The mechanisms that cause glaucoma are not completely known, though glaucoma has been linked to abnormally high pressure in the eye, which can lead to optic nerve damage. Over time, the increased pressure can cause damage to the optic nerve, which can lead to blindness. Treatment strategies have focused on keeping the intraocular pressure down in order to preserve as much vision as possible over the remainder of the patient's life.
Pursuant to such strategies, one or more implants can be delivered into the eye for shunting fluid out of the anterior chamber in order to regulate pressure in the eye. Accurate placement of an implant in the angle of the eye can be critical for the targeted effect of reducing intraocular pressure (IOP). Placing an implant too distally into the eye, such as too distally into the supraciliary space, may leave no portion of the implant remaining in the anterior chamber. This can inhibit aqueous outflow, as the fluid will not have a direct communication with the flow target location if there is no opening to the anterior chamber.
Conversely if the implant is placed too proximally in the supraciliary space such that a significant portion of the implant remains in the anterior chamber, damage to the corneal endothelium may result from implants that protrude upwards and touch the cornea. Implants placed too proximally may also touch the iris resulting in increased amounts of pigment dispersion in the eye, which can increase outflow resistance and intraocular pressure by clogging the trabecular meshwork. Therefore, correct placement of the implant is desired for a safe and a successful surgical outcome.
Additionally, in at least some instances, reduction in IOP can be correlated with forming one or more areas of separation between parts of the eye, such as between the choroid and sclera. These areas of separation can at least assist in allowing fluid to flow from the anterior chamber of the eye to the suprachoroidal space or supraciliary space. However, although creating separation between parts of the eye may be beneficial, creating larger incisions in the eye is generally not. For instance, a larger diameter implant may be able to create greater separation between parts of the eye, such as between the sclera and choroid, but a larger incision would be necessary which can result in excess tissue damage to the eye.
Disclosed herein are devices and methods related to implants for treating one or more physiological conditions of the eye. Some device embodiments disclosed herein include an ocular implant for implanting in an eye, which can include an elongate tubular body comprising a proximal end, a distal end and an inner lumen extending at least partway between the proximal end and the distal end. In addition, the ocular implant can include a fenestration extending from an outer surface of the tubular body and intersecting with the inner lumen, and an extruded feature extending from the outer surface of the tubular body and positioned adjacent the fenestration.
Some system embodiments disclosed herein include an implant delivery system including an implant configured for implantation into an eye where the implant can have an elongate tubular body including a proximal end, a distal end and an inner lumen extending at least partway between the proximal end and the distal end. In addition, the implant can include a fenestration extending from an outer surface of the tubular body and intersecting with the inner lumen, and an extruded feature extending from the outer surface of the tubular body and positioned adjacent the fenestration. Additionally, the delivery system can include a delivery device configured to insert the implant into the eye.
Some method embodiments disclosed herein include implanting an implant in an eye, with the method including securing an implant to a delivery device configured to insert the implant into the eye. In addition, the implant can include an elongate tubular body including a proximal end, a distal end and an inner lumen extending at least partway between the proximal end and the distal end. Additionally, the implant can include a fenestration extending from an outer surface of the tubular body and intersecting with the inner lumen, and an extruded feature extending from the outer surface of the tubular body and positioned adjacent the fenestration. The method can further include inserting the implant into the eye.
The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
These and other aspects will now be described in detail with reference to the following drawings.
Like reference symbols in the various drawings indicate like elements.
This disclosure describes methods and devices related to implanting an ocular implant into an eye for promoting fluid flow within the eye in order to treat a variety of diseases and ailments of the eye, including open angle glaucoma and narrow angle glaucoma. Some device embodiments described herein include ocular implants which are compact enough such that they do not require a large incision for implantation but can provide improved separation between one or more parts of the eye, such as between the sclera and choroid.
At least some embodiments of the ocular implant disclosed herein are configured to assist in promoting fluid flow from the anterior chamber of the eye to either the suprachoroidal space or the supraciliary space. In addition, the ocular implants can include a variety of features, including extruded features and fenestrations, which can assist in promoting fluid flow at least through the implant.
The ciliary body continuously forms aqueous humor in the posterior chamber by secretion from the blood vessels. The aqueous humor flows around the lens and iris into the anterior chamber and exits the eye through the trabecular meshwork, a sieve-like structure situated at the corner of the iris and the wall of the eye (the corner is known as the iridocorneal angle or the angle). Some of the aqueous humor can filter through the trabecular meshwork near the iris root into Schlemm's canal, a small channel that drains into the ocular veins. A smaller portion rejoins the venous circulation after passing through the ciliary body and eventually through the sclera (i.e., the uveoscleral route).
The ocular implants disclosed herein can provide a fluid pathway between at least the anterior chamber and either the supraciliary space or suprachoroidal space. For example, the implant can include a distal end that can be positioned in the supraciliary space or the suprachoroidal space. The implant may be positioned at least partially between the ciliary body and the sclera or it may be at least partially positioned between the sclera and the choroid. The distal end of the implant may be positioned between other anatomical parts of the eye.
In some embodiments, the implant can include an elongated tubular body having one or more internal lumens through which aqueous humor can flow, such as from the anterior chamber into either the suprachoroidal or supraciliary space. The implant can have a substantially uniform internal diameter along its entire length, although the shape of the implant can vary, such as along its length. Alternatively, the implant can have a variable internal diameter along its length. Moreover, the implant can have various cross-sectional shapes, such as a circular, oval or rectangular shape, and can vary in cross-sectional shape moving along its length. For example, the cross-sectional shape can be selected to facilitate easy insertion into the eye.
The internal lumen of the implant can serve as a passageway for the flow of aqueous humor through the implant directly from the anterior chamber toward or into the suprachoroidal space or supraciliary space. In addition, the internal lumen of the implant can be used as an access location to mount the implant onto a delivery system. The internal lumen can also be used as a pathway for flowing fluid, such as an irrigation fluid or a visco-elastic substance, into the eye for flushing or to maintain pressure in the anterior chamber, or using the fluid to assist in dissection, visualization or hydraulic creation of a dissection plane into or within the supraciliary or suprachoroidal space. Fluid can be flowed toward or into either the supraciliary or suprachoroidal space, for example via a delivery cannula or through the internal lumen of the shunt. The fluid can be flowed into the eye with a pressure sufficient to form a dissection plane into or within the supraciliary or suprachoroidal space. The fluid can accumulate within the eye so as to form a lake. In general, hydro-dissection or the injection of fluids such as visco-elastic substances can be used to separate the ciliary body from the sclera to enlarge an area of detachment of the ciliary body from the sclera with or without insertion of a device.
In at least some instances reduction in IOP can be correlated with the position of the implant which creates an area of separation between the choroid and sclera around at least a part of the implant (also known as “tenting”) and a space created around, for example, the most distal portion of the implant (also known as an “aqueous lake”). In addition, increasing the area of scleral and choroidal separation can improve IOP reduction in at least some instances.
Although increasing the area of scleral and choroidal separation can be advantageous, several drawbacks can occur if a lager implant, such as an implant larger than approximately 0.5-1.0 mm in diameter, is used to create the larger separation. For example, some drawbacks may include the requirement for a larger incision, such as along the limbus, due to a greater diameter implant. A larger incision may cause fluids to escape the eye, such as at least from the anterior chamber, and complicate the implantation procedure. For example, an incision less than 2.5 mm may be preferable for implantation of at least one implant.
Other drawbacks to using a larger diameter implant can include creating a larger cyclodialysis which may result in increased rates of hypotony post operatively and increased rates of retinal detachments. In addition, a larger implant can be more difficult to insert into the supraciliary and suprachoroidal space due to the requirement of greater tissue separation which may result in excess tissue damage. Therefore, an implant which is sized such that it does not require a large incision (such as less than 2.5 mm) and can promote the flow of aqueous fluid from the anterior chamber of the eye to the suprachoroidal space or supraciliary space may overcome the drawbacks discussed above while achieving an improved reduction in IOP.
The present disclosure includes various embodiments of ocular implants, such as implants which include a tubular structure having at least one inner lumen which extends through the length of the implant. For example, the proximal end can be configured to be positioned in the eye such that it allows aqueous fluid to flow into the inner lumen of the implant. The distal end of the implant can be configured and positioned in the eye such that it allows aqueous fluid to flow out of the implant. In addition, the proximal and distal end of the implant can include features that assist in promoting fluid flow through the implant and protect the eye from damage.
Additionally, either the proximal end or distal end of the implant can be radiused or chamfered in order to protect the eye from damage, such as from sharp edges. For example, at least one of the distal end and proximal end of the implant can be radiused or chamfered for promoting smooth insertion and interaction with surrounding tissue which can assist in minimizing cyclodialysis. Alternatively or in addition, either the proximal end or distal end of the implant can include features which assist in preserving or promoting fluid flow through the implant. For example, the proximal end or distal end can include a beveled or wave cut tip which can assist in preventing at least surrounding tissue from occluding the inner lumen and preventing fluid flow through the implant. Any number of a variety of proximal end or distal end shapes can be included in an implant implementation for assisting in preserving or promoting fluid flow through the implant.
