The present invention relates to a flow-rate measuring device that measures a flow rate of a gas to be measured.
As an example of a flow-rate measuring device that measures a gas flow rate, a technique such as PTL 1 is disclosed. PTL 1 discloses that a positioning element is formed in a housing of an air flow meter, and the positioning element is engaged in a positioning element accommodating portion formed in a sensor element support, whereby an air mass sensor element is precisely positioned in an air guiding path.
PTL 1: JP 2018-538537 A
However, PTL 1 does not disclose reduction of dimensional variation of the distance between the detection element and the sub-passage wall surface facing the detection element, and there is room for study.
An object of the invention is to provide an accurate flow-rate measuring device with reduced dimensional variation.
In order to achieve the above object, a flow-rate measuring device of the invention includes a sensor assembly having a flow sensing element, a circuit board on which the sensor assembly is mounted, and a housing on which the circuit board is mounted. The sensor assembly is mounted on the circuit board such that a detection portion side of the flow-rate detecting element is closer to the housing. The sensor assembly includes a contact portion in contact with the housing on the detection portion side.
According to the invention, it is possible to provide an accurate flow-rate measuring device with reduced dimensional variations.
Hereinafter, embodiments of the invention will be described using the drawings.
A first embodiment of a thermal air flow meter will be described with reference to
As illustrated in
As illustrated in
The sensor assembly 10 includes a lead frame 1, the flow-rate detecting element 4 disposed on the lead frame 1, and an LSI 3. The flow-rate detecting element 4 is a semiconductor element formed by a MEMS process, and includes a thin portion (detection portion) in which a heating element is formed. The flow-rate detecting element 4 and the LSI 3 are electrically connected via a gold wire 2. The sensor assembly 10 is a resin package that seals the flow-rate detecting element 4, the LSI 3, and the lead frame 1 with resin, and has a structure in which a flow-rate detection portion of the flow-rate detecting element 4 is partially exposed. Note that the LSI 3 and the flow-rate detecting element 4 may be integrated, or the LSI 3 may be fixed to the circuit board 15. In addition, the sensor assembly 10 may have a structure in which a flow-rate measuring element 4 is mounted on a resin molding (sensor support) in which a metal terminal is sealed with resin. The sensor assembly 10 includes at least a flow-rate detecting element and a member that supports the flow-rate detecting element.
As illustrated in
The distance (hereinafter, referred to as D1 or D1 dimension) between the flow-rate detecting element 4 and the surface of the sub-passage 12 facing the flow-rate detecting element 4 is a factor that affects noise performance, low flow rate sensitivity, and pulsation performance. Therefore, it is extremely important to reduce the dimensional variation of D1 in order to provide an accurate flow-rate measuring device. In a case where the circuit board assembly in which the sensor assembly 10 is mounted on the circuit board 15 is mounted on the housing, when the circuit board assembly is simply stacked as described in PTL 1, a variation in the thickness of the housing, the sensor assembly, the circuit board, and the cover is included in the cause of the dimensional variation of D1.
In this embodiment, the sensor assembly 10 is mounted on the circuit board 15 such that the detection portion side of the flow-rate detecting element 4 is closer to the housing 11, and the sensor assembly 10 is configured to include the contact portion 32 in contact with the housing 11 on the detection portion side, so that it is possible to exclude the thickness variation between the circuit board 15 and the cover 31 from the factor of the D1 dimensional variation, and it is possible to provide an accurate flow-rate measuring device.
In addition, it is preferable that the housing 11 includes the step 19 because the sensor assembly 10 can be easily brought into contact with the housing 11 when the circuit board assembly is mounted on the housing 11.
It is more preferable that the height of the step 19 is formed to be larger than the height from the circuit board bottom surface (the surface opposite to the surface on which the sensor assembly 10 is mounted) of the circuit board assembly to the housing contact portion of the sensor assembly 10, and the buffering material 16 is provided between the circuit board bottom surface and the circuit board mounting portion. When the circuit board assembly is mounted on the housing 11, a part of the sensor assembly 10 is pressed and mounted such that the sensor assembly 10 comes into contact with the housing 11. If the circuit board 15 pushes up the sensor assembly 10 due to the tolerance variation of the circuit board 15, there is a possibility that stress is generated in the connection portion 14 and the connection portion 14 between the sensor assembly 10 and the circuit board 15 is damaged, and the yield is deteriorated. The height of the step is set such that a gap is formed between the circuit board bottom surface and the circuit board mounting portion, and the buffering material 16 is provided between the circuit board bottom surface and the circuit board mounting portion, whereby a variation in the thickness of the circuit board 15 is absorbed by the buffering material 16, so that stress concentration on the connection portion 14 can be reduced. The buffering material 16 is desirably made of a material having low viscosity before curing, such as a silicon-based adhesive or gel.
In addition, as illustrated in
A second embodiment of this embodiment will be described with reference to
As illustrated in
In other words, the sensor assembly 10 has a first contact portion and a second contact portion in contact with the housing 11 on the detection portion side, and the detection portion is located between the first contact portion and the second contact portion.
With the above-described configuration, an air passage 13 is formed around the flow-rate detecting element 4. The housing 11 and the sensor assembly 10 come into contact with the detection portion on the distal end side and the other end side in the protruding direction from the circuit board 15, so that the air passage 13 has a structure that is open in the main flow direction of the sub-passage 12 and is not open (becomes a minute opening) in the direction intersecting the main flow direction of the sub-passage 12. That is, it is possible to suppress the flow of the fluid flowing on the detection portion side (front side) of the sensor assembly 10 to the opposite side (back side) of the sensor assembly 10. That is, since the disturbance of the air around the detection portion can be suppressed, the flow rate measurement accuracy can be improved.
In addition, the first contact portion and the second contact portion of the sensor assembly 10 are in a state of being in contact with the housing 11, and are not a structure that is firmly fixed to the housing 11 like insertion or press-fitting. Therefore, since the sensor assembly 10 can be prevented from being deformed by the first contact portion and the second contact portion following the thermal contraction of the housing 11, it is possible to reduce the application of the bending stress with the first contact portion and the second contact portion as starting points to the detecting element. Therefore, according to this embodiment, even if the air passage 13 is configured by the housing 11 and the sensor assembly 10, the stress applied to the detection portion can be reduced, the characteristic fