time), but may only operate the pump 32 and/or the motor 30 as long as the selected flow rate is between the minimum and maximum flow rates. In other words, when incorporating the flow locking feature, users can still have the ability to change scheduled or manual speeds and/or flow rates for different needs (e.g., water features, spa jets, cleaners, etc.), but the flow locking feature can prevent the user from programming a flow that could exceed a “safe” flow rate of the pumping system 10. As a result, the flow locking feature can allow the pump controller 26 to control speed and/or flow of a pump 32, but still prevent the pump 32 from exceeding the set maximum or minimum flow rates.


More specifically, when in the flow control mode, the flow locking feature can prevent programming or setting of flow rates of the first set of flow rates 188 and the second set of flow rates (e.g., by a user via the user interface 24 of the pump controller 24) that are outside of minimum/maximum flow rates. A user may be allowed to program flow rates of the externally programmed flow rates 192 (e.g., via the control/automation system 20) that are outside of the minimum/maximum flow rates. However, the flow locking feature causes the pump controller 26 to override these flow rates in order to operate the pump 32 to achieve the maximum flow rate (i.e., if the externally programmed flow rate 192 is above the maximum flow rate) or the minimum flow rate (i.e., if the externally programmed flow rate 192 is below the minimum flow rate). Thus, in some embodiments, within the master/slave relationship between the control/automation system 20 and the pump controller 26, the pump controller 26 (specifically, the flow locking feature) always maintains control over the minimum and maximum flow rates of the pumping system 10 despite being the slave controller.


In addition, when in the speed control mode, the flow locking feature can allow programming or setting of speeds of the first set of speeds 188 and the second set of speeds 190 (e.g., by a user via the user interface 24 of the pump controller 24), and of speeds of the externally programmed speeds 192 (e.g., via the control/automation system 20) that can achieve flow rates outside the minimum and maximum flow rates (i.e., below and above the minimum and maximum flow rates, respectively). However, the flow locking feature causes the pump controller 26 to alter these speeds in order to operate the pump 32 between the maximum flow rate and the minimum flow rate. In other words, a user can program speeds that would cause the pump 32 to operate outside of the minimum or maximum flow rate, but the pump controller 26 does not allow the pump to operate at the programmed speeds if this is the case. Rather, if the programmed speed were to result in a flow rate below the minimum flow rate or above the maximum flow rate, the pump controller 26 adjusts the speed until the resulting flow rate is at the minimum flow rate or at the maximum flow rate, respectively.


For example, an installer enables the flow locking feature and sets the maximum flow rate at 80 GPM. The pump controller 26 can then continuously monitor a current state of the pump system 10 (in particular, of the filter 14), in order to determine a pump motor speed necessary to achieve the maximum flow rate of 80 GPM and then set this pump motor speed as an upper speed limit. For example, the pump controller 26 can first determine that, based on the current state of the pump system 10, a pump motor speed of 3000 RPM is necessary to achieve the maximum flow rate of 80 GPM (e.g., using the flow control procedures described above), thereby setting 3000 RPM as the upper speed set point. The pump controller 26 is then programmed by a user in a speed control mode to operate the pump motor 30 at a speed of 3400 RPM. Due to the flow locking feature, the pump controller 26 will not operate the pump motor 30 at the 3400 RPM speed, but rather will only go up to the upper speed set point (i.e., 3000 RPM). Thus, the pump controller 26 will alter the programmed speed to maintain the flow rate at or under the maximum flow rate. Later, if the TDH in the pumping system 10 increases and the pump controller 26 determines that the pump motor 30 now requires a speed of 3150 RPM to generate a flow rate 80 GPM, the pump controller 26 sets the upper speed set point to 3150 RPM and increases the motor speed to 3150 RPM. Thus, the pump controller 26 continuously or periodically monitors the pumping system 10 and, if a programmed speed were to exceed the maximum flow rate, the pump controller 26 operates the motor 30 at the highest allowable speed below the programmed speed that achieves the maximum flow rate (i.e., at the upper speed set point) so that the pumping system 10 does not exceed the maximum flow rate.


In another example, an installer enables the flow locking feature and sets the minimum flow rate at 80 GPM. The pump controller 26 can then continuously monitor a current state of the pump system 10 in order to determine a pump motor speed necessary to achieve the minimum flow rate of 80 GPM, and then set this pump motor speed as a lower speed limit. For example, the pump controller 26 can first determine that, based on the current state of the pump system 10, a pump motor speed of 3000 RPM is necessary to achieve the minimum flow rate of 80 GPM, thereby setting 3000 RPM as the lower speed set point. The pump controller 26 is then programmed by a user in a speed control mode to operate the pump motor 30 at a speed of 2900 RPM. Due to the flow locking feature, the pump controller 26 will not operate the pump motor 30 at the 2900 RPM speed, but rather will only drop down to the lower speed set point (i.e., 3000 RPM). Thus, the pump controller 26 will alter the programmed speed to maintain the flow rate at or above the minimum flow rate. Later, if the TDH in the pumping system 10 increases and the pump controller 26 determines that the pump motor 30 now requires a speed of 3150 RPM to generate a flow rate 80 GPM, the pump controller 26 sets the lower speed set point to 3150 RPM and increases the motor speed to 3150 RPM. Thus, the pump controller 26 continuously or periodically monitors the pumping system 10 and, if a programmed speed were to exceed (i.e., go below) the minimum flow rate, the pump controller 26 operates the motor 30 at the lowest allowable speed above the programmed speed that achieves the minimum flow rate (i.e., at the lower speed set point) so that the pumping system 10 does not drop below the minimum flow rate.


In yet another example, an installer enables the flow locking feature and sets the maximum flow rate at 80 GPM and the minimum flow rate at 40 GPM. In this example, in the flow control mode, a user would not be allowed to program a flow rate in the pump controller menu 154 above 80 GPM or below 40 GPM. If the pump controller 26 is connected to the control/automation system 20, the user can program, via the control/automation system 20, a flow rate above 80 GPM or below 40 GPM. However, the pump controller 26 would override the programmed flow rate to operate the at 80 GPM (i.e., if the programmed flow rate was above 80 GPM) or at 40 GPM (i.e., if the programmed flow rate was below 40 GPM). In the speed control mode, a user would be allowed to program speeds exceeding those that would create flow rates above 80 GPM or below 40 GPM either through the pump controller menu 154 or through the control/automation system 20, but the pump controller 26 would alter the programmed speed to maintain a flow rate of 80 GPM (i.e., if the programmed speed would cause a flow rate above 80 GPM) or a flow rate of 40 GPM (i.e., if the programmed speed would cause a flow rate below 40 GPM).



FIG. 7 illustrates an example of the user interface 24 during a flow control mode when the flow locking feature is activated. As illustrated in FIG. 7, the display 128 shows the upper section 150 including a “password locked” key (indicating that access to programming the pump controller 26 is password protected), indications that the pumping system 10 is enabled with SVRS and flow locking (“FloLock”) features, a current time, and a current flow rate. The lower section 148 indicates current power consumption as well as the minimum and maximum flow rates set through the flow locking feature.


Accordingly, with the flow locking feature enabled/activated, the pump controller 26 can still ensure that the flow rate for a desired turnover is met as conditions in the pumping system 10 change. More specifically, the pump controller 26 can detect, monitor, and maintain the flow rate by automatically adjusting the speed of the pump 32 as these conditions change (i.e., as the current state of the pumping system 10 changes), while also taking into consideration the set maximum and minimum flow rates. In other words, locking a maximum speed or flow rate may basically control how much water a pump 32 can move, but the flow rate can still be adjusted as the total dynamic head (TDH) of a pumping system 10 changes. An advantage of the flow locking feature is that an installer locks in an actual flow rate and the pump controller 26 can monitor the pumping system 10 for changes in TDH that affect flow rate, self adjust to maintain a specified flow rate, and still maintain the pumping system 10 within the set maximum and minimum flow rates.


Many health departments require that a minimum flow rate be maintained by a circulation system (i.e., fluid circuit) in commercial pools to maintain a turnover rate for water clarity and sanitation. This flow locking feature of embodiments of the invention can ensure such requirements are met. More specifically, in some embodiments, the minimum flow rate set by the flow locking feature can ensure a health department that a municipality will not slow the flow of the pump 32 down below commercial turnover standards (either for 24-hour time periods or shorter time periods). As a result, the flow locking feature can make variable speed technology more dependable and acceptable for use in commercial swimming pool applications. In addition, the maximum flow rate set by the flow locking feature can prevent the pump 32 from running at a flow rate that could exceed the flow rate specification of pool system components, such as a drain cover. For example, the flow locking feature can decrease the chance of an entrapment issue occurring by setting the maximum flow rate as the flow rate defined by local codes and the drain cover. Further, the maximum set flow rate can prevent a pipe between two drains from exceeding a velocity which would allow a “hold down” vacuum to be created on a covered drain. The maximum flow rate setting can also ensure that the flow rate of the pump 32 does not exceed what is recommended by energy efficiency codes.


It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. A pumping system for at least one aquatic application, the pumping system comprising: a pump;a motor coupled to the pump; anda pump controller in communication with the motor, the pump controller including a user interface configured to initially receive and set a maximum locked flow rate, a minimum locked flow rate, and a plurality of programmed speed settings including a first programmed speed setting,the pump controller configured to disable resetting of the maximum flow rate and the minimum flow rate once they are initially received and set through the user interface,the pump controller configured to allow resetting of the plurality of programmed speed settings throughout operation of the pumping system,the pump controller configured to operate the motor at a first speed set by the first programmed speed setting as long as operating the motor at the first speed maintains a flow rate through the pumping system that is between the minimum locked flow rate and the maximum locked flow rate.
  • 2. The pumping system of claim 1 wherein the pump controller is configured to operate the motor at an adjusted speed if operating the motor at the first speed maintains the flow rate outside the minimum locked flow rate and the maximum locked flow rate.
  • 3. The pumping system of claim 2 wherein if operating the motor at the first speed maintains the flow rate below the minimum locked flow rate, the pump controller is configured to set the adjusted speed so that operating the motor at the adjusted speed maintains the flow rate at the minimum locked flow rate.
  • 4. The pumping system of claim 2 wherein if operating the motor at the first speed maintains the flow rate above the maximum locked flow rate, the pump controller is configured to set the adjusted speed so that operating the motor at the adjusted speed maintains the flow rate at the maximum locked flow rate.
  • 5. The pumping system of claim 1 wherein the pump controller is configured to determine the flow rate based on power consumption of the motor.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/666,852 filed on Nov. 1, 2012, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Patent Application No. 61/554,439 filed on Nov. 1, 2011. The entire contents of each preceding application is incorporated herein by reference for all purposes.

US Referenced Citations (648)
Number Name Date Kind
1061919 Miller May 1913 A
1993267 Ferguson Mar 1935 A
2238597 Page Apr 1941 A
2458006 Kilgore Jan 1949 A
2488365 Abbott Ward et al. Nov 1949 A
2494200 Ramqvist Jan 1950 A
2615937 Ludwig et al. Oct 1952 A
2716195 Anderson Aug 1955 A
2767277 Wirth Oct 1956 A
2778958 Hamm et al. Jan 1957 A
2881337 Wall Apr 1959 A
3116445 Wright Dec 1963 A
3191935 Uecker Jun 1965 A
3204423 Resh, Jr. Sep 1965 A
3213304 Landberg et al. Oct 1965 A
3226620 Elliott et al. Dec 1965 A
3227808 Morris et al. Jan 1966 A
3291058 McFarlin Dec 1966 A
3481973 Arons et al. Dec 1969 A
3530348 Conner Sep 1970 A
3558910 Dale et al. Jan 1971 A
3559731 Stafford Feb 1971 A
3562614 Gramkow Feb 1971 A
3566225 Poulsen Feb 1971 A
3573579 Lewus Apr 1971 A
3581895 Howard et al. Jun 1971 A
3593081 Forst Jul 1971 A
3594623 Lamaster Jul 1971 A
3596158 Watrous Jul 1971 A
3613805 Lindstad et al. Oct 1971 A
3624470 Johnson Nov 1971 A
3652912 Bordonaro Mar 1972 A
3671830 Kruper Jun 1972 A
3737749 Schmit Jun 1973 A
3761792 Whitney et al. Sep 1973 A
3777232 Woods et al. Dec 1973 A
3778804 Adair Dec 1973 A
3780759 Yahle Dec 1973 A
3781925 Curtis et al. Jan 1974 A
3787882 West et al. Jan 1974 A
3792324 Suarez et al. Feb 1974 A
3800205 Zalar Mar 1974 A
3838597 Montgomery et al. Oct 1974 A
3882364 Wright May 1975 A
3902369 Metz Sep 1975 A
3913342 Barry Oct 1975 A
3916274 Lewus Oct 1975 A
3949782 Athey et al. Apr 1976 A
3953152 Sipin Apr 1976 A
3953777 McKee Apr 1976 A
3956760 Edwards May 1976 A
3963375 Curtis Jun 1976 A
3976919 Vandevier et al. Aug 1976 A
4000446 Vandevier et al. Dec 1976 A
4021700 Ellis-Anwyl May 1977 A
4041470 Slane et al. Aug 1977 A
4061442 Clark et al. Dec 1977 A
4123792 Gephart et al. Oct 1978 A
4133058 Baker Jan 1979 A
4142415 Jung et al. Mar 1979 A
4151080 Zuckerman et al. Apr 1979 A
4168413 Halpine Sep 1979 A
4182363 Fuller Jan 1980 A
4185187 Rogers Jan 1980 A
4206634 Taylor et al. Jun 1980 A
4225290 Allington Sep 1980 A
4241299 Bertone Dec 1980 A
4263535 Jones Apr 1981 A
4276454 Zathan Jun 1981 A
4286303 Genheimer et al. Aug 1981 A
4303203 Avery Dec 1981 A
4307327 Streater et al. Dec 1981 A
4314478 Beaman Feb 1982 A
4319712 Bar Mar 1982 A
4322297 Bajka Mar 1982 A
4353220 Curwen et al. Oct 1982 A
4366426 Turlej Dec 1982 A
4370098 McClain et al. Jan 1983 A
4370690 Baker Jan 1983 A
4371315 Shikasho Feb 1983 A
4375613 Fuller et al. Mar 1983 A
4384825 Thomas et al. May 1983 A
4399394 Ballman Aug 1983 A
4402094 Sanders Sep 1983 A
4409532 Hollenbeck et al. Oct 1983 A
4419625 Bejot et al. Dec 1983 A
4420787 Tibbits et al. Dec 1983 A
4421643 Frederick Dec 1983 A
4427545 Arguilez Jan 1984 A
4428434 Gelaude Jan 1984 A
4429343 Freud Jan 1984 A
4437133 Rueckert Mar 1984 A
4448072 Tward May 1984 A
4449260 Whitaker May 1984 A
4453118 Phillips et al. Jun 1984 A
4462758 Speed Jul 1984 A
4463304 Miller Jul 1984 A
4468604 Zaderej Aug 1984 A
4470092 Lombardi Sep 1984 A
4473338 Garmong Sep 1984 A
4494180 Streater Jan 1985 A
4496895 Kawate et al. Jan 1985 A
4504773 Suzuki et al. Mar 1985 A
4505643 Millis et al. Mar 1985 A
D278529 Hoogner Apr 1985 S
4514989 Mount May 1985 A
4520303 Ward May 1985 A
4541029 Ohyama Sep 1985 A
4545906 Frederick Oct 1985 A
4564882 Baxter et al. Jan 1986 A
4581900 Lowe et al. Apr 1986 A
4604563 Min Aug 1986 A
4605888 Kim Aug 1986 A
4610605 Hartley Sep 1986 A
4620835 Bell Nov 1986 A
4622506 Shemanske et al. Nov 1986 A
4635441 Ebbing et al. Jan 1987 A
4647825 Profio et al. Mar 1987 A
4651077 Woyski Mar 1987 A
4658195 Min Apr 1987 A
4658203 Freymuth Apr 1987 A
4670697 Wrege et al. Jun 1987 A
4676914 Mills et al. Jun 1987 A
4678404 Lorett et al. Jul 1987 A
4678409 Kurokawa Jul 1987 A
4686439 Cunningham et al. Aug 1987 A
4695779 Yates Sep 1987 A
4697464 Martin Oct 1987 A
4703387 Miller Oct 1987 A
4705629 Weir et al. Nov 1987 A
4716605 Shepherd et al. Jan 1988 A
4719399 Wrege Jan 1988 A
4728882 Stanbro et al. Mar 1988 A
4751449 Chmiel Jun 1988 A
4751450 Lorenz et al. Jun 1988 A
4758697 Jeuneu Jul 1988 A
4761601 Zaderej Aug 1988 A
4764417 Gulya Aug 1988 A
4764714 Alley et al. Aug 1988 A
4767280 Markuson et al. Aug 1988 A
4780050 Caine et al. Oct 1988 A
4781525 Hubbard et al. Nov 1988 A
4782278 Bossi et al. Nov 1988 A
4786850 Chmiel Nov 1988 A
4795314 Prybella et al. Jan 1989 A
4801858 Min Jan 1989 A
4804901 Pertessis et al. Feb 1989 A
4820964 Kadah et al. Apr 1989 A
4827197 Giebeler May 1989 A
4834624 Jensen et al. May 1989 A
4837656 Barnes Jun 1989 A
4839571 Farnham et al. Jun 1989 A
4841404 Marshall et al. Jun 1989 A
4843295 Thompson et al. Jun 1989 A
4862053 Jordan et al. Aug 1989 A
4864287 Kierstead Sep 1989 A
4885655 Springer et al. Dec 1989 A
4891569 Light Jan 1990 A
4896101 Cobb Jan 1990 A
4907610 Meincke Mar 1990 A
4912936 Denpou Apr 1990 A
4913625 Gerlowski Apr 1990 A
4949748 Chatrathi et al. Aug 1990 A
4958118 Pottebaum Sep 1990 A
4963778 Jensen et al. Oct 1990 A
4967131 Kim Oct 1990 A
4971522 Butlin Nov 1990 A
4975798 Edwards et al. Dec 1990 A
4977394 Manson et al. Dec 1990 A
4985181 Strada et al. Jan 1991 A
4986919 Allington Jan 1991 A
4996646 Farrington Feb 1991 A
D315315 Stairs Mar 1991 S
4998097 Noth et al. Mar 1991 A
5017853 Chmiel May 1991 A
5026256 Kuwabara et al. Jun 1991 A
5041771 Min Aug 1991 A
5051681 Schwarz Sep 1991 A
5076761 Krohn et al. Dec 1991 A
5076763 Anastos et al. Dec 1991 A
5079784 Rist et al. Jan 1992 A
5091817 Alley et al. Feb 1992 A
5098023 Burke Mar 1992 A
5099181 Canon Mar 1992 A
5100298 Shibata et al. Mar 1992 A
RE33874 Miller Apr 1992 E
5103154 Dropps et al. Apr 1992 A
5117233 Hamos et al. May 1992 A
5123080 Gillett et al. Jun 1992 A
5145323 Farr Sep 1992 A
5151017 Sears et al. Sep 1992 A
5156535 Budris et al. Oct 1992 A
5158436 Jensen et al. Oct 1992 A
5159713 Gaskill et al. Oct 1992 A
5164651 Hu et al. Nov 1992 A
5167041 Burkitt Dec 1992 A
5172089 Wright et al. Dec 1992 A
D334542 Lowe et al. Apr 1993 S
5206573 McCleer et al. Apr 1993 A
5213477 Watanabe et al. May 1993 A
5234286 Wagner Aug 1993 A
5235235 Martin et al. Aug 1993 A
5238369 Farr Aug 1993 A
5240380 Mabe Aug 1993 A
5245272 Herbert Sep 1993 A
5247236 Schroeder Sep 1993 A
5255148 Yeh Oct 1993 A
5272933 Collier et al. Dec 1993 A
5295790 Bossart et al. Mar 1994 A
5296795 Dropps et al. Mar 1994 A
5302885 Schwarz et al. Apr 1994 A
5324170 Anastos et al. Jun 1994 A
5327036 Carey Jul 1994 A
5342176 Redlich Aug 1994 A
5347664 Hamza et al. Sep 1994 A
5351709 Vos Oct 1994 A
5351714 Barnowski Oct 1994 A
5361215 Tompkins et al. Nov 1994 A
5394748 McCarthy Mar 1995 A
5418984 Livingston, Jr. May 1995 A
D359458 Pierret et al. Jun 1995 S
5422014 Allen et al. Jun 1995 A
5423214 Lee Jun 1995 A
5444354 Takahashi et al. Aug 1995 A
D363060 Hunger et al. Oct 1995 S
5471125 Wu Nov 1995 A
5473497 Beatty Dec 1995 A
5495161 Hunter Feb 1996 A
5499902 Rockwood Mar 1996 A
5511397 Makino et al. Apr 1996 A
5512809 Banks et al. Apr 1996 A
5512883 Lane Apr 1996 A
5518371 Wellstein et al. May 1996 A
5519848 Wloka et al. May 1996 A
5520517 Sipin May 1996 A
5528120 Brodetsky Jun 1996 A
5532635 Watrous et al. Jul 1996 A
5540555 Corso et al. Jul 1996 A
D372719 Jensen Aug 1996 S
5545012 Anastos et al. Aug 1996 A
5548854 Bloemer et al. Aug 1996 A
5549456 Burrill et al. Aug 1996 A
5550497 Carobolante Aug 1996 A
5550753 Tompkins et al. Aug 1996 A
5559418 Burkhart Sep 1996 A
5559720 Tompkins et al. Sep 1996 A
5559762 Sakamoto Sep 1996 A
5561357 Schroeder Oct 1996 A
5563759 Nadd Oct 1996 A
D375908 Schumaker et al. Nov 1996 S
5570481 Mathis et al. Nov 1996 A
5571000 Zimmermann et al. Nov 1996 A
5577890 Nielsen et al. Nov 1996 A
5580221 Triezenberg Dec 1996 A
5589753 Kadah et al. Dec 1996 A
5592062 Bach Jan 1997 A
5598080 Jensen et al. Jan 1997 A
5601413 Langley et al. Feb 1997 A
5604491 Coonley et al. Feb 1997 A
5614812 Wagoner Mar 1997 A
5618460 Fowler et al. Apr 1997 A
5624237 Prescott et al. Apr 1997 A
5626464 Schoenmeyr et al. May 1997 A
5628896 Klingenberger May 1997 A
5632468 Schoenmeyr May 1997 A
5633540 Moan May 1997 A
5654504 Smith et al. Aug 1997 A
5654620 Langhorst Aug 1997 A
5672050 Webber et al. Sep 1997 A
5682624 Ciochetti Nov 1997 A
5690476 Miller Nov 1997 A
5711483 Hays Jan 1998 A
5713320 Pfaff et al. Feb 1998 A
5727933 Laskaris et al. Mar 1998 A
5730861 Sterghos et al. Mar 1998 A
5731673 Gilmore Mar 1998 A
5736884 Ettes et al. Apr 1998 A
5739648 Ellis et al. Apr 1998 A
5744921 Makaran Apr 1998 A
5754036 Walker May 1998 A
5754421 Nystrom May 1998 A
5755563 Clegg et al. May 1998 A
5767606 Bresolin Jun 1998 A
5777833 Romillon Jul 1998 A
5791882 Stucker et al. Aug 1998 A
5804080 Klingenberger Sep 1998 A
5808441 Nehring Sep 1998 A
5814966 Williamson et al. Sep 1998 A
5818708 Wong Oct 1998 A
5818714 Zou et al. Oct 1998 A
5819848 Rasmuson et al. Oct 1998 A
5820350 Mantey et al. Oct 1998 A
5828200 Ligman et al. Oct 1998 A
5833437 Kurth et al. Nov 1998 A
5836271 Sasaki et al. Nov 1998 A
5856783 Gibb Jan 1999 A
5863185 Cochimin et al. Jan 1999 A
5883489 Konrad Mar 1999 A
5892349 Bogwicz et al. Apr 1999 A
5894609 Barnett Apr 1999 A
5907281 Miller et al. May 1999 A
5909352 Klabunde et al. Jun 1999 A
5909372 Thybo Jun 1999 A
5914881 Trachier Jun 1999 A
5920264 Kim et al. Jul 1999 A
5930092 Nystrom Jul 1999 A
5935099 Peterson et al. Aug 1999 A
5941690 Lin Aug 1999 A
5945802 Konrad et al. Aug 1999 A
5947689 Schick Sep 1999 A
5947700 McKain et al. Sep 1999 A
5959534 Campbell et al. Sep 1999 A
5961291 Sakagami et al. Oct 1999 A
5969958 Nielsen et al. Oct 1999 A
5973465 Rayner Oct 1999 A
5973473 Anderson et al. Oct 1999 A
5977732 Matsumoto Nov 1999 A
5983146 Sarbach Nov 1999 A
5991939 Mulvey Nov 1999 A
6030180 Clarey et al. Feb 2000 A
6037742 Rasmussen Mar 2000 A
6043461 Holling et al. Mar 2000 A
6045331 Gehm et al. Apr 2000 A
6045333 Breit Apr 2000 A
6046492 Machida et al. Apr 2000 A
6048183 Meza Apr 2000 A
6059536 Stingl May 2000 A
6065946 Lathrop May 2000 A
6072291 Pedersen Jun 2000 A
6081751 Luo et al. Jun 2000 A
6091604 Plougsgaard et al. Jul 2000 A
6092992 Imblum et al. Jul 2000 A
D429699 Davis et al. Aug 2000 S
D429700 Liebig Aug 2000 S
6098654 Cohen et al. Aug 2000 A
6102665 Centers et al. Aug 2000 A
6110322 Teoh et al. Aug 2000 A
6116040 Stark Sep 2000 A
6121746 Fisher et al. Sep 2000 A
6125481 Sicilano Oct 2000 A
6142741 Nishihata et al. Nov 2000 A
6157304 Bennett et al. Dec 2000 A
6164132 Matulek Dec 2000 A
6171073 McKain et al. Jan 2001 B1
6178393 Irvin Jan 2001 B1
6199224 Versland Mar 2001 B1
6208112 Jensen et al. Mar 2001 B1
6212956 Donald et al. Apr 2001 B1
6213724 Haugen et al. Apr 2001 B1
6216814 Fujita et al. Apr 2001 B1
6222355 Ohshima et al. Apr 2001 B1
6227808 McDonough May 2001 B1
6232742 Wacknov et al. May 2001 B1
6236177 Zick et al. May 2001 B1
6238188 Lifson May 2001 B1
6247429 Hara et al. Jun 2001 B1
6249435 Vicente et al. Jun 2001 B1
6251285 Ciochetti Jun 2001 B1
6253227 Tompkins et al. Jun 2001 B1