Some implementations of the implant can include at least one fenestration. Any one fenestration can be placed anywhere along the implant, including at the proximal end, distal end, or along the length of the implant, for assisting in fluid flow through the implant. In addition, the fenestrations can have any number of a variety of sizes and shapes and can be arranged in any number of a variety of patterns along the implant. For example, the size of the fenestrations can increase distally which can assist in promoting fluid flow in the distal direction relative to the implant. Alternatively or in addition, the number of fenestrations can increase in the distal direction along the length of the implant, such that there are more fenestrations adjacent the distal end, which can also assist in promoting distal fluid flow.
Furthermore, one or more fenestrations can be in the shape of a channel which can extend along the length of the implant. More than one channel can extend along the distal end of the implant and form, for example, a bifurcated or trifurcated configuration. In addition, the channels can widen in the distal direction along the implant. Any of a variety of sized and shaped fenestrations positioned at one or more locations along the implant can assist in creating a pressure gradient which can promote distally directed flow in order to increase fluid flow through the implant in the distal direction and reduce IOP.
Some implementations of the implant can include one or more extruded features, such as for assisting fluid flow into one or more fenestrations. For example, one or more extruded pegs or rings can be positioned adjacent or near one or more fenestrations, including the main inlet and outlet port of the implant. The extruded features, such as the extruded pegs or rings, can assist in preventing surrounding tissue from blocking or occluding the fenestrations which can allow the implant to efficiently and effectively promote fluid flow through the implant and reduce IOP.
Alternatively or in addition, one or more features can be indented into the body of the implant for assisting with fluid flow through the implant. Any number of a variety of shaped and sized features, both indented and extruded, can be included in an implant for assisting with fluid flow through the implant, such as by preventing at least surrounding tissue from blocking or occluding one or more fenestrations.
In some embodiments, the implant can include a lumen which is partially or completely occluded with a bioabsorbable material. The bioasborbable material can be comprised of, for example, a polylactic acid (PLA), polylactic-co-glycolic acid (PLGA), any combination of these materials, or any other suitable degradable material. The bioabsorbable material can be configured to block the flow of fluid through the lumen during a post-operative period, such as, for example, the first week, first several weeks or first several months after implantation. The bioabsorbable material can assist in preventing tissue growth in the lumen of the implant during the post-operative period when foreign body reaction and inflammation may be highest. After a period of time, the bioabsorbable material may erode away and the lumen of the implant may become patent and allow fluid to flow through the lumen.
In some embodiments, the bioabsorbable material can be molded onto either end of the implant, such as like a cap. Alternatively, the bioabsorbable material may be filled through the entire lumen of the implant at a temperature above the melting temperature of the bioabsorbable material and then allowed to cool and form within the lumen. In addition, the bioabsorbable material may fill through any number of channels or cavities within the implant.
In addition, some extruded features, such as extruded pegs or rings, can assist in maintaining the implant in a desired location within the eye. For example, at least one extruded ring can be positioned along the length of the implant, such as at either the proximal or distal end of the implant, which can assist in retaining the implant in a desired location. By preventing migration of the implant after implantation in the eye, the implant can be prevented from causing damage to the eye and can work efficiently and effectively to reduce IOP.
Additionally, any one or more extruded feature can assist in providing tenting around one or more parts of the implant, including around at least one fenestration. The size, shape and positioning relative to one or more fenestrations (e.g., adjacent to one or more fenestrations) can affect the tenting effect and resulting fluid flow through the implant. Therefore, the extruded features can include any number of a variety of sizes, shapes and positions along the implant in order to achieve desired tenting effects and fluid flow through the implant.
Furthermore, some extruded features can be sized, shaped and positioned along the implant in order to assist in positioning the implant in the eye. For example, an extruded feature can include a larger diameter proximal extruded ring which can provide a hard stop during implantation. This can assist a user, such as a clinician, in determining the proper positioning of the implant and can assist in preventing over-insertion of the implant.
The implant can be made out of any number of medical grade materials, including at least one of stainless steel, polyimide, or other plastics and metal materials. Alternatively or in addition, the implant can be made out of any number of shape memory alloys, such as nitinol, or shape memory polymers. However, any number of medical grade materials may be used.
In addition, the implant can be coated with a drug, such as mitomycin or 5-FU which can be used, for example, in trabeculectomy surgeries in order to reduce fibrotic and inflammatory tissue response. One or more drugs can be adhered to the surface of the implant. Alternatively or in addition, the one or more drugs may be combined with a polymer comprising at least a part of the implant for a sustained release profile.
For example, the fenestrations 23 can provide additional fluid passageways through the implant 20 other than though a main outlet port 25 at the distal end of the implant 20 or a main inlet port 26 at the proximal end of the implant 20. In addition, in the event either the main outlet port 25 or the main inlet port 26 of the implant 20 is occluded, the fenestrations 23 can provide alternate fluid passageways for fluid flowing through the implant 20, such as aqueous fluid flowing from the anterior chamber into the suprachoroidal space or supraciliary space.
Any number of fenestrations 23, which can vary in shape and size, can be positioned anywhere along the length of the implant 20. Additionally, the density of fenestrations 23 along the length of the implant 20 can vary. For example, more fenestrations 23 may be positioned near the distal end of the implant 20 than near the proximal end. As shown in
Additionally, as shown in
Therefore, by either increasing the number of fenestrations or the size of the fenestrations along a length of the implant in the distal direction, distally directed flow can be promoted through the implant 20 without having to increase either the inner diameter or outer diameter of the implant 20. This can allow the implant 20 to maintain a smaller diameter, which can be beneficial at least during implantation, while providing one or more fluid passageways that aggregately provide improved fluid flow between at least the proximal end and distal end of the implant.
In addition,
In some implementations, one or more rings 28 can be positioned at or near the distal end of the implant 20 for assisting in preventing occlusion of the more distally positioned fenestrations 23. In addition, one or more rings 28 can be positioned at or near the proximal end of the implant 20 for assisting in preventing occlusion and providing additional retention. Extruded features, such as rings 28, positioned along the implant 20, both proximally and distally, can provide additional retention of the implant 20 which can ensure against migration of the implant 20 after implantation. The size and shape of the rings 28 may vary and any number of rings 28 can extend along the length of an implant 20.
As shown in
As shown in
In some embodiments, micro-channels 36 can be sized and configured such that they restrict fluid flow through the micro-channels 36 similar to a valve. For example, when the pressure in the anterior chamber drops below 12 mmHg the micro-channels 36 can at least reduce the amount of fluid flow through the micro-channel lumens, including preventing fluid flow altogether. By at least reducing the amount of fluid flow through the micro-channels 36 when pressure drops in the anterior chamber, the implant 300 can assist in preventing the eye from becoming hypotonous. By way of further example, when the pressure in the anterior chamber is above 12 mmHg, fluid can be allowed to flow through the micro-channels 36, such as to assist in reducing IOP.
The micro-channels 36 can increase in size from the proximal end to the distal end of the implant 300, which can assist in promoting distally directed fluid flow. Alternatively or in addition, one or more fenestrations 28 or micro-channels 36 that are larger in diameter can be placed at or near the middle portion of the implant 300 where an increase in tenting can occur.
In some embodiments, the micro-channels 36 or fenestrations 28 of the implant 300 can either form or intercept a bifurcated or trifurcated configuration at the distal end of the implant 300. The bifurcated or trifurcated configuration at the distal end of the implant 300 can assist in reducing pressure at the bifurcated or trifurcated locations and promote distally directed flow through the implant 300. Any number of fenestration 28 or micro-channel configurations can be implemented in an implant without departing from the scope of this disclosure.
As shown in at least
Some method embodiments can include one or more time points after implantation of the implant 600 at which time the physician can locate the receiving port 44 of the implant 600, such as via an ab externo approach, in order to deliver one or more drugs or other substances to the implant 600. For example, the physician can use a needle or other delivery device to pierce across the sclera and into the implant 600, such as into the receiving port 44. The physician can then deliver one or more drugs or other substances through the receiving port 44 and into the implant 600. The implant 600 can then deliver the one or more drugs or other substances to the eye, such as to the suprachoroidal space. For example, one or more intraocular or intravitreal medications can be delivered to the implant 600, such as via the receiving port 44, at regular or defined time intervals (e.g., once a week, once a month, once every 10 days, etc.).
In some implementations, the implant 600 can include one or more stabilization features, such as wings 46, as shown in
The features and profiles of the implants described herein can be formed by one or more of a variety of manufacturing methods. For example, the implant can be formed by laser cutting a tube made out of a medical grade material, such as those discussed above. In addition, the implant can be injection molded. The implant can vary in dimensions in order to accommodate various sized implantation sites and applications. For example, the implant can be approximately 0.15 to 0.35 inches in length, and the extruded features, including rings, can have an outer diameter of approximately 0.010 to 0.030 inches and a length of approximately 0.002 to 0.008 inches. In addition, the large proximal ring can have an outer diameter of approximately 0.01 to 0.03 inches and a length of approximately 0.005 to 0.015 inches. Additionally, the implant body can have an outer diameter of approximately 0.012 to 0.022 inches and an inner diameter of approximately 0.008 to 0.018 inches. Furthermore, the fenestrations can have a diameter of approximately 0.001 to 0.008 inches. The distal end can have a radius of approximately 0.001 to 0.003 inches and the proximal end can have a radius of approximately 0.001 to 0.003 inches.
