The present invention relates to a flow rate controller for an air cylinder, and a drive device equipped with the flow rate controller.
Conventionally, a shock absorbing mechanism has been used in which a cushioning material made of a soft resin such as rubber or urethane or the like, or an oil damper or the like is attached to an end part of an air cylinder, to thereby cushion an impact at a stroke end. However, such a shock absorbing mechanism that mechanically mitigates shocks in the cylinder is limited in terms of the number of operations it can perform, and requires regular maintenance.
In order to resolve such incompatibility, in JP 5578502 B2, a speed controller (flow rate controller) is disclosed in which, by throttling the exhaust air that is discharged from the air cylinder in the vicinity of a stroke end, an operating speed of the air cylinder is reduced.
In such a conventional flow rate controller, the pilot air is gradually discharged through the throttle valve, and when the pilot pressure falls below a predetermined value, the switching valve performs a switching operation to throttle the exhaust air. However, it has been determined that when the pressure acting on the throttle valve falls below a predetermined pressure, the flow of the pilot air passing through the throttle valve may rapidly decrease, and the timing of the switching operation becomes unstable.
Therefore, an aspect of the present invention has the object of providing a flow rate controller, which is capable of stabilizing a timing of a switching operation, and a drive device equipped with such a flow rate controller.
One aspect of the present invention is characterized by a flow rate controller, comprising a cylinder flow path communicating with a port of an air cylinder, a main flow path configured to supply and discharge air to and from the cylinder flow path, an auxiliary flow path disposed in parallel with the main flow path and including a first throttle valve configured to throttle a flow rate of the air to a flow rate less than that in the main flow path, a switching valve connected to the cylinder flow path, the main flow path, and the auxiliary flow path, and configured to be switched between a first position in which the cylinder flow path is allowed to communicate with the main flow path, and a second position in which the cylinder flow path is allowed to communicate with the auxiliary flow path, and a pilot air adjustment part configured to guide a portion of exhaust air in the cylinder flow path to the switching valve as pilot air, wherein the pilot air adjustment part includes a second throttle valve configured to regulate an inflowing speed at which the pilot air flows into the switching valve, and the switching valve is switched from the first position to the second position due to a rise in a pressure of the pilot air.
Another aspect of the present invention is characterized by a drive device, comprising: a high pressure air supply source configured to supply high pressure air to an air cylinder; an exhaust port configured to discharge exhaust air of the air cylinder; a flow rate controller including a cylinder flow path communicating with a port of the air cylinder, a main flow path configured to supply and discharge air to and from the cylinder flow path, an auxiliary flow path disposed in parallel with the main flow path and including a first throttle valve configured to throttle a flow rate of the air to a flow rate less than that in the main flow path, a switching valve connected to the cylinder flow path, the main flow path, and the auxiliary flow path, and configured to be switched between a first position in which the cylinder flow path is allowed to communicate with the main flow path, and a second position in which the cylinder flow path is allowed to communicate with the auxiliary flow path, a pilot air adjustment part configured to guide a portion of the exhaust air in the cylinder flow path to the switching valve as pilot air; and an operation switching valve connected to one end of the high pressure air supply source, one end of the exhaust port, and one end of the main flow path, and configured to switch and thereby allow either the high pressure air supply source or the exhaust port to communicate with the main flow path, wherein the pilot air adjustment part includes a second throttle valve configured to regulate an inflowing speed at which the pilot air flows into the switching valve, and the switching valve is switched from the first position to the second position due to a rise in a pressure of the pilot air.
In accordance with the flow rate controller and the drive device comprising the same according to the above-described aspects, it is possible to stabilize the timing of the switching operation.
Hereinafter, a preferred embodiment of the present invention will be presented and described in detail below with reference to the accompanying drawings.
As shown in
In the interior of the cylinder tube 74, as shown in
As shown in
As shown in
On the other hand, a first throttle valve 24, which variably regulates the flow rate of the exhaust air flowing through the auxiliary flow path 23, is provided in the auxiliary flow path 23. The first throttle valve 24 is configured to throttle the flow rate of the exhaust air more strongly than the third throttle valve 25 of the main flow path 22. An exhaust port 24a is connected to a downstream side of the first throttle valve 24, and the exhaust air that has passed through the first throttle valve 24 is discharged from the exhaust port 24a.