D445405 Schneider et al. Jul 2001 S
6254353 Polo et al. Jul 2001 B1
6257304 Jacobs et al. Jul 2001 B1
6259617 Wu Jul 2001 B1
6264431 Triezenberg Jul 2001 B1
6264432 Kilayko et al. Jul 2001 B1
6280611 Henkin et al. Aug 2001 B1
6299414 Schoenmeyr Oct 2001 B1
6299699 Porat et al. Oct 2001 B1
6320348 Kadah Nov 2001 B1
6326752 Jensen et al. Dec 2001 B1
6329784 Puppin et al. Dec 2001 B1
6330525 Hays et al. Dec 2001 B1
6342841 Stingl Jan 2002 B1
6349268 Ketonen et al. Feb 2002 B1
6350105 Kobayashi et al. Feb 2002 B1
6351359 Jeager Feb 2002 B1
6354805 Moller Mar 2002 B1
6356464 Balakrishnan et al. Mar 2002 B1
6362591 Moberg Mar 2002 B1
6364621 Yamauchi Apr 2002 B1
6366481 Balakrishnan et al. Apr 2002 B1
6373204 Peterson et al. Apr 2002 B1
6373728 Aarestrup Apr 2002 B1
6374854 Acosta Apr 2002 B1
6380707 Rosholm et al. Apr 2002 B1
6388642 Cotis May 2002 B1
6390781 McDonough May 2002 B1
6406265 Hahn et al. Jun 2002 B1
6411481 Seubert Jun 2002 B1
6415808 Joshi Jul 2002 B2
6416295 Nagai et al. Jul 2002 B1
6426633 Thybo Jul 2002 B1
6445565 Toyoda et al. Sep 2002 B1
6447446 Smith et al. Sep 2002 B1
6448713 Farkas et al. Sep 2002 B1
6450771 Centers et al. Sep 2002 B1
6462971 Balakrishnan et al. Oct 2002 B1
6464464 Sabini et al. Oct 2002 B2
6468042 Moller Oct 2002 B2
6468052 McKain et al. Oct 2002 B2
6474949 Arai et al. Nov 2002 B1
6481973 Struthers Nov 2002 B1
6483278 Harvest Nov 2002 B2
6483378 Blodgett Nov 2002 B2
6490920 Netzer Dec 2002 B1
6493227 Nielsen et al. Dec 2002 B2
6496392 Odell Dec 2002 B2
6499961 Wyatt et al. Dec 2002 B1
6501629 Marriott Dec 2002 B1
6504338 Eichorn Jan 2003 B1
6520010 Bergveld et al. Feb 2003 B1
6522034 Nakayama Feb 2003 B1
6523091 Tirumala et al. Feb 2003 B2
6534940 Bell et al. Mar 2003 B2
6534947 Johnson et al. Mar 2003 B2
6537032 Horiuchi et al. Mar 2003 B1
6538908 Balakrishnan et al. Mar 2003 B2
6539797 Livingston et al. Apr 2003 B2
6543940 Chu Apr 2003 B2
6548976 Jensen et al. Apr 2003 B2
6564627 Sabini et al. May 2003 B1
6590188 Cline et al. Jul 2003 B2
6591697 Henyan Jul 2003 B2
6591863 Ruschell et al. Jul 2003 B2
6595762 Khanwilkar et al. Jul 2003 B2
6604909 Schoenmeyr Aug 2003 B2
6607360 Fong Aug 2003 B2
6616413 Humpheries Sep 2003 B2
6623245 Meza et al. Sep 2003 B2
6628501 Toyoda Sep 2003 B2
6636135 Vetter Oct 2003 B1
6638023 Scott Oct 2003 B2
D482664 Hunt et al. Nov 2003 S
6643153 Balakrishnan et al. Nov 2003 B2
6651900 Yoshida Nov 2003 B1
6665200 Goto et al. Dec 2003 B2
6672147 Mazet Jan 2004 B1
6675912 Carrier Jan 2004 B2
6676831 Wolfe Jan 2004 B2
6687141 Odell Feb 2004 B2
6687923 Dick et al. Feb 2004 B2
6690250 Moller Feb 2004 B2
6696676 Graves et al. Feb 2004 B1
6700333 Hirshi et al. Mar 2004 B1
6709240 Schmalz et al. Mar 2004 B1
6709241 Sabini et al. Mar 2004 B2
6709575 Verdegan et al. Mar 2004 B1
6715996 Moeller Apr 2004 B2
6717318 Mathiassen Apr 2004 B1
6732387 Waldron May 2004 B1
6737905 Noda et al. May 2004 B1
D490726 Eungprabhanth et al. Jun 2004 S
6742387 Hamamoto et al. Jun 2004 B2
6747367 Cline et al. Jun 2004 B2
6761067 Capano Jul 2004 B1
6768279 Skinner et al. Jul 2004 B1
6770043 Kahn Aug 2004 B1
6774664 Godbersen Aug 2004 B2
6776584 Sabini et al. Aug 2004 B2
6778868 Imamura et al. Aug 2004 B2
6779205 Mulvey et al. Aug 2004 B2
6782309 Laflamme et al. Aug 2004 B2
6783328 Lucke et al. Aug 2004 B2
6794921 Abe et al. Sep 2004 B2
6797164 Leaverton Sep 2004 B2
6798271 Swize Sep 2004 B2
6799950 Meier et al. Oct 2004 B2
6806677 Kelly et al. Oct 2004 B2
6837688 Kimberlin et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6847854 Discenzo Jan 2005 B2
6863502 Bishop et al. Mar 2005 B2
6875961 Collins Apr 2005 B1
6882165 Ogura Apr 2005 B2
6884022 Albright et al. Apr 2005 B2
D504900 Wang May 2005 S
D505429 Wang May 2005 S
6888537 Benson et al. May 2005 B2
6895608 Goettl May 2005 B2
6900736 Crumb May 2005 B2
6906482 Shimizu et al. Jun 2005 B2
D507243 Miller Jul 2005 S
6914793 Balakrishnan et al. Jul 2005 B2
6922348 Nakajima et al. Jul 2005 B2
6925823 Lifson et al. Aug 2005 B2
6933693 Schuchmann Aug 2005 B2
6941785 Haynes et al. Sep 2005 B2
6943325 Pittman et al. Sep 2005 B2
D511530 Wang Nov 2005 S
D512026 Nurmi et al. Nov 2005 S
6965815 Tompkins et al. Nov 2005 B1
D512440 Wang Dec 2005 S
6973794 Street et al. Dec 2005 B2
6976052 Tompkins et al. Dec 2005 B2
D513737 Riley Jan 2006 S
6981399 Nybo et al. Jan 2006 B1
6981402 Bristol Jan 2006 B2
6984158 Satoh et al. Jan 2006 B2
6989649 Mehlhorn Jan 2006 B2
6993414 Shah Jan 2006 B2
7005818 Jensen Feb 2006 B2
7040107 Lee et al. May 2006 B2
7050278 Poulsen May 2006 B2
7055189 Goettl Jun 2006 B2
7080508 Stavale et al. Jul 2006 B2
7083392 Meza et al. Aug 2006 B2
7112037 Sabini et al. Sep 2006 B2
7114926 Oshita et al. Oct 2006 B2
7117120 Beck et al. Oct 2006 B2
7141210 Bell et al. Nov 2006 B2
7142932 Spira et al. Nov 2006 B2
7143016 Discenzo et al. Nov 2006 B1
D533512 Nakashima et al. Dec 2006 S
7163380 Jones Jan 2007 B2
7178179 Barnes Feb 2007 B2
7183741 Mehlhorn Feb 2007 B2
7195462 Nybo et al. Mar 2007 B2
7221121 Skaug et al. May 2007 B2
7244106 Kallman et al. Jul 2007 B2
7245105 Joo et al. Jul 2007 B2
7318344 Heger Jan 2008 B2
D562349 Bülter Feb 2008 S
7327275 Brochu et al. Feb 2008 B2
D567189 Stiles, Jr. et al. Apr 2008 S
7407371 Leone et al. Aug 2008 B2