In addition, a delivery system can be used to deliver an implant 20, including at least implants 100, 200, 300, 400, 500 and 600 described herein, into the eye in order to allow the implant 20 to at least provide fluid communication between the anterior chamber and the suprachoroidal or supraciliary space.
The delivery system 50 can include a proximal handle component 52 and a distal delivery component 54. The proximal handle component 52 can include an actuator 56, such as a button, to control the release of an implant 20 from the delivery component 54 into the target location in the eye. In addition, the actuator 56 can vary in structure.
An embodiment of the delivery component 54 can include an elongate applier in the form of a guidewire 58 that inserts longitudinally through an internal lumen 21 of the implant 10 and a “stopper” or sheath 60 positioned axially over the guidewire 58. The sheath 60 can aid in the release of the implant 20 from the delivery component 54 into the target location in the eye. The actuator 56 can be used to control movement or relative movement of the guidewire 58 and/or the sheath 60. For example, the sheath 60 can be fixed relative to the handle component 52 and act as a stopper that impedes the implant 20 from moving in a proximal direction as the guidewire 58 is withdrawn proximally from the implant 20 upon actuation of the actuator 56. In a first state, the guidewire 58 can be extended distally relative to the sheath 60. Actuation of the actuator 56, such as by pressing the actuator 56, can cause the guidewire 58 to slide proximally into the sheath 60. This can effectively disengage the implant 20 off the distal end of the guidewire 58 and releases the implant 20 in a controlled fashion such that the target positioning of the implant 20 is maintained.
The delivery system 50 can also assist in providing fluid delivery into the eye during or after implantation of the implant 20. The delivered fluid can vary and can include a viscoelastic, drugs, stem cells, or a combination thereof. The delivery of the implant 20 can be in combination with retinal or macula therapy. A fluid delivery feature can include an elongated tube 80 that extends outward from the handle 52. The tube 80 can extend through the handle 52 and can have an internal lumen that communicates at a distal end with the proximal end of an internal lumen in the guidewire 58. One or more outlet openings, such as slots 70, can be located on the distal region of the guidewire 58. The tube 80 can be connected at a proximal end to a source of fluid so as to provide a pathway for the fluid to be delivered to the internal lumen of the guidewire via the tube 80. The fluid can then exit the guidewire via the slots 70 for delivery into the eye.
In alternate embodiments the fluid may be delivered to other sections along the axial length of the implant 20. Fenestrations or holes along the length of the implant 20 may be configured to be sufficiently large such that a fluid may be delivered through corresponding holes along the guidewire 58 and into the eye, such as into the supraciliary or suprachoroidal space surrounding the body of the implant 20, which can depend on where the implant 20 is positioned and the length of the implant 20. This can be advantageous because it can create additional space surrounding the implant 20 and improve tenting.
An embodiment of a method of delivering and implanting the implant 20 into the eye includes at least the following description. In general, one or more implants 20 can be slideably loaded on a delivery system 50 and implanted to a position which allows the implant to communicate with at least a part of the anterior chamber and either the suprachoroidal space or supraciliary space, as described herein. The implant 20 can be implanted in the eye via an ab-interno procedure through a limbal incision into the anterior chamber. The implant 20 may then be positioned in the eye so that it provides fluid communication between the anterior chamber and either the suprachoroidal space or supraciliary space, as well as provide increased separation between the sclera and choroid, as shown in
For example, the guidewire 58 can be positioned on the delivery system 50 such that the distal tip of the guidewire 58, the implant 20 and the sheath 60 can penetrate through a small corneal incision in order to access the anterior chamber, such as within the limbus of the cornea. In an embodiment, the incision can be very close to the limbus, such as either at the level of the limbus or within 2 mm of the limbus in the clear cornea. The guidewire 58 can be used to make the incision or a separate cutting device can be used. For example, a knife-tipped device or diamond knife can be used to provide access into the cornea.
The corneal incision can have a size that is sufficient to permit at least the passage of the implant 20 on the guidewire 58 and sheath 60 therethrough. In at least some method embodiments, the incision can be about 1 mm in size. In another embodiment, the incision is no greater than about 2.5 mm in size. In another embodiment, the incision is no greater than about 2.85 mm and is greater than about 1.5 mm.
After insertion through the incision, the guidewire 58 can be advanced into the anterior chamber along a pathway that enables the implant 20 to be delivered to a position such that the implant 20 provides a flow passageway from the anterior chamber toward either the supraciliary or suprachoroidal space. For example, the guidewire 58 can be advanced further into the eye such that a blunt distal tip of the guidewire 58 and/or the implant 20 can seat with and penetrate at least one of the iris root, a region of the ciliary body, or the iris root part of the ciliary body near its tissue border with the scleral spur.
In some method embodiments, the guidewire 58 can approach the iris root from a same side of the anterior chamber as a deployment location such that the guidewire 58 does not have to be advanced across the iris. Alternately, the guidewire 58 can approach the deployment location from across the anterior chamber such that the guidewire 58 is advanced across the iris and/or the anterior chamber toward the opposite iris root. The guidewire 58 can approach the eye and the iris root along a variety of pathways. In some method embodiments, the guidewire 58 does not cross over the eye and does not intersect an optical axis of the eye. In other words, the corneal incision and the location where the implant 20 can be implanted, such as adjacent the iris root, can be in the same quadrant (for example, if the eye is viewed from the front and divided into four quadrants). Additionally, in some method embodiments, the pathway of the implant from the corneal incision to the iris root does not pass through the optic axis of the eye in order to avoid interfering with the pupil.
The guidewire 58 with the implant 20 positioned thereupon can be advanced from a region of the anterior chamber, which can be viewed through a transparent zone of the cornea to a region of the anterior chamber that is obscured by the opaque zone of the cornea. The guidewire 58 and implant 20 can be advanced through the cornea until resistance is felt and a part of the delivery device can be seated at a location near the iris root, the ciliary body or the iris root portion of the ciliary body. The guidewire 58 can then be advanced further such that the guidewire 58 and implant 20 loaded thereon penetrate an area of fibrous attachment between the scleral spur and the ciliary body. This area of fibrous attachment can be approximately 1 mm. Once the distal tip of the guidewire 58 penetrates and is urged past this fibrous attachment region, the guidewire 58 can then more easily cause the sclera to peel away or otherwise separate from the ciliary body and possibly the choroid as it follows the inner curve of the sclera and enters the supraciliary or suprachoroidal space. A combination of the guidewire's tip shape, material, material properties, diameter, flexibility, compliance, coatings, pre-curvature etc. can make it more inclined to follow an implantation pathway that mirrors the curvature of the inner wall of the sclera and between tissue layers, such as between the sclera and the ciliary body and between the sclera and the choroid.
The dissection plane of the guidewire 58 and implant 20 can follow the curve of the inner scleral wall such that the implant 20 mounted on the guidewire 58 after penetrating the iris root or the iris root portion of the ciliary body can bluntly dissect the boundary between tissue layers of the scleral spur and the ciliary body such that at least the distal region of the implant 20 extends into the supraciliary space. In an embodiment, the implant 20 can be positioned such that it extends sufficiently past the scleral spur and is positioned between the tissue boundaries of the sclera and the choroid (the suprachoroidal space SChS).
Once properly positioned, the implant 20 can then be released from the guidewire 58. The implant 20 can be released, for example, by withdrawing the guidewire 58 such that the implant 20 is effectively disengaged in a controlled manner from the tip of the guidewire 58 with the sheath 60.
The implant 20 can include one or more structural features near its proximal region that aid to anchor or retain the implant 20 in the target region in the eye. The structural features can include extruded features, such as rings 28, large proximal rings 34, flanges, protrusions, wings, tines, or prongs, and the like that can lodge into the surrounding eye anatomy to retain the implant 20 in place and prevent the implant 20 from moving further into the suprachoroidal space.
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Only a few examples and implementations are disclosed. Variations, modifications and enhancements to the described examples and implementations and other implementations may be made based on what is disclosed.
This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/726,477 filed Nov. 14, 2012 under 37 C.F.R. §1.76(a). Priority of the filing date is hereby claimed and the full disclosure of the aforementioned application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2990670 | Kingsbury | Jul 1961 | A |
3439675 | Cohen | Apr 1969 | A |
3767759 | Wichterle | Oct 1973 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3915172 | Wichterle et al. | Oct 1975 | A |
4037604 | Newkirk | Jul 1977 | A |
4402681 | Haas et al. | Sep 1983 | A |
4457757 | Molteno | Jul 1984 | A |
4521210 | Wong | Jun 1985 | A |
4554918 | White | Nov 1985 | A |
4604087 | Joseph | Aug 1986 | A |
4617715 | Koistinen et al. | Oct 1986 | A |
4634418 | Binder | Jan 1987 | A |
4722724 | Schocket | Feb 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4787885 | Binder | Nov 1988 | A |
4826478 | Schocket | May 1989 | A |
4846172 | Berlin | Jul 1989 | A |
4863457 | Lee | Sep 1989 | A |
4886488 | White | Dec 1989 | A |
4900300 | Lee | Feb 1990 | A |
4946436 | Smith | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
5041081 | Odrich | Aug 1991 | A |
5071408 | Ahmed | Dec 1991 | A |
5073163 | Lippman | Dec 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5127901 | Odrich | Jul 1992 | A |
5171213 | Price, Jr. | Dec 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst | Jan 1993 | A |
5284476 | Koch | Feb 1994 | A |
5300020 | L'Esperance, Jr. | Apr 1994 | A |
5338291 | Speckman et al. | Aug 1994 | A |
5342370 | Simon et al. | Aug 1994 | A |
5346464 | Camras | Sep 1994 | A |
5370607 | Memmen | Dec 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5397300 | Baerveldt et al. | Mar 1995 | A |
5423777 | Tajiri et al. | Jun 1995 | A |
5433701 | Rubinstein | Jul 1995 | A |
5443505 | Wong et al. | Aug 1995 | A |
5454746 | Guegan et al. | Oct 1995 | A |
5476445 | Baerveldt et al. | Dec 1995 | A |
5558629 | Baerveldt et al. | Sep 1996 | A |
5558630 | Fisher | Sep 1996 | A |
5569197 | Helmus | Oct 1996 | A |
RE35390 | Smith | Dec 1996 | E |
5601094 | Reiss | Feb 1997 | A |
5626558 | Suson | May 1997 | A |
5626559 | Solomon | May 1997 | A |
5651782 | Simon et al. | Jul 1997 | A |
5676944 | Alvarado et al. | Oct 1997 | A |
5702414 | Richter et al. | Dec 1997 | A |
5704907 | Nordquist et al. | Jan 1998 | A |
5713844 | Peyman | Feb 1998 | A |
5741292 | Mendius | Apr 1998 | A |
5743868 | Brown et al. | Apr 1998 | A |
5749879 | Middleman et al. | May 1998 | A |
5752928 | de Roulhac et al. | May 1998 | A |
5792075 | Schwager | Aug 1998 | A |
5807244 | Barot | Sep 1998 | A |
5807302 | Wandel | Sep 1998 | A |
5868697 | Richter et al. | Feb 1999 | A |
5882327 | Jacob | Mar 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5941250 | Aramant et al. | Aug 1999 | A |
5968058 | Richter et al. | Oct 1999 | A |
6007510 | Nigam | Dec 1999 | A |
6007511 | Prywes | Dec 1999 | A |
6036678 | Giungo | Mar 2000 | A |
6050970 | Baerveldt | Apr 2000 | A |
6050999 | Paraschac et al. | Apr 2000 | A |
6077299 | Adelberg et al. | Jun 2000 | A |
6102045 | Nordquist et al. | Aug 2000 | A |
6142969 | Nigam | Nov 2000 | A |
6152918 | Padilla et al. | Nov 2000 | A |
6174307 | Daniel et al. | Jan 2001 | B1 |
6186974 | Allan et al. | Feb 2001 | B1 |
6203513 | Yaron et al. | Mar 2001 | B1 |
6221078 | Bylsma | Apr 2001 | B1 |
6251090 | Avery et al. | Jun 2001 | B1 |
6261256 | Ahmed | Jul 2001 | B1 |
6264668 | Prywes | Jul 2001 | B1 |
6270472 | Antaki et al. | Aug 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6375642 | Grieshaber et al. | Apr 2002 | B1 |
6383219 | Telandro et al. | May 2002 | B1 |
6450984 | Lynch et al. | Sep 2002 | B1 |
6464724 | Lynch et al. | Oct 2002 | B1 |
6468283 | Richter et al. | Oct 2002 | B1 |
6471666 | Odrich | Oct 2002 | B1 |
6471777 | Kobayashi et al. | Oct 2002 | B1 |
6494857 | Neuhann | Dec 2002 | B1 |
6508779 | Suson | Jan 2003 | B1 |
6510600 | Yaron et al. | Jan 2003 | B2 |
6524275 | Lynch et al. | Feb 2003 | B1 |
6533768 | Hill | Mar 2003 | B1 |
6537568 | Olejnik et al. | Mar 2003 | B2 |
6544208 | Ethier et al. | Apr 2003 | B2 |
6544249 | Yu et al. | Apr 2003 | B1 |
6558342 | Yaron et al. | May 2003 | B1 |
6561974 | Grieshaber et al. | May 2003 | B1 |
6579256 | Hughes | Jun 2003 | B2 |
6589203 | Mitrev | Jul 2003 | B1 |
6595945 | Brown | Jul 2003 | B2 |
6626858 | Lynch et al. | Sep 2003 | B2 |
6638239 | Bergheim et al. | Oct 2003 | B1 |
6648283 | Chase et al. | Nov 2003 | B2 |
6666841 | Gharib et al. | Dec 2003 | B2 |
6676607 | de Juan, Jr. et al. | Jan 2004 | B2 |
6699210 | Williams et al. | Mar 2004 | B2 |
6699211 | Savage | Mar 2004 | B2 |
6719750 | Varner et al. | Apr 2004 | B2 |
6726664 | Yaron et al. | Apr 2004 | B2 |
6726676 | Stegmann et al. | Apr 2004 | B2 |
6730056 | Ghaem et al. | May 2004 | B1 |
6736791 | Tu et al. | May 2004 | B1 |
6741666 | Henry et al. | May 2004 | B1 |
6752753 | Hoskins et al. | Jun 2004 | B1 |
6780164 | Bergheim et al. | Aug 2004 | B2 |
6783544 | Lynch et al. | Aug 2004 | B2 |
6786888 | Zadno-Azizi et al. | Sep 2004 | B1 |
6827699 | Lynch et al. | Dec 2004 | B2 |
6827700 | Lynch et al. | Dec 2004 | B2 |
6881197 | Nigam | Apr 2005 | B1 |
6881198 | Brown | Apr 2005 | B2 |
6939298 | Brown et al. | Sep 2005 | B2 |
6955656 | Bergheim et al. | Oct 2005 | B2 |
6962573 | Wilcox | Nov 2005 | B1 |
6966888 | Cullen et al. | Nov 2005 | B2 |
6969384 | de Juan, Jr. et al. | Nov 2005 | B2 |
6981958 | Gharib et al. | Jan 2006 | B1 |
6989007 | Shadduck | Jan 2006 | B2 |
7041077 | Shields | May 2006 | B2 |
7090681 | Weber et al. | Aug 2006 | B2 |
7094225 | Tu et al. | Aug 2006 | B2 |
7135009 | Tu et al. | Nov 2006 | B2 |
7160264 | Lisk, Jr. et al. | Jan 2007 | B2 |
7163543 | Smedley et al. | Jan 2007 | B2 |
7186232 | Smedley et al. | Mar 2007 | B1 |
7192412 | Zhou et al. | Mar 2007 | B1 |
7195774 | Carvalho et al. | Mar 2007 | B2 |
7207965 | Simon | Apr 2007 | B2 |
7220238 | Lynch et al. | May 2007 | B2 |
7273475 | Tu et al. | Sep 2007 | B2 |
7291125 | Coroneo | Nov 2007 | B2 |
7297130 | Bergheim et al. | Nov 2007 | B2 |
7331984 | Tu et al. | Feb 2008 | B2 |
7431710 | Tu et al. | Oct 2008 | B2 |
7488303 | Haffner et al. | Feb 2009 | B1 |
7563241 | Tu et al. | Jul 2009 | B2 |
7708711 | Tu et al. | May 2010 | B2 |
7850637 | Lynch et al. | Dec 2010 | B2 |
7857782 | Tu et al. | Dec 2010 | B2 |
7867186 | Haffner et al. | Jan 2011 | B2 |
7867205 | Bergheim et al. | Jan 2011 | B2 |
7972616 | Dubrow et al. | Jul 2011 | B2 |
8075511 | Tu et al. | Dec 2011 | B2 |
8128588 | Coroneo | Mar 2012 | B2 |
8172899 | Silvestrini et al. | May 2012 | B2 |
8337393 | Silverstrini et al. | Dec 2012 | B2 |
8702727 | Harrington et al. | Apr 2014 | B1 |
8721656 | De Juan, Jr. et al. | May 2014 | B2 |
20020013546 | Grieshaber et al. | Jan 2002 | A1 |
20020013572 | Berlin | Jan 2002 | A1 |
20020072673 | Yamamoto et al. | Jun 2002 | A1 |
20020087111 | Ethier et al. | Jul 2002 | A1 |
20020111608 | Baerveldt et al. | Aug 2002 | A1 |
20020128613 | Nakayama | Sep 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020143284 | Tu et al. | Oct 2002 | A1 |
20020177856 | Richter et al. | Nov 2002 | A1 |
20020188308 | Tu et al. | Dec 2002 | A1 |
20020193725 | Odrich | Dec 2002 | A1 |
20020193804 | Tickle | Dec 2002 | A1 |
20030028127 | Balzum et al. | Feb 2003 | A1 |
20030028228 | Sand | Feb 2003 | A1 |
20030055372 | Lynch et al. | Mar 2003 | A1 |
20030060752 | Bergheim et al. | Mar 2003 | A1 |