One end of the bypass flow path 28 is connected to the main flow path 22 between the third throttle valve 25 and a valve port 12a, whereas the other end thereof is connected to the cylinder flow path 21, to connect the main flow path 22 and the cylinder flow path 21 while bypassing the third throttle valve 25 and the switching valve 26. The bypass flow path 28 is provided with a shuttle valve 32, which includes a first inlet 32a, a second inlet 32b, and an outlet 32c. A first portion 28a of the bypass flow path 28 is connected to the first inlet 32a of the shuttle valve 32, a second portion 28b of the bypass flow path 28 is connected to the outlet 32c, and the switching valve 26 is connected via a pilot air adjustment part 30 to the second inlet 32b.
When a pressure in the main flow path 22 becomes higher than a pressure in the cylinder flow path 21, the shuttle valve 32 closes the second inlet 32b and allows the first inlet 32a and the outlet 32c to communicate with each other to introduce the high pressure air of the main flow path 22 into the cylinder flow path 21 through the bypass flow path 28. Further, when the pressure in the main flow path 22 becomes lower than the pressure in the cylinder flow path 21, the shuttle valve 32 closes the first inlet 32a and allows the second inlet 32b and the outlet 32c to communicate with each other to guide the exhaust air in the cylinder flow path 21 to the pilot air adjustment part 30 as pilot air.
The pilot air adjustment part 30 is disposed between the second inlet 32b of the shuttle valve 32 and the switching valve 26. The pilot air adjustment part 30 includes a second throttle valve 31a, and a check valve 31b which is connected in parallel with the second throttle valve 31a. A downstream side of the second throttle valve 31a and the check valve 31b is connected to a later-described piston member 45 (see
The check valve 31b is connected in a direction that allows passage of air flowing from the switching valve 26 to the shuttle valve 32. When the pressure of the exhaust air in the cylinder flow path 21 decreases, the check valve 31b causes the pilot air in the switching valve 26 to be discharged to the cylinder flow path 21 side. Accompanying discharging of the pilot air, the switching valve 26 is returned from the second position to the first position by the elastic force of a return spring 26a of the switching valve 26.
Since the rod side flow rate controller 12, which is connected to the rod side pipe 20B, is configured in substantially the same manner as the head side flow rate controller 12, constituent elements thereof which are the same as the constituent elements of the head side flow rate controller 12 are designated by the same reference numerals, and detailed description thereof is omitted.
Next, a description will be given concerning the configuration of the operation switching valve 34 that is connected to the head side flow rate controller 12 and the rod side flow rate controller 12. One end of a third pipe 27A is connected to the valve port 12a of the head side flow rate controller 12, and one end of a fourth pipe 27B is connected to the valve port 12a of the rod side flow rate controller 12. The operation switching valve 34 is connected to another end of the third pipe 27A and another end of the fourth pipe 27B.
The operation switching valve 34 is a 5-port valve that electrically switches a connection destination of the high pressure air, and includes first through fifth ports 34a to 34e. The first port 34a is connected to the third pipe 27A, and the second port 34b is connected to the fourth pipe 27B. The third port 34c and the fifth port 34e are connected to exhaust ports 38, and the fourth port 34d is connected to the high pressure air supply source 36.
At a first position shown in
Further, at a second position, the operation switching valve 34 allows the first port 34a and the third port 34c to communicate with each other, and allows the second port 34b to communicate with the fourth port 34d. In this manner, the operation switching valve 34 allows the high pressure air supply source 36 to communicate with the rod side port 78a, and allows the exhaust port 38 to communicate with the head side port 76a.
A circuit configuration of the drive device 10 according to the present embodiment is configured in the manner described above. A description will be given below concerning a specific structure of the flow rate controller 12.
As shown in
As shown in
The shuttle valve 32 includes a shuttle valve installation hole 61 having an inclined portion 61a, a distal end of which is reduced in diameter in a tapered shape. The first inlet 32a of the shuttle valve 32 is formed on the inclined portion 61a, on a side portion of the shuttle valve installation hole 61. Further, the second inlet 32b of the shuttle valve 32 is formed at a position higher than the first inlet 32a, on a side portion of the shuttle valve installation hole 61. Further, the outlet 32c of the shuttle valve 32 is formed at a lower end part of the shuttle valve installation hole 61.
The shuttle valve 32 further includes a flow path member 60 that is inserted into the shuttle valve installation hole 61, and a valve element 66 disposed between the flow path member 60 and the inclined portion 61a. The flow path member 60 includes, at an upper end thereof, a sealing portion 63 formed with an inner diameter that is substantially the same as the inner diameter of the shuttle valve installation hole 61. The sealing portion 63 seals an upper end part of the shuttle valve installation hole 61. A tube portion 62 extends from the sealing portion 63 of the flow path member 60 toward the lower end of the shuttle valve installation hole 61.
The tube portion 62 is a tubular member having a diameter smaller than the inner diameter of the shuttle valve installation hole 61, and a lower end part (distal end part) of the tube portion 62 opens in the vicinity of the outlet 32c, and further, a ventilation hole 64, which penetrates through the tube portion 62 in a radial direction, is formed in the vicinity of a proximal end part of the tube portion 62. Further, a partition member 65 and a gasket 65a, which are in close contact with the shuttle valve installation hole 61, are provided in an outer peripheral portion of the tube portion 62, at a portion between the outlet 32c and the second inlet 32b. The partition member 65 and the gasket 65a airtightly separate the second inlet 32b and the outlet 32c on an outer side of the tube portion 62.
The valve element 66 is made up from an elastic member, is formed in a substantially conical plate shape that is convex downward, and has a substantially V-shaped cross section. A lower end side of the valve element 66 has an inclined surface that can be brought into close contact with the inclined portion 61a. A conically-shaped protruding part 67, which can be inserted into the tube portion 62, is formed at an upper end central portion of the valve element 66. At the position shown in
The first inlet 32a of the shuttle valve 32 communicates with the valve port 12a (main flow path 22) shown in
On the other hand, as shown in
The cylinder port 12b for connecting the head side pipe 20A or the rod side pipe 20B on the air cylinder 14 side is formed on a rear surface 40d of the housing 40. The valve port 12a for connecting the third pipe 27A or the fourth pipe 27B is formed on a front surface 40b (see
As shown in
A first communication groove 50, a second communication groove 52, and a third communication groove 54, which are formed by expanding the entire circumference of the inner diameter in groove-like shapes, are formed in the spool guide portion 42a. The first communication groove 50 is formed closest to the cap 44, and communicates with the valve port 12a via the internal flow path 50a. The second communication groove 52 is a groove that is formed at a portion closer to the piston member 45, and communicates with the first throttle valve 24 and the exhaust port 24a via an internal flow path 52a. The third communication groove 54 is a groove that is formed between the first communication groove 50 and the second communication groove 52, and communicates with the cylinder port 12b via an internal flow path 54a.
The piston accommodating portion 42b is formed with a diameter larger than that of the spool guide portion 42a, and a piston chamber 41 is formed in the interior thereof. The piston chamber 41 accommodates the piston member 45 of the spool 46. The return spring 26a that biases the piston member 45 toward the side surface 40c side and returns the piston member 45 to the first position is provided on the side surface 40e side of the piston chamber 41. The internal flow path 30a opens on the side surface 40c side of the piston chamber 41. The internal flow path 30a communicates with the pilot air adjustment part 30.
The spool 46 is arranged to be capable of sliding in the spool guide hole 42 in an axial direction perpendicular to the side surfaces 40c and 40e. On the side surface 40e side of the spool 46, there is provided a spool portion 46a that is inserted inside the spool guide hole 42, and on the side surface 40c side of the spool 46, there is provided the piston member 45 that drives the spool 46. The piston member 45 has a diameter that is larger than that of the spool portion 46a, and is accommodated in the piston chamber 41. A packing 56 is installed on an outer peripheral portion of the piston member 45, and the packing 56 partitions the piston chamber 41 in an airtight manner into a vacant chamber on the side surface 40c side, and a vacant chamber on the side surface 40e side.
The spool portion 46a includes guide end parts 46e and 46f at both ends thereof in the axial direction. The guide end parts 46e and 46f are formed with an outer diameter that is slightly smaller than the inner diameter of the spool guide portion 42a, and guide the movement of the spool 46 in the axial direction. Packings 49 are provided respectively on the guide end parts 46e and 46f, in order to prevent air from leaking along the axial direction. Between the above-described guide end parts 46e and 46f, there are formed a first sealing wall 46c, a second sealing wall 46d, and recesses 47a, 47b, and 47c.
The first sealing wall 46c and the second sealing wall 46d are formed with outer diameters that are slightly smaller than the inner diameter of the spool guide portion 42a, and include the packings 49 on the outer peripheral portion thereof. At the first position shown in
At the second position of the spool 46, the second sealing wall 46d is in close contact with the inner peripheral surface of the spool guide portion 42a between the third communication groove 54 and the first communication groove 50, and blocks communication between the third communication groove 54 and the first communication groove 50. Moreover, the first sealing wall 46c is positioned inside the third communication groove 54 at the second position, and allows communication between the third communication groove 54 and the second communication groove 52.
The recess 47a is formed between the second sealing wall 46d and the guide end part 46e, and at the first position of the spool 46, forms a flow path having a large cross-sectional area in order to facilitate the passage of air between the first communication groove 50 and the third communication groove 54. The recess 47b is formed between the first sealing wall 46c and the second sealing wall 46d. Further, the recess 47c is formed between the first sealing wall 46c and the guide end part 46f, and at the second position of the spool 46, forms a flow path having a large cross-sectional area between the second communication groove 52 and the third communication groove 54.
The specific structure of the flow rate controller 12 is configured in the manner described above. Hereinafter, a description will be given concerning actions of the drive device 10 of the present embodiment together with operations thereof. In this instance, with reference to
As shown in
Further, in the bypass flow path 28, the pressure in the first portion 28a becomes higher than the pressure in the second portion 28b. Therefore, the valve element 66 of the shuttle valve 32 shown in
On the other hand, the exhaust air, which is discharged from the rod side pressure chamber 18b, flows into the rod side flow rate controller 12 via the rod side pipe 20B. The exhaust air flows in from the cylinder port 12b of the flow rate controller 12. The rod side switching valve 26 is in the first position, the cylinder flow path 21 and the main flow path 22 communicate with each other, and as shown by the arrow B1, the exhaust air is discharged from the exhaust port 38 through the main flow path 22. At that time, the flow rate of the exhaust air is throttled by the third throttle valve 25, and the operating speed of the piston 16 of the air cylinder 14 is regulated by the third throttle valve 25. In this manner, the flow rate controller 12 constitutes a meter-out speed controller, which regulates the operating speed of the piston 16 by the exhaust air that is discharged from the air cylinder 14.
Further, in the rod side flow rate controller 12, as shown by the arrow P, a portion of the exhaust air flows into the second portion 28b of the bypass flow path 28. At this time, in the shuttle valve 32, as shown in
Thereafter, accompanying movement of the piston 16, the pressure of the pilot air in the rod side switching valve 26 gradually increases. Then, at a predetermined timing at which the piston 16 approaches the stroke end, the rod side switching valve 26 switches from the first position to the second position due to the pressure of the pilot air, against the elastic force of the return spring 26a.
As shown in
When the piston 16 is stopped, inflowing of the exhaust air into the flow rate controller 12 on the rod side ceases, and the pilot air of the switching valve 26 is discharged to the cylinder flow path side through the check valve 31b of the pilot air adjustment part 30. Then, the switching valve 26 is returned to the first position by the elastic force of the return spring 26a.
In accordance with the foregoing, the operating stroke of the drive device 10 of the air cylinder 14 comes to an end. Thereafter, by the operation switching valve 34 being switched from the first position to the second position, the return stroke is carried out. In the return stroke, the exhaust air flows to the head side flow rate controller 12, and the high pressure air flows to the rod side flow rate controller 12. The operations of the drive device 10 in the return stroke simply involve a switching of places in the operating stroke between the head side flow rate controller 12 and the rod side flow rate controller 12, and since the operations in the return stroke and the operations in the operating stroke are basically the same, a description of such operations will be omitted.