7427844 Mehlhorn Sep 2008 B2
7437215 Anderson et al. Oct 2008 B2
D582797 Fraser et al. Dec 2008 S
D583828 Li et al. Dec 2008 S
7484938 Allen Feb 2009 B2
7516106 Ehlers et al. Apr 2009 B2
7542251 Ivankovic Jun 2009 B2
7612510 Koehl Nov 2009 B2
7623986 Miller Nov 2009 B2
7641449 Iimura et al. Jan 2010 B2
7652441 Ying Yin Ho Jan 2010 B2
7686589 Stiles, Jr. et al. Mar 2010 B2
7690897 Branecky et al. Apr 2010 B2
7727181 Rush Jun 2010 B2
7739733 Szydlo Jun 2010 B2
7775327 Abraham et al. Aug 2010 B2
7777435 Aguilar et al. Aug 2010 B2
7821215 Koehl Oct 2010 B2
7845913 Stiles, Jr. et al. Dec 2010 B2
7854597 Stiles, Jr. et al. Dec 2010 B2
7857600 Koehl Dec 2010 B2
7874808 Stiles Jan 2011 B2
7925385 Stavale et al. Apr 2011 B2
7931447 Levin et al. Apr 2011 B2
7945411 Kernan et al. May 2011 B2
7976284 Koehl Jul 2011 B2
7983877 Koehl Jul 2011 B2
7990091 Koehl Aug 2011 B2
8011895 Ruffo Sep 2011 B2
8019479 Stiles et al. Sep 2011 B2
8043070 Stiles, Jr. et al. Oct 2011 B2
8104110 Caudill et al. Jan 2012 B2
8126574 Discenzo et al. Feb 2012 B2
8133034 Mehlhorn et al. Mar 2012 B2
8177520 Mehlhorn et al. May 2012 B2
8281425 Cohen Oct 2012 B2
8303260 Stavale et al. Nov 2012 B2
8313306 Stiles, Jr. et al. Nov 2012 B2
8317485 Meza et al. Nov 2012 B2
8337166 Meza et al. Dec 2012 B2
8444394 Koehl May 2013 B2
8465262 Stiles, Jr. et al. Jun 2013 B2
8469675 Stiles, Jr. et al. Jun 2013 B2
8480373 Stiles, Jr. et al. Jul 2013 B2
8540493 Koehl Sep 2013 B2
8573952 Stiles, Jr. et al. Nov 2013 B2
8602745 Stiles, Jr. et al. Dec 2013 B2
8641383 Meza et al. Feb 2014 B2
20010002238 McKain et al. May 2001 A1
20010041139 Sabini et al. Nov 2001 A1
20020002989 Jones Jan 2002 A1
20020089236 Cline et al. Jul 2002 A1
20020093306 Johnson et al. Jul 2002 A1
20020111554 Drzewiecki et al. Aug 2002 A1
20020131866 Phillips Sep 2002 A1
20020136642 Moller Sep 2002 A1
20020176783 Moeller Nov 2002 A1
20020190687 Bell et al. Dec 2002 A1
20030034284 Wolfe Feb 2003 A1
20030061004 Discenzo Mar 2003 A1
20030063900 Wang et al. Apr 2003 A1
20030099548 Meza et al. May 2003 A1
20030106147 Cohen et al. Jun 2003 A1
20030196942 Jones Oct 2003 A1
20040000525 Hornsby Jan 2004 A1
20040006486 Schmidt et al. Jan 2004 A1
20040009075 Meza et al. Jan 2004 A1
20040013531 Curry et al. Jan 2004 A1
20040025244 Loyd et al. Feb 2004 A1
20040062658 Beck et al. Apr 2004 A1
20040090197 Schuchmann May 2004 A1
20040116241 Ishikawa et al. Jun 2004 A1
20040148693 Anderson Aug 2004 A1
20040213676 Phillips et al. Oct 2004 A1
20050050908 Lee et al. Mar 2005 A1
20050086957 Lifson et al. Apr 2005 A1
20050133088 Bologeorges Jun 2005 A1
20050170936 Quinn Aug 2005 A1
20050190094 Andersen Sep 2005 A1
20050193485 Wolfe Sep 2005 A1
20050195545 Mladenik et al. Sep 2005 A1
20050226731 Mehlhorn et al. Oct 2005 A1
20050249606 Rush Nov 2005 A1
20060045750 Stiles Mar 2006 A1
20060045751 Beckman et al. Mar 2006 A1
20060090255 Cohen May 2006 A1
20060138033 Hoal et al. Jun 2006 A1
20060146462 McMillian Jul 2006 A1
20060169322 Torkelson Aug 2006 A1
20060235573 Guion Oct 2006 A1
20060242955 Mauch Nov 2006 A1
20070041845 Freudenberger Feb 2007 A1
20070061051 Maddox Mar 2007 A1
20070118194 Mason et al. May 2007 A1
20070154319 Stiles et al. Jul 2007 A1
20070160480 Ruffo Jul 2007 A1
20080039977 Clark et al. Feb 2008 A1
20080095638 Branecky Apr 2008 A1
20080095639 Bartos et al. Apr 2008 A1
20080131289 Koehl Jun 2008 A1
20080131294 Koehl Jun 2008 A1
20080131295 Koehl Jun 2008 A1
20080152508 Meza et al. Jun 2008 A1
20080168599 Caudill et al. Jul 2008 A1
20080181785 Koehl Jul 2008 A1
20080181786 Meza et al. Jul 2008 A1
20080181787 Koehl Jul 2008 A1
20080181789 Koehl Jul 2008 A1
20080189885 Erlich et al. Aug 2008 A1
20080260540 Koehl Oct 2008 A1
20080288115 Rusnak et al. Nov 2008 A1
20090014044 Hartman et al. Jan 2009 A1
20090052281 Nybo et al. Feb 2009 A1
20090093774 Wang et al. Apr 2009 A1
20090099406 Salmonsen et al. Apr 2009 A1
20090204237 Sustaeta et al. Aug 2009 A1
20090204267 Sustaeta et al. Aug 2009 A1
20090210081 Sustaeta et al. Aug 2009 A1
20100092308 Stiles, Jr. et al. Apr 2010 A1
20100312398 Kidd et al. Dec 2010 A1
20110044823 Stiles Feb 2011 A1
20110052416 Stiles Mar 2011 A1
20110259428 Osborne Oct 2011 A1
Foreign Referenced Citations (38)
Number Date Country
3023463 Feb 1981 DE
2946049 May 1981 DE
19645129 May 1998 DE
19736079 Feb 1999 DE
29724347 Dec 2000 DE
19938490 Mar 2001 DE
10231773 Feb 2004 DE
150068 Jul 1985 EP
226858 Jul 1987 EP
246769 Nov 1987 EP
306814 Mar 1989 EP
314249 May 1989 EP
709575 May 1996 EP
735273 Oct 1996 EP
831188 Mar 1998 EP
833436 Apr 1998 EP
978657 Feb 2000 EP
1134421 Sep 2001 EP
1585205 Oct 2005 EP
1698815 Sep 2006 EP
2529965 Jan 1984 FR
2703409 Oct 1994 FR
2124304 Feb 1984 GB
55072678 May 1980 JP
H5010270 Jan 1993 JP
9804835 Feb 1998 WO
0042339 Jul 2000 WO
0127508 Apr 2001 WO
0147099 Jun 2001 WO
0218826 Mar 2002 WO
03025442 Mar 2003 WO
03099705 Dec 2003 WO
2004006416 Jan 2004 WO
2004073772 Sep 2004 WO
2004088694 Oct 2004 WO
2005011473 Feb 2005 WO
2005111473 Nov 2005 WO
2006069568 Jul 2006 WO
Non-Patent Literature Citations (124)
Entry
54DX21—Danfoss; “VLT 8000 Aqua Instruction Manual;” Apr. 2004; 1-210; Cited in Civil Action 5:11-cv-00459D.
Danfoss; “VLT8000 Aqua Instruction Manual;” Apr. 16, 2004; pp. 1-71.