20030097151 | Smedley et al. | May 2003 | A1 |
20030097171 | Elliott | May 2003 | A1 |
20030109883 | Matsuzaki et al. | Jun 2003 | A1 |
20030135149 | Cullen et al. | Jul 2003 | A1 |
20030181848 | Bergheim et al. | Sep 2003 | A1 |
20030187384 | Bergheim et al. | Oct 2003 | A1 |
20030208163 | Yaron et al. | Nov 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20030236483 | Ren | Dec 2003 | A1 |
20030236484 | Lynch et al. | Dec 2003 | A1 |
20040015140 | Shields | Jan 2004 | A1 |
20040024345 | Gharib et al. | Feb 2004 | A1 |
20040088048 | Richter et al. | May 2004 | A1 |
20040092856 | Dahan | May 2004 | A1 |
20040097984 | Zapata | May 2004 | A1 |
20040102729 | Haffner et al. | May 2004 | A1 |
20040106977 | Sullivan et al. | Jun 2004 | A1 |
20040111050 | Smedley et al. | Jun 2004 | A1 |
20040127843 | Tu et al. | Jul 2004 | A1 |
20040147870 | Burns et al. | Jul 2004 | A1 |
20040148022 | Eggleston | Jul 2004 | A1 |
20040193095 | Shadduck | Sep 2004 | A1 |
20040193262 | Shadduck | Sep 2004 | A1 |
20040210181 | Vass et al. | Oct 2004 | A1 |
20040210185 | Tu et al. | Oct 2004 | A1 |
20040216749 | Tu | Nov 2004 | A1 |
20040225250 | Yablonski | Nov 2004 | A1 |
20040236343 | Taylor et al. | Nov 2004 | A1 |
20040249333 | Bergheim et al. | Dec 2004 | A1 |
20040254517 | Quiroz-Mercado et al. | Dec 2004 | A1 |
20040254519 | Tu et al. | Dec 2004 | A1 |
20040254520 | Porteous et al. | Dec 2004 | A1 |
20040254521 | Simon | Dec 2004 | A1 |
20040260228 | Lynch et al. | Dec 2004 | A1 |
20050008673 | Snyder et al. | Jan 2005 | A1 |
20050049578 | Tu et al. | Mar 2005 | A1 |
20050085892 | Goto et al. | Apr 2005 | A1 |
20050090806 | Lynch et al. | Apr 2005 | A1 |
20050090807 | Lynch et al. | Apr 2005 | A1 |
20050101967 | Weber et al. | May 2005 | A1 |
20050107734 | Coroneo | May 2005 | A1 |
20050119601 | Lynch et al. | Jun 2005 | A9 |
20050119636 | Haffner et al. | Jun 2005 | A1 |
20050119737 | Bene et al. | Jun 2005 | A1 |
20050125003 | Pinchuk et al. | Jun 2005 | A1 |
20050143817 | Hunter et al. | Jun 2005 | A1 |
20050149080 | Hunter et al. | Jul 2005 | A1 |
20050171507 | Christian et al. | Aug 2005 | A1 |
20050175663 | Hunter et al. | Aug 2005 | A1 |
20050181011 | Hunter et al. | Aug 2005 | A1 |
20050181977 | Hunter et al. | Aug 2005 | A1 |
20050182350 | Nigam | Aug 2005 | A1 |
20050191331 | Hunter et al. | Sep 2005 | A1 |
20050192527 | Gharib et al. | Sep 2005 | A1 |
20050197613 | Sniegowski et al. | Sep 2005 | A1 |
20050209549 | Bergheim et al. | Sep 2005 | A1 |
20050209550 | Bergheim et al. | Sep 2005 | A1 |
20050232972 | Odrich | Oct 2005 | A1 |
20050244462 | Farooq | Nov 2005 | A1 |
20050250788 | Tu et al. | Nov 2005 | A1 |
20050266047 | Tu et al. | Dec 2005 | A1 |
20050267397 | Bhalla | Dec 2005 | A1 |
20050267398 | Protopsaltis et al. | Dec 2005 | A1 |
20050271704 | Tu et al. | Dec 2005 | A1 |
20050273033 | Grahn et al. | Dec 2005 | A1 |
20050277864 | Haffner et al. | Dec 2005 | A1 |
20050283108 | Savage | Dec 2005 | A1 |
20050287188 | Anderson et al. | Dec 2005 | A1 |
20050288617 | Yaron et al. | Dec 2005 | A1 |
20050288619 | Gharib et al. | Dec 2005 | A1 |
20060004348 | Scheller et al. | Jan 2006 | A1 |
20060020248 | Prescott | Jan 2006 | A1 |
20060032507 | Tu | Feb 2006 | A1 |
20060036207 | Koonmen et al. | Feb 2006 | A1 |
20060069340 | Simon | Mar 2006 | A1 |
20060074375 | Bergheim et al. | Apr 2006 | A1 |
20060084907 | Bergheim et al. | Apr 2006 | A1 |
20060116626 | Smedley et al. | Jun 2006 | A1 |
20060149194 | Conston et al. | Jul 2006 | A1 |
20060155238 | Shields | Jul 2006 | A1 |
20060173397 | Tu et al. | Aug 2006 | A1 |
20060195055 | Bergheim et al. | Aug 2006 | A1 |
20060195056 | Bergheim et al. | Aug 2006 | A1 |
20060200113 | Haffner et al. | Sep 2006 | A1 |
20060235367 | Takashima et al. | Oct 2006 | A1 |
20060241580 | Mittelstein et al. | Oct 2006 | A1 |
20060241749 | Tu et al. | Oct 2006 | A1 |
20060276739 | Brown | Dec 2006 | A1 |
20070010827 | Tu et al. | Jan 2007 | A1 |
20070088242 | Coroneo | Apr 2007 | A1 |
20070088424 | Greenberg et al. | Apr 2007 | A1 |
20070088432 | Solovay et al. | Apr 2007 | A1 |
20070106235 | Coroneo | May 2007 | A1 |
20070106236 | Coroneo | May 2007 | A1 |
20070112292 | Tu et al. | May 2007 | A1 |
20070118147 | Smedley et al. | May 2007 | A1 |
20070129717 | Brown et al. | Jun 2007 | A1 |
20070141106 | Bonutti et al. | Jun 2007 | A1 |
20070149915 | Yablonski | Jun 2007 | A1 |
20070191863 | De Juan et al. | Aug 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070233037 | Gifford, et al. | Oct 2007 | A1 |
20070276315 | Haffner et al. | Nov 2007 | A1 |
20070276316 | Haffner et al. | Nov 2007 | A1 |
20070282244 | Tu et al. | Dec 2007 | A1 |
20070282245 | Tu et al. | Dec 2007 | A1 |
20070293807 | Lynch et al. | Dec 2007 | A1 |
20080015488 | Tu et al. | Jan 2008 | A1 |
20080045878 | Bergheim et al. | Feb 2008 | A1 |
20080058704 | Hee et al. | Mar 2008 | A1 |
20080108933 | Yu et al. | May 2008 | A1 |
20080147021 | Jani | Jun 2008 | A1 |
20080195027 | Coroneo | Aug 2008 | A1 |
20080200860 | Tu et al. | Aug 2008 | A1 |
20080228127 | Burns | Sep 2008 | A1 |
20080234624 | Bergheim et al. | Sep 2008 | A2 |
20090036819 | Tu et al. | Feb 2009 | A1 |
20090036840 | Viray et al. | Feb 2009 | A1 |
20090043321 | Conston et al. | Feb 2009 | A1 |
20090118702 | Lazar | May 2009 | A1 |
20090171358 | Chang et al. | Jul 2009 | A1 |
20090182421 | Silvestrini et al. | Jul 2009 | A1 |
20100010416 | Juan, Jr. et al. | Jan 2010 | A1 |
20100134759 | Silvestrini et al. | Jun 2010 | A1 |
20100137981 | Silvestrini et al. | Jun 2010 | A1 |
20100152641 | Yablonski | Jun 2010 | A1 |
20100211079 | Aramant | Aug 2010 | A1 |
20100234790 | Tu et al. | Sep 2010 | A1 |
20100274259 | Yaron et al. | Oct 2010 | A1 |
20110028883 | Juan, Jr. et al. | Feb 2011 | A1 |
20110028884 | Theodore Coroneo | Feb 2011 | A1 |
20110087148 | Silvestrini et al. | Apr 2011 | A1 |
20110087149 | Theodore Coroneo | Apr 2011 | A1 |
20110087150 | Theodore Coroneo | Apr 2011 | A1 |
20110087151 | Theodore Coroneo | Apr 2011 | A1 |
20110098629 | Juan, Jr. et al. | Apr 2011 | A1 |
20110098809 | Wardle et al. | Apr 2011 | A1 |
20110112546 | Juan, Jr. et al. | May 2011 | A1 |
20110238075 | Clauson et al. | Sep 2011 | A1 |
20110276054 | Helmy | Nov 2011 | A1 |
20110288525 | Hallen et al. | Nov 2011 | A1 |
20110306915 | De Juan, Jr. et al. | Dec 2011 | A1 |
20120035524 | Silvestrini | Feb 2012 | A1 |
20120035525 | Silvestrini | Feb 2012 | A1 |
20120089071 | Oliver et al. | Apr 2012 | A1 |
20120116504 | Lyons et al. | May 2012 | A1 |
20120123316 | Horvath et al. | May 2012 | A1 |
20120123434 | Grabner et al. | May 2012 | A1 |
20120220917 | Silvestrini et al. | Aug 2012 | A1 |
20120271272 | Hammack et al. | Oct 2012 | A1 |
20130281817 | Schaller et al. | Oct 2013 | A1 |
20130281908 | Schaller et al. | Oct 2013 | A1 |
20140012279 | de Juan, Jr. et al. | Jan 2014 | A1 |
20140066831 | Silvestrini et al. | Mar 2014 | A1 |
20140081195 | Clauson et al. | Mar 2014 | A1 |
20140107556 | Silvestrini et al. | Apr 2014 | A1 |
20140155805 | Schaller et al. | Jun 2014 | A1 |
20140188030 | Coroneo | Jul 2014 | A1 |
20140213958 | Clauson et al. | Jul 2014 | A1 |
20140309599 | Schaller | Oct 2014 | A1 |
20140323995 | Clauson et al. | Oct 2014 | A1 |
20140364789 | Schaller | Dec 2014 | A1 |
20140378886 | de Juan,, Jr. et al. | Dec 2014 | A1 |
20150022780 | John et al. | Jan 2015 | A1 |
20150126809 | Silvestrini et al. | May 2015 | A1 |