The flow rate controller 12 and the drive device 10 of the present embodiment realize the following advantageous effects.
In the conventional flow rate controller, when the pressure of the pilot air in the switching valve falls below 0.4 MPa, a situation has occurred in which the flow rate of the pilot air passing through the throttle valve rapidly decreases. For this reason, release of the pilot air becomes impossible, and a problem occurs in that the switching valve cannot be switched at an intended timing.
In contrast thereto, the flow rate controller 12 according to the present embodiment comprises the cylinder flow path 21 communicating with a port of the air cylinder 14, the main flow path 22 that supplies and discharges air to and from the cylinder flow path 21, the auxiliary flow path 23 including the first throttle valve 24 and allowing the exhaust air discharged from the air cylinder 14 to pass therethrough with a smaller flow rate than that of the main flow path 22, the switching valve 26 connected between the cylinder flow path 21, and the main flow path 22 and the auxiliary flow path 23, and switched between the first position in which the cylinder flow path 21 is allowed to communicate with the main flow path 22, and the second position in which the cylinder flow path 21 is allowed to communicate with the auxiliary flow path 23, and the pilot air adjustment part 30 that guides a portion of the exhaust air in the cylinder flow path 21 to the switching valve 26 as pilot air, wherein the switching valve 26 is switched from the first position to the second position due to a rise in the pressure of the pilot air, and the pilot air adjustment part 30 includes the second throttle valve 31a that regulates the inflowing speed at which the pilot air flows into the switching valve 26.
With the flow rate controller 12 according to the present embodiment, a portion of the exhaust air is used as pilot air, and the pilot air adjustment part 30 functions as a meter-in speed controller that regulates the pilot air flowing into the switching valve 26. Therefore, a pressure that is greater than or equal to 0.4 MPa continuously acts on the second throttle valve 31a, and it is possible to prevent a decrease in the flow rate of the pilot air passing through the second throttle valve 31a. As a result, in the flow rate controller 12, the timing at which the switching valve 26 is operated is stabilized.
Further, the flow rate controller 12 of the present embodiment is also effective when connected to an air cylinder having a shock absorbing structure such as an air cushion. In this case, the flow rate of the air can be throttled from a time before the shock absorbing structure operates, and the load acting on the shock absorbing structure can be reduced. Further, in the case of the air cylinder being operated at a high speed, it becomes difficult for a repulsive force of the shock absorbing structure such as the air cushion to be adjusted at the end of the stroke, and the piston tends to vibrate unintentionally and bound near the end of the stroke. In such a case, if the flow rate controller 12 is provided in the drive device 10, the flow rate of the air can be throttled before the shock absorbing structure operates, whereby the shock absorbing structure operates smoothly, and the occurrence of bounding can be prevented.
In the above-described flow rate controller 12, there may further be provided the bypass flow path 28 that bypasses the switching valve 26 and connects the cylinder flow path 21 and the main flow path 22, and the shuttle valve 32 provided between the bypass flow path 28 and the pilot air adjustment part 30, wherein, in the case that the pressure in the main flow path 22 is higher than the pressure in the cylinder flow path 21, the shuttle valve 32 may allow the main flow path 22 and the cylinder flow path 21 to communicate with each other while blocking communication between the pilot air adjustment part 30 and the bypass flow path 28, whereas in the case that the pressure in the cylinder flow path 21 is higher than the pressure in the main flow path 22, the shuttle valve 32 may allow the cylinder flow path 21 and the pilot air adjustment part 30 to communicate with each other while blocking communication between the main flow path 22 and the cylinder flow path 21.
In accordance with these features, since the high pressure air is capable of flowing into the cylinder flow path 21 not only through the main flow path 22 but also through the bypass flow path 28, responsiveness to high speed operation of the air cylinder 14 is facilitated.
In the above-described flow rate controller 12, there may be included the third throttle valve 25 that regulates the flow rate of the air flowing in the main flow path 22, and the bypass flow path 28 may bypass the switching valve 26 and the third throttle valve 25, and connect the main flow path 22 and the cylinder flow path 21. In this manner, by providing the third throttle valve 25, the flow rate of the exhaust air flowing through the main flow path 22 can be regulated, and the operating speed of the piston 16 of the air cylinder 14 can be adjusted by the third throttle valve 25. Further, since the bypass flow path 28 is provided so as to bypass the switching valve 26 and the third throttle valve 25, the high pressure air is not regulated by the flow rate of the third throttle valve 25, and responsiveness to high speed operation of the air cylinder 14 is therefore facilitated.