Shabnam Mogharabi; “Better, Stronger, Faster;” Pool and Spa News; pp. 1-5; Sep. 3, 2004; www/poolspanews.com.
Energy-Efficiency and Service Life; pp. 1-4; Nov. 2005; www/pentairpool.com.
Grundfos; “CU301 Installation & Operating Instructions;” Sep. 2005; pp. 1-30; Olathe, KS USA.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 2 HP Submersible Pumps;” Jun. 2005; pp. 1-4 USA.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 3 HP Submersible Pumps;” Jun. 2005; pp. 1-4; USA.
54DX46—Hopkins; “High-Temperature, High-Density . . . Embedded Operation;” pp. 1-6; cited in Civil Action 5:11-cv-00459D; Mar. 2006.
Franklin Electric; Constant Pressure in Just the Right Size; Aug. 2006; pp. 1-4; Bluffton, IN USA.
ITT Corporation; “Goulds Pumps Balanced Flow;” Jul. 2006; pp. 1-8.
Pentair Water Pool and Spa, Inc.; “The Pool Pro's Guide to Breakthrough Efficiency, Convenience & Profitability;” pp. 1-8; Mar. 2006; wwwpentairpool.com.
ITT Corporation; “Goulds Pumps Balanced Flow Submersible Pump Controller;” Jul. 2007; pp. 1-12.
Franklin Electric; “Monodrive MonodriveXT Single-Phase Constant Pressure;” Sep. 2008; pp. 1-2; Bluffton, IN USA.
SJE-Rhombus; “SubCon Variable Frequency Drive;” Dec. 2008; pp. 1-2; Detroit Lakes, MN USA.
SJE-Rhombus; “Variable Frequency Drives for Constant Pressure Control;” Aug. 2008; pp. 1-4; Detroit Lakes, MN USA.
Grundfos; “CU301 Installation & Operation Manual;” Apr. 2009; pp. 1-2; Undated; www.grundfos.com.
SJE-Rhombus; “Constant Pressure Controller for Submersible Well Pumps;” Jan. 2009; pp. 1-4; Detroit Lakes, MN USA.
9PX-42—Hayward Pool Systems; “Hayward EcoStar & EcoStar SVRS Variable Speed Pumps Brochure;” Civil Action 5:11-cv-00459D; 2010.
9PX16—Hayward Pool Products; “EcoStar Owner's Manual (Rev. B);” pp. 1-32; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; 2010.
9PX22—Hayward Pool Products; “Wireless & Wired Remote Controls Brochure;” pp. 1-5; 2010; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D.
1—Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459-D; Aug. 31, 2011.
22—Memorandum in Support of Motion for Preliminary Injunction by Plaintiffs with respect to Civil Action 5:11-cv-00459-D; Sep. 2, 2011.
23—Declaration of E. Randolph Collins, Jr. In Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
24—Declaration of Zack Picard in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
32—Answer to Complaint with Jury Demand & Counterclaim Against Plaintiffs by Hayward Pool Products & Hayward Industries for Civil Action 5:11-cv-00459D; Oct. 12, 2011.
45—Plaintiffs' Reply to Defendants' Answer to Complaint & Counterclaim for Civil Action 5:11-cv-00459D; Nov. 2, 2011.
50—Amended Answer to Complaint & Counterclaim by Defendants for Civil Action 5:11-cv-00459D; Nov. 23, 2011.
51—Response by Defendants in Opposition to Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
53—Declaration of Douglas C. Hopkins & Exhibits re Response Opposing Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
54DX16—Hayward EcoStar Technical Guide (Version2); 2011; pp. 1-51; cited in Civil Action 5:11-cv-00459D.
54DX17—Hayward ProLogic Automation & Chlorination Operation Manual (Rev. F); pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Dec. 2, 2011.
54DX22—Danfoss; “VLT 8000 Aqua Instruction Manual;” pp. 1-35; cited in Civil Action 5:11-cv-00459D; Dec. 2, 2011.
7—Motion for Preliminary Injunction by Danfoss Drives NS & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459-D; Sep. 30, 2011.
9PX10—Pentair; “IntelliPro VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-6; cited in Civil Action 5:11-cv-00459D.
9PX11—Pentair; “IntelliTouch Pool & Spa Control Control Systems;” 2011; pp. 1-5; cited in Civil Action 5:11-cv-00459D.
9PX14—Pentair; “IntelliFlo Installation and User's Guide;” pp. 1-53; Jul. 26, 2011; Sanford, NC; cited in Civil Action 5:11-cv-00459D.
9PX17—Hayward Pool Products; “EcoStar & EcoStar SVRS Brochure;” pp. 1-7; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 30, 2011.
9PX19—Hayward Pool Products; “Hayward Energy Solutions Brochure ;” pp. 1-3; www.haywardnet.com; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX20—Hayward Pool Products; “ProLogic Installation Manual (Rev. G);” pp. 1-25; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX21—Hayward Pool Products; “ProLogic Operation Manual (Rev. F);” pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX23—Hayward Pool Products; Selected Pages from Hayward's Website:/www.hayward-pool.com; pp. 1-27; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX28—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar Pumps;” p. 1; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX29—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar SVRS Pumps;” cited in Civil Action 5:11-cv-00459; Sep. 2011.
9PX30—Hayward Pool Systems; “Selected Pages from Hayward's Website Relating to ProLogic Controllers;” pp. 1-5; Civil Action 5:11-cv-00459D; Sep. 2011.
9PX5—Pentair; Selected Website Pages; pp. 1-28; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX6—Pentair; “IntelliFlo Variable Speed Pump” Brochure; 2011; pp. 1-8; cited in Civil Action 5:11-cv-00459D.
9PX7—Pentair; “IntelliFlo VF Intelligent Variable Flow Pump;” 2011; pp. 1-8; cited in Civil Action 5:11-cv-00459D.
9PX8—Pentair; “IntelliFlo VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-8; cited in Civil Action 5:11-cv-00459D.
9PX9—STA-RITE; “IntelliPro Variable Speed Pump;” 2011; pp. 1-8; cited in Civil Action 5:11-cv-00459D.
PX-138—Deposition of Dr. Douglas C. Hopkins; pp. 1-391; 2011; taken in Civil Action 10-cv-1662.
PX-141—Danfoss; “Whitepaper Automatic Energy Optimization;” pp. 1-4; 2011; cited in Civil Action 5:11-cv-00459.
PX-34—Pentair; “IntelliTouch Pool & Spa Control System User's Guide” ; pp. 1-129; 2011; cited in Civil Action 5:11-cv-00459; 2011.
105—Declaration re Memorandum in Opposition, Declaration of Lars Hoffmann Berthelsen for Civil Action 5:11-cv-00459D; Jan. 11, 2012.
112—Amended Complaint Against All Defendants, with Exhibits for Civil Action 5:11-cv-00459D; Jan. 17, 2012.
119—Order Denying Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Jan. 23, 2012.
123—Answer to Amended Complaint, Counterclaim Against Danfoss Drives NS, Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-00459D; Jan. 27, 2012.
152—Order Denying Motion for Reconsideration for Civil Action 5:11-cv-00459D; Apr. 4, 2012.
168—Amended Motion to Stay Action Pending Reexamination of Asserted Patents by Defendants for Civil Action 5:11-cv-00459D; Jun. 13, 2012.