20150223982 | Yablonski | Aug 2015 | A1 |
20150238360 | de Juan, Jr. et al. | Aug 2015 | A1 |
20150320596 | Gifford, III et al. | Nov 2015 | A1 |
20150335487 | de Juan, Jr. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
1225027 | Aug 1999 | CN |
1285724 | Feb 2001 | CN |
1124164 | Oct 2003 | CN |
1681457 | Oct 2005 | CN |
0228185 | Nov 1986 | EP |
1184010 | Mar 2002 | EP |
1310222 | May 2003 | EP |
1473004 | Nov 2004 | EP |
1477146 | Nov 2004 | EP |
1418868 | Mar 2008 | EP |
1977724 | Oct 2008 | EP |
2027837 | Feb 2009 | EP |
2101891 | Jan 1983 | GB |
2007-535386 | Dec 2007 | JP |
2010-533565 | Oct 2010 | JP |
2018289 | Aug 1994 | RU |
2056818 | Mar 1996 | RU |
2074686 | Mar 1997 | RU |
2074687 | Mar 1997 | RU |
2157678 | Oct 2000 | RU |
WO-8900869 | Feb 1989 | WO |
WO-9112046 | Aug 1991 | WO |
WO-9219294 | Nov 1992 | WO |
WO-9402081 | Feb 1994 | WO |
WO-9409721 | May 1994 | WO |
WO-9409837 | May 1994 | WO |
WO-9413234 | Jun 1994 | WO |
WO-9508310 | Mar 1995 | WO |
WO-9620742 | Jul 1996 | WO |
WO-9636377 | Nov 1996 | WO |
WO-9823237 | Jun 1998 | WO |
WO-9830181 | Jul 1998 | WO |
WO-9926567 | Jun 1999 | WO |
WO 9926567 | Jun 1999 | WO |
WO-0006223 | Feb 2000 | WO |
WO-0064389 | Nov 2000 | WO |
WO-0064390 | Nov 2000 | WO |
WO-0064391 | Nov 2000 | WO |
WO-0064393 | Nov 2000 | WO |
WO-0064511 | Nov 2000 | WO |
WO-0178631 | Oct 2001 | WO |
WO-0178656 | Oct 2001 | WO |
WO-0197727 | Dec 2001 | WO |
WO-0236052 | May 2002 | WO |
WO-02070045 | Sep 2002 | WO |
WO-02074052 | Sep 2002 | WO |
WO-02080811 | Oct 2002 | WO |
WO-02080829 | Oct 2002 | WO |
WO-02087418 | Nov 2002 | WO |
WO-02087479 | Nov 2002 | WO |
WO-02089699 | Nov 2002 | WO |
WO-02102274 | Dec 2002 | WO |
WO-03015659 | Feb 2003 | WO |
WO-03015667 | Feb 2003 | WO |
WO-03041622 | May 2003 | WO |
WO-03073968 | Sep 2003 | WO |
WO-03099175 | Dec 2003 | WO |
WO-2004014218 | Feb 2004 | WO |
WO-2004026106 | Apr 2004 | WO |
WO-2004026347 | Apr 2004 | WO |
WO-2004043231 | May 2004 | WO |
WO-2004056294 | Jul 2004 | WO |
WO-2004060219 | Jul 2004 | WO |
WO-2004062469 | Jul 2004 | WO |
WO-2004073552 | Sep 2004 | WO |
WO-2004110391 | Dec 2004 | WO |
WO-2005016418 | Feb 2005 | WO |
WO-2005046782 | May 2005 | WO |
WO-2005055873 | Jun 2005 | WO |
WO-2005105197 | Nov 2005 | WO |
WO-2005107664 | Nov 2005 | WO |
WO-2005107845 | Nov 2005 | WO |
WO-2006012421 | Feb 2006 | WO |
WO-2006036715 | Apr 2006 | WO |
WO-2007087061 | Aug 2007 | WO |
WO-2007115259 | Oct 2007 | WO |
WO-2007130393 | Nov 2007 | WO |
WO-2008061043 | May 2008 | WO |
WO-2009012406 | Jan 2009 | WO |
WO-2009158524 | Dec 2009 | WO |
WO-2010065970 | Jun 2010 | WO |
WO-2010115101 | Oct 2010 | WO |
WO 2014078288 | Nov 2013 | WO |
WO 2014190029 | May 2014 | WO |
Entry |
---|
Barsky et al. “Evaluation of absorbable gelatin film (Gelfilm) in cyclodialysis clefts” Arch. Ophth. 60(6): 1044-1052,1958. |
Bick MW “Use of tantalum for ocular drainage” Arch Ophthal. 42(4): 373-88 (1949). |
Bietti “The present state of the use of plastics in eye surgery” Acta Ophthalmol (Copenh) 33(4):337-70 (1955). |
Brown et al., “Internal Sclerectomy for Glaucoma Filtering Surgery with an Automated Trephine,” Archives of Ophthalmology, 105:133-136 (1987). |
Burchfield JC, Kass MA, Wax MB. Primary valve malfunction of the Krupin eye valve with disk. J Glaucoma. Jun. 1997;6(3):152-6. |
Chiou et al. “Ultrasound biomicroscopy of eyes undergoing deep sclerectomy with collagen implant” Br J Ophthalmol 80 (1996), pp. 541-544. |
Chylack LT, Bellows AR. Molecular sieving in suprachoroidal fluid formation in man. Invest Ophthalmol Vis Sci 17: 420, 1978. |
Classen et al. “A histopathologic and immunohistorchemical analysis of the filtration bleb after unsuccessful glaucoma seton implantation” Am. J. Ophthalmol. 122:205-12 (1996). |
Cohen et al. “First day post-operative review following uncomplicated phacoemulsification” Eye 12(4):634-6 (1998). |
Collaborative Normal-Tension Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 1998;126:487-97. |
Congdon N, O'Colmain B, Klaver CC, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 2004;122:477-85. |
Coote. “Glaucoma Hollow Fiber Filters—A New Glaucoma Seton. Preliminary Results.” J. Glaucoma. vol. 8 No. 1 Supplement (1999):p. S4. |
Cullen, et al. “Anterior Chamber of Frontal Sinus Shunt for the Diversion of Aqueous Humor: A Pilot Study in Four Normal Dogs”. Veterinary Ophthalmology. vol. 1. No. 1. (1998):31-39. |
Demailly et al. “Non-penetrating deep sclerectomy (NPDS) with or without collagen device (CD) in primary open-angle glaucoma: middle-term retrospective study” International Ophthalmology 20: 131-140, 1997. |
Derwent English abstract for EP 1184010, published Mar. 6, 2002 entitled: “Drainage unit for an eye, consists of a hollow line, a distribution member, and a pressure relief valve which only allows water to leave the eye chamber above a certain pressure,” Accession No. 12409716 [351]. |
Dinakaran et al. “Is the first post-operative day review necessary following uncomplicated phacoemulsification surgery?” Eye, 14(3A):364-6 (2000). |
Draeger “Chirurgische Maβnahmen bei kongenitalem Glaukom” (Surgical Interventions in Congenital Glaucoma) Klin Monatsbl Augenheilkd 1993; 202(5): 425-427 [Article in German with English summary included]. |
Einmahl et al. “Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye” Invest Ophthalmol Vis Sci. 43:1533-1539 (2002). |
Ellis, RA “A Reduction of Intraocular Pressure Using Plastics in Surgery” Am J Ophth. 50; 1960, 733-742. |
Emi et al. “Hydrostatic pressure of the suprachoroidal space” Invest. Ophthal. Visual Sci. 30(2):233-238 (1989). |
Fanous MM, Cohn RA. Propionibacterium endophthalmitis following Molteno tube repositioning. J Glaucoma. Aug. 1997;6(4):201-2. |
Friedman DS, Wolfs RC, O'Colmain BJ, et al. Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 2004;122:532-8. |
Fuchs E. “Detachment of the choroid inadvertently during cataract surgery” [German] von Graefes Arch Ophthalmol, 51:199-224 (1900) [Article in German with English summary]. |
Gills et al. “Action of cyclodialysis utilizing an implant studied by manometry in a human eye” Exp Eye Res 1967; 6:75-78. |
Gills JP “Cyclodialysis implants” South Med J. 1967 60(7):692-5. |
Gills, “Cyclodialysis Implants in Human Eyes” Am J Ophth 61:1966,841-846. |
Goldberg “Management of Uncontrolled Glaucoma With the Molteno System” Australian and New Zealand Journal of Ophthalmology 1987; 15: 97-107. |
Gordon MO, Kass. MA, for the Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study. Design and baseline description of the participants. Arch Ophthalmol 1999:573-83. |
Grant, W.M. , MD, Further Studies on Facility of Flow Through the Trabecular Meshwork, A.M.A. Archives of Ophthalmololgy, Oct. 1958, vol. 60, pp. 523-533. |
Gross et al. “Surgical therapy of chronic glaucoma in aphakia and pseudophakia” Ophthalmology, 95:1195-201 (1988). |
Harper SL, Foster CS. Intraocular lens explantation in uveitis. Int Ophthalmol Clin. 2000 Winter; 40(1):107-16. |
Harrington “Cataract and Glaucoma. Management of the coexistent conditions and a description of a new operation combining lens extraction with reverse cyclodialysis.” Am J Ophthalmol. May 1996;61(5 Pt 2):1134-40. |
Heijl A, Leske MC, Bengtsson B, et al for the Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression. Results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120:1268-79. |
Heine I. “Cyclodialysis, a new glaucoma operation” [German] Dtsch Med Wochenschr, 31:824-826 (1905). |
Hildebrand et al. “Efficacy of anterior chamber decompression in controlling early intraocular pressure spikes after uneventful phacoemulsification” J. Catact Refract Surg., 29:1087-92 (2003). |
Hoskins, et al., “Aqueous Humor Outflow”, Becker-Shaffer's Diagnosis and Therapy of the Glaucomas, 6th Edition, Chapter 4, pp. 41-66, 1989. |
Howorth D J “Feasibility study for a micromachined glaucoma drainage device” Cranfield University School of industrial and manufacturing science MSc Thesis Academic Year 2001-2002 Sep. 13, 2002. |
Hylton et al. “Update on prostaglandin analogs” Curr Opin Ophthalmol, 14:65-9 (2003). |
Javitt JC, Chiang YP. Preparing for managed competition. Utilization of ambulatory eye care visits to ophthalmologists. Arch Ophthalmol 1993;111:1034-5. |
Jay JL, Allan D. The benefit of early trabeculectomy versus conventional management in primary open-angle glaucoma relative to severity of disease. Eye 1989; 3:528-35. |
Jordan J. “A Novel Approach to Suprachoroidal Drainage for the Surgical Treatment of Intractable Glaucoma” J. Glaucoma 15:200-205 (2006). |
Jordan JF, Dietlein TS, Dinslage S, Luke C, Konen W, Krieglstein GK. Cyclodialysis ab inferno as a surgical approach to intractable glaucoma. Graefes Arch Clin Exp Ophthalmol. Aug. 2007;245(8):1071-6. |
Karlen et al. “Deep sclerectomy with collagen implant: medium term results” Br. J. Ophthalmol, Jan. 1999, 83(1):6-11. |
Kass MA, Heuer DK, Higginbotham EJ, et al for the Ocular Hypertension Treatment Study Group. The Ocular HypertensionTreatment Study. A randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:701-13. |
Klemm et al. “Die Ultraschallbiomikroskopie als Kriterium der Funktionsprüfung des suprachorioidalen Spaltes nach kammerwinkelchirurgischen Eingriffen (Ultrasound Biomicroscopic Imaging for Assessment of the Suprachoroidal Cleft after Angle Surgery) Klinische Monatsblätter für Augenheilkunde 1997; 210: 74-77 [Article in German with English summary included]”. |
Klemm et al. “Experimental use of space-retaining substances with extended duration: functional and morphological results” Graefes Arch Clin Exp Ophthalmol Sep. 1995; 233(9):592-7. |
Kozlov et al. “Nonpenetrating deep sclerectomy with collagen” Eye microsurgery 3:44-46 (1990) [Russian with English translation]. |
Krejci “Cyclodialysis with hydroxymethyl methacrylate capillary strip (HCS). Animal experiments with a new approach in glaucoma drainage surgery” Ophthalmologica 1972; 164(2):113-21. |
Krejcí L. “Microdrainage of anterior chamber of eye glaucoma operation using hydron capillary drain. ” Acta Univ Carol Med Monogr. 1974;(61):1-90. |
Kupfer “Studies on intraocular pressure. I. A technique for polyethylene tube implantation into the anterior chamber of the rabbit. ” Arch Ophthalmol. Apr. 1961;65:565-70. |
La Rocca “Gonioplasty in Glaucoma A Preliminary Report” Br J Ophth 46:1962, 404-415. |
Law et al., “Retinal Complications After Aqueous Shunt Surgical Procedures for Glaucoma” Arch Ophthal.; Dec. 1996; vol. 114:1473-1480. |
Lee et al. “Aqueous-venous shunt and intraocular pressure. Preliminary report of animal studies.” Investigative Ophthalmology. vol. 5 No. 1: 59-64. Feb. 1966. |
Lee et al. “Magnetic resonance imaging of the aqueous flow in eyes implanted with the trabeculo-suprachoroidal glaucoma seton” Invest. Ophthalmol. Vis. Sci. 33:948 (1992). |
Lee KY. Trabeculo-suprachoroidal shunt for treating recalcitrant and secondary glaucoma. Presented at the American Academy of Ophthalmology Annual Meeting, Anaheim, CA, 1991. |
Leske MC, Heijl A, Hussein M, et al for the Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment. The Early Manifest Glaucoma Trial. Arch Ophthalmol Jan. 2003;121:48-56. |
Lichter PR, Musch DC, Gillespie BW, et al and the CIGTS Study Group. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001;108:1943-53. |
Losche W. “Proposals for improvement of cyclodialysis Klin Monatsblatter Augenheilkd Augenarztl Fortbild” 121(6):715-6 (1952) [German]. |
Marx et al., “Use of the Ganciclovir Implant in the Treatment of Recurrent Cytomegalovirus Retinitis” Arch Ophthal.; Jul. 1996; vol. 114:815-820. |
McPherson “Combined Trabeculotomy and Cataract Extraction as a Single Operation” Tr. Am. Ophth. Soc., vol. LXXIV, 1976; 251-260. |
Migdal C, Gregory W, Hitchings R. Long term functional outcome after early surgery compared with laser and medicine in open-angle glaucoma. Ophthalmology 1994;101:1651-7. |
Miglior S, Pfeiffer N, Zeyen T et al for the European Glaucoma Prevention Study Group. Results of the European Glaucoma Prevention Study. Ophthalmology 2005;112:366-75. |
Miglior S, Zeyen T, Pfeiffer N, et al for the European Glaucoma Prevention Study Group. The European Glaucoma Prevention Study design and baseline description of the participants. Ophthalmology 2002;109:1612-21. |
Miki, MD et al., “Intraocular Cannula for Continuous, Chronic Drug Delivery-Histopathic Observations and Function” Arch Ophthal.; May 1985; vol. 103:712-717. |
Molteno et al. “Long tube implants in the management of glaucoma” South African Medical Journal, Jun. 26, 1976;50(27):1062-6. |
Molteno et al. “The Vicryl tie technique for inserting a draining implant in the treatment of secondary glaucoma.” Australian and New Zealand Journal of Ophthalmology 1986; 14: 343-354. |
Moses RA “Detachment of ciliary body-anatomical and physical considerations” Investigative Ophthalmology & Visual Science, Assoc. for Research in Vision and Ophthalmology, US, vol. 4, No. 5, Oct. 1, 1965. |
Nesterov AP et al. “Surgical stimulation of the uveoscleral outflow. Experimental studies on enucleated human eyes” Acta Opthalmol (Copenh) June; 57(3):409-17 (1979). |
Nguyen et al., “Complications of Baerveldt Glaucoma Drainage Implants” Arch Ophthal.; May 1998; vol. 116:571-575. |
Noecker RJ. Clinical Evaluation of a Novel Gold Micro-Shunt for Reduction of 10 P in Refractory Glaucomas. American Glaucoma Society Annual Meeting, San Francisco, CA, 2007.http://www.glaucomaweb.org/associations/5224/files/AGS%20AM07%20Prgrm%20FINAL.pdf. Accessed Nov. 1, 2008). |
O'Brien et al. “Cyclodialysis” Arch Ophthal. 1949;42(5):606-619. |
Odrich. “The New Technique During Complex Tube-Shunt Implantation”. J. Glaucoma. vol. 9 No. 3 (2000):278-279. |
Olsen, Timothy W., et al., Cannulation of the Suprachoroidal Space: A Novel Drug Delivery Methodology to the Posterior Segment, American Journal of Ophthalmology, vol. 142, No. 5, Nov. 2006, pp. 777-787.e2. |
Ozdamar et al. “Suprachoroidal seton implantation in refractory glaucoma: a novel surgical technique” J. Glaucoma Aug. 2003; 12(4):354-9. |
Pinnas G. et al. “Cyclodialysis with teflon tube implants” Am J. Ophthalmol Nov. 1969; 68(5):879-883. |
Portney GL, “Silicone elastomer implantation cyclodialysis.” Arch Ophthalmol 1973; 89: 10-12. |
Primary Open Angle Glaucoma. Preferred Practice Patterns, American Academy of Ophthalmology.http://one.aao.org/CE/PracticeGuidelines/PPP—Content.aspx?cid=a5a59e02-450b-4d50-8091-b2dd2lefl ff2#references (Accessed Nov. 1, 2008). |
Pruett et al., “The Fishmouth Phenomenon-II. Wedge Scleral Buckling” Arch Ophthal.; Oct. 1977; vol. 95:1782-1787. |
Qadeer “Acrylic Gonio-Subconjunctival Plates in Glaucoma Surgery ” Br J Ophthalmol. Jun. 1954; 38(6): 353-356. |
Quigley HA, Vitale S. Models of open-angle glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci 1997; 38:83-91. |
Richards et al. “Artificial Drainage Tubes for Glaucoma” Am J Ophth 60:1965,405-408. |
Ritch, et al., “Uveoscleral Outflow”, The Glaucomas. St. Louis: Mosby, 1996; pp. 337-343. |
Rohen, Johannes W., Anatomy of the Aqueous Outflow Channels, Glaucoma, vol. 1, Chapter 14, pp. 277-296, Edited by J.E. Cairns, Grune & Stratton, Harcourt Brace Jovanovich Publishers, 1986. |
Rosenberg, et al. “Implants in glaucoma surgery” Chapter 88, The Glaucomas, Ritch et al. Eds. 2nd Ed. Mosby St. Louis 1996; p. 1783-1807. |
Row H. “Operation to control glaucoma: preliminary report” Arch. Ophthal 12:325 (1934). |
Rowan, Patrick J., MD, Combined Cyclodialysis and Cataract Surgery, Ophthalmic Surgery and Lasers, Dec. 1998, vol. 29, No. 12, pp. 962-968 (9 pages). |
Sampimon “A New Approach to Filtering Glaucoma Surgery” Ophthalmologica (Basel) 151: 1966, 637-644. |
Schappert S. Office visits for glaucoma: United States, 1991-92. Advance data from vital and health statistics. vol. 262. Hyattsville, MD: National Center for Health Statistics, 1995. |
Shaffer RN, Weiss DI. Concerning cyclodialysis and hypotony. Arch Ophthalmol 68: 25, 1962. |
SOLX Clinical Literature Handout; Industry Show Feb. 2006; “The SOLX Gold Micro-shunt (GMS) treatment”. |
Sommer A, Tielsch JM, Katz J, et al. Racial differences in the cause-specific prevalence of blindness in east Baltimore. N Engl J Med 1991;325:1412-7. |
Sourdille et al. “Reticulated hyaluronic acid implant in non-perforating trabecular surgery.” J Cataract Refract Surg 25: 332-339. (1999):. |
Spiegel et al. “Schlemm's Canal Implant: A New Method to Lower Intraocular Pressure in Patients With POAG?” Ophthalmic Surgery and Lasers. vol. 30, No. 6: 492-494. Jun. 1999. |
Srinivasan et al. “Microbial contamination of the anterior chamber during phacoemulsification” J. Cataract Refract Surg. 28:2173-6 (2002). |
Suguro K, Toris CB, Pederson JE. Uveoscleral outflow following cyclodialysis in the monkey eye using a fluorescent tracer. Invest Ophthalmol Vis Sci 1985: 26, 810. |
The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol 2000;130:429-40. |
The Advanced Glaucoma Intervention Study (AGIS); 13. Comparison of treatment outcomes within race: 10-year results. Ophthalmology 2004;111:651-64. |
The Glaucoma Laser Trial (GLT) and Glaucoma Laser Trial Follow-up Study: 7. Results. Am J Ophthahnol 1995;120:718-31. |
The Glaucoma Laser Trial (GLT). 2. Results of argon laser trabeculoplasty versus topical medicines. The Glaucoma Laser Trial Research Group. Ophthalmology 1990;97:1403-13. |
Thiagalingam S, Tarongoy P, Hamrah P, Lobo AM, Nagao K, Barsam C, Bellows R, Pineda R. Complications of cosmetic iris implants. J Cataract Refract Surg. Jul. 2008:34(7)1222-4. |
Tielsch JM, Sommer A, Katz J, et al. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 1991;266:369-74. |
Toris CB. Extravascular albumin concentration of the uvea. Invest Ophthalmol Vis Sci 1990; 31:43. |
Toris et al. “Aqueous humor dynamics in the aging human eye” Am J. Ophthalmol., 127:407-12 (1999). |
Toris et al. “Effect of intraocular pressure on uveoscleral outflow following cyclodialysis in the monkey eye.” Investigative Ophthalmology & Visual Science. 26 (1985) 1745-1749. |
Transcend Medical Inc. v. Glaukos Corporation, Transcend Medical, Inc.'s Disclosures Pursuant to Default Discovery Rule 4 (d) (United States District Court for the District of Delaware, dated Dec. 6, 2013; case No. C.A. No. 13-830 (MSG) and Certificate of Service, dated Dec. 9, 2013. |
Trigler L, Proia AD, Freedman SF. Fibrovascular ingrowth as a cause of Ahmed glaucoma valve failure in children. Am J Ophthalmol. Feb. 2006;141(2):388-9. |
Troncoso Manuel U., “Cyclodialysis with insertion of metal implant in treatment of glaucoma, A Preliminary Report” Arch. Ophthal. 23:270 (1940). |
Troncoso, Manuel U., Tantalum implants for inducing hypotny, Am Journal of Ophthalmology, vol. 32(4):499-508 (1949). |
Van der Veen et al. “The gonioseton, a surgical treatment for chronic glaucoma. Documenta Ophthalmologica; vol. 75, Nos. 3-4, 365-375. (1990)”. |
Vossmerbaeumer U, Ditzen K, Jonas JB. Removal of an intracorneal hydrogel implant for hyperopia after LASIK. J Refract Surg. Jan. 2007;23(1):102-4. |
Wagner, Justin A., et al., Characterization of Uveoscleral Outflow in Enucleated Porcine Eyes Perfused under Constant Pressure, Invest Ophthalmol Vis Sci., Published in edited form in Sep. 2004, vol. 45, Issue 9, pp. 3203-3206. |
Wamsley S, Moster MR, Rai S, Alvim HS, Fontanarosa J. Results of the use of the Ex-Press miniature glaucoma implant in technically challenging, advanced glaucoma cases: a clinical pilot study. Am J Ophthalmol. Dec. 2004; 138(6): 1049-51. |
Yablonski, “Some thoughts on the pressure dependence of uveoscleral flow” Journal of Glaucoma, 12(1):90-92 (2003). |
Yablonski, “Trabeculectomy with Internal Tube Shunt: a novel glaucoma surgery” J. Glaucoma 14:91-97 (2005). |
Yoo C, Kwon SW, Kim YY. Pericardium plug in the repair of the corneoscleral fistula after ahmed glaucoma valve explantation. Korean J Ophthalmol. Dec. 2008;22(4):268-71. |
Zhou et al. “A trabecular bypass flow hypothesis” J Glaucoma. 14(1):74-83 (2005). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”), Commonwealth of Australia—Opponent's Statement of Grounds and Particulars of Opposition. (Apr. 10, 2014). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Declaration of Mr. Craig Andrews in support of Opponent's opposition. (Sep. 9, 2014). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Declaration of Dr. Colin Clement in support of Opponent's opposition. (Sep. 9, 2014). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Declaration of Dr. Ilesh Patel in support of Opponent's opposition. (Sep. 9, 2014). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Opponent's amended Statement of Grounds and Particulars of Opposition. (Sep. 10, 2014). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Declaration of Dr. Robert L. Stamper in support of Applicant's Evidence in Answer. (Dec. 4, 2014). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Declaration of Dr. Jonathan G. Crowston in support of Applicant's Evidence in Answer. (Dec. 6, 2014). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Declaration of Dr. Anne Jen-Wan Lee in support of Applicant's Evidence in Answer. (Dec. 7, 2014). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Declaration of Dr. Colin Clement in support of Opponent's Evidence in Reply. (Feb. 8, 2015). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Declaration of Dr. Ilesh Patel in support of Opponent's Evidence in Reply. (Feb. 10, 2015). |
In the Commonwealth of Australia—In the Matter of Australian Patent Application No. 2006336598 in the name of Transcend Medical, Inc. (“Applicant”) and Opposition thereto by Glaukos Corporation (“Opponent”)—Declaration of Mr. Craig Andrews in support of Opponent's Evidence in Reply. (Feb. 11, 2015). |
Schocket, Stanley S. “Investigations of the Reasons for Success and Failure in the Anterior Shunt-to-the-Encircling-Band Procedure in the Treatment of Refractory Glaucoma.” Tr. Am. Ophth. Soc.vol. LXXXIX. (1986):743-798. |
Number | Date | Country | |
---|---|---|---|
20140135916 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61726477 | Nov 2012 | US |