In the above-described flow rate controller 12, there may further be provided the housing 40 that accommodates the switching valve 26, the pilot air adjustment part 30, the first throttle valve 24, the bypass flow path 28, and the shuttle valve 32, wherein the housing 40 may include the valve port 12a communicating with the main flow path 22, the exhaust port 24a communicating with the auxiliary flow path 23, and the cylinder port 12b communicating with the cylinder flow path 21. In accordance with the above-described configuration, main portions of the flow rate controller 12 can be provided integrally within the housing 40. Further, the flow rate controller 12 can be attached to the air cylinder 14 merely by connecting the pipes to the valve port 12a and the cylinder port 12b.
In the above-described flow rate controller 12, the switching valve 26 may include the spool guide hole 42 including the first communication groove 50 communicating with the valve port 12a, the second communication groove 52 communicating with the first throttle valve 24, and the third communication groove 54 communicating with the cylinder port 12b, the spool 46 disposed in the spool guide hole 42 slidably along the axial direction, and including the first sealing wall 46c for blocking communication between the second communication groove 52 and the third communication groove 54 at the first position, the second sealing wall 46d for blocking communication between the first communication groove 50 and the third communication groove 54 at the second position, and the recesses 47a and 47c formed between the first sealing wall 46c and the second sealing wall 46d, allowing the first communication groove 50 and the third communication groove 54 to communicate with each other at the first position, and allowing the second communication groove 52 and the third communication groove 54 to communicate with each other at the second position, the return spring 26a that biases the spool 46 to the side of the first position, and the piston member 45 which displaces the spool 46 to the second position under an action of the pilot air flowing in from the cylinder port 12b.
The above-described drive device 10 comprises: the high pressure air supply source 36 that supplies the high pressure air to the air cylinder 14; the exhaust port 38 that discharges the exhaust air of the air cylinder 14; the flow rate controller 12 including the cylinder flow path 21 communicating with a port of the air cylinder 14, the main flow path 22 that supplies and discharges air to and from the cylinder flow path 21, the auxiliary flow path 23 including the first throttle valve 24 and allowing the exhaust air discharged from the air cylinder 14 to pass therethrough with a smaller flow rate than that of the main flow path 22, the switching valve 26 connected between the cylinder flow path 21, and the main flow path 22 and the auxiliary flow path 23, and switched between the first position in which the cylinder flow path 21 is allowed to communicate with the main flow path 22, and the second position in which the cylinder flow path 21 is allowed to communicate with the auxiliary flow path 23, and the pilot air adjustment part 30 that guides a portion of the exhaust air in the cylinder flow path 21 to the switching valve 26 as pilot air, wherein the switching valve 26 is switched from the first position to the second position due to a rise in the pressure of the pilot air, and the pilot air adjustment part 30 includes the second throttle valve 31a that regulates the inflowing speed at which the pilot air flows into the switching valve 26; and the operation switching valve 34 that is connected to one end of the high pressure air supply source 36, one end of the exhaust port 38, and one end of the main flow path 22, and that switches and thereby allows either the high pressure air supply source 36 or the exhaust port 38 to communicate with the main flow path 22.
In accordance with the above-described drive device 10, by providing the flow rate controller 12, the timing at which the switching valve 26 is operated can be stabilized.
In the above-described drive device 10, the flow rate controller 12 may be connected to the head side port 76a of the air cylinder 14 and to the rod side cylinder flow path 21 that communicates with the rod side port 78a. In accordance with this feature, impacts at the stroke end in both the operating stroke and the return stroke can be mitigated.
Although a description of a preferred embodiment of the present invention has been presented above, it should be understood that the present invention is not limited to the above-described embodiment, but various changes and modifications may be made within a range that does not deviate from the essence and gist of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2019-162907 | Sep 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/029601 | 8/3/2020 | WO |