174—Notice and Attachments re Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Jun. 5, 2012.
186—Order Setting Hearings—Notice of Markman Hearing Set for Oct. 17, 2012 for Civil Action 5:11-cv-00459D; Jul. 12, 2012.
204—Response by Plaintiffs Opposing Amended Motion to Stay Action Pending Reexamination of Asserted Patents for civil Action 5:11-cv-00459D; Jul. 2012.
205-24-Exh23—Plaintiff's Preliminary Disclosure of Asserted Claims and Preliminary Infringement Contentions; cited in civil Action 5:11-cv-00459; Feb. 21, 2012.
210—Order Granting Joint Motion for Leave to Enlarge Page Limit for Civil Action 5:11-cv-00459D; Jul. 2012.
218—Notice re Plaintiffs re Order on Motion for Leave to File Excess Pages re Amended Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Aug. 2012.
89—Reply to Response to Motion for Preliminary Injunction Filed by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-00459D; Jan. 3, 2012.
Docket Report for Case No. 5:11-cv-00459-D; Nov. 2012.
Bjarke Soerensen; “Have You Chatted With Your Pump Today?” Undated Article Reprinted with Permission of Grundfos Pump University; pp. 1-2; USA.
Goulds Pumps; “Balanced Flow Submersible System Informational Seminar;” pp. 1-22; before Nov. 1, 2012.
Goulds Pumps; “Balanced Flow System . . . The Future of Constant Pressure Has Arrived;” before Nov. 1, 2012.
Grundfos; “JetPaq—The Complete Pumping System;” before Nov. 1, 2012; pp. 1-4; Clovis, CA USA.
Grundfos; “SQ/SQE—A New Standard in Submersible Pumps;” before Nov. 1, 2012; pp. 1-14; Denmark.
Grundfos; “Uncomplicated Electronics . . . Advanced Design;” pp. 1-10; before Nov. 1, 2012.
“Constant Pressure is the Name of the Game;” Published Article from National Driller; Mar. 2001.
Texas Instruments, TMS320F/C240 DSP Controllers Reference Guide Peripheral Library and Specific Devices, Literature No. SPRU 161D (Nov. 2002).
54DX18—Stmicroelectronics; “AN1946—Sensorless BLDC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-0045911.
54DX30—Sabbagh et al; “A Model for Optimal . . . Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-00459D.
Baldor; “Baldor Motors and Drives Series 14 Vector Drive Control Operating & Technical Manual;” Mar. 22, 1992; pp. 1-92.
54DX45—Hopkins; “Synthesis of New Class of Converters that Utilize Energy Recirculation;” pp. 1-6; cited in Civil Action 5:11-cv-00459D; 1994.
Texas Instruments, Digital Signal Processing Solution for AC Induction Motor, Application Note, BPRA043 (1996).
54DX34—Pentair; “Compool 3800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; cited in Civil Action 5:11-cv-00459D.
Compool; “Compool CP3800 Pool-Spa Control System Installation and Operating Instructions;” Nov. 7, 1997; pp. 1-45.
Microchip Technology, Inc., PICMicro Mid-Range MCU Family Reference Manual (Dec. 1997).
Dinverter; “Dinverter 2B User Guide;” Nov. 1998; pp. 1-94.
Texas Instruments, Zhenyu Yu and David Figoli, DSP Digital Control System Applications—AC Induction Motor Control Using Constant V/Hz Principle and Space Vector PWM Technique with TMS320C240, Application Report No. SPRA284A (Apr. 1998).
“Understanding Constant Pressure Control;” pp. 1-3; Nov. 1, 1999.
54DX47—Hopkins; “Optimally Selecting Packaging Technologies . . . Cost & Performance;” pp. 1-8; cited in Civil Action 5:11-cv-00459D; Jun. 1999.
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA.
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA.
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000.
54DX38—Danfoss; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; cited in Civil Action 5:11-cv-00459D.
Baldor; “Baldor Series 10 Inverter Control: Installation and Operating Manual” ; Feb. 2000; pp. 1-74.
Danfoss; “Danfoss VLT 6000 Series Adjustable Frequency Drive Installation, Operation and Maintenance Manual;” Mar. 2000; pp. 1-118.
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA.
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump” Brochure; pp. 1-3; Jan. 2000; USA.
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA.
ST72141 Microcontroller; 2000; pp. 1-18; cited in Civil Action 5:11-cv-00459D.
Email Regarding Grundfos' Price Increases/SQ/SQE Curves; pp. 1-7; Dec. 19, 2001.
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, IN USA.
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan. 2001; USA.
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA.
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001.
Robert S. Carrow; “Electrician's Technical Reference-Variable Frequency Drives;” 2001; pp. 1-187.
“Product Focus—New AC Drive Series Targets Water, Wastewater Applications;” WaterWorld Articles; Jul. 2002; pp. 1-2.
54DX23—Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-190; cited in Civil Action 5:11-cv-00459D.
54DX35—Pentair Advertisement in “Pool & Spa News;” Mar. 22, 2002; pp. 1-2; cited in Civil Action 5:11-cv-00459D.
54DX36—Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-4; cited in Civil Action 5:11-cv-00459D.
54DX37—Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-2.
54DX48—Hopkins; “Partitioning Digitally . . . Applications to Ballasts;” pp. 1-5; cited in Civil Action 5:11-cv-00459D; Mar. 2002.
Amtrol Inc.; “Amtrol Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Aug. 2002; West Warwick, RI USA.
Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-118.
Franklin Electric; “Franklin Aid, Subdrive 75: You Made It Better;” vol. 20, No. 1; pp. 1-2; Jan./Feb. 2002; www.franklin-electric.com.
Goulds Pumps; Advertisement From “Pumps & Systems Magazine;” Jan. 2002; Seneca Falls, NY.
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA.
Grundfos; “SmartFlo SQE Constant Pressure System;” Mar. 2002; pp. 1-4; Olathe, KS USA.
Hayward; “Hayward Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; pp. 14.
Pentair; “Pentair RS-485 Pool Controller Adapter” Published Advertisement; Mar. 22, 2002; pp. 1-2.
54DX31—Danfoss; “VLT 5000 FLUX Aqua DeviceNet Instruction Manual;” Apr. 28, 2003; pp. 1-38; cited in Civil Action 5:11-cv-00459D.
54DX32—Danfoss; “VLT 5000 FLUX Aqua Profibus Operating Instructions;” May 22, 2003; 1-64; cited in Civil Action 5:11-cv-00459D.
54DX33—Pentair; “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; cited in Civil Action 5:11-cv-00459D.
Franklin Electric; “Franklin Application Installation Data;” vol. 21, No. 5, Sep./Oct. 2003; pp. 1-2; www.franklin-electric.com.
Grundfos; “Grundfos SmartFlo SQE Constant Pressure System;” Mar. 2003; pp. 1-2; USA.
Pentair; “Pentair IntelliTouch Operating Manual;” May 22, 2003; pp. 1-60.
Related Publications (1)
Number Date Country
20200063734 A1 Feb 2020 US
Provisional Applications (1)
Number Date Country
61554439 Nov 2011 US
Continuations (1)
Number Date Country
Parent 13666852 Nov 2012 US
Child 16673737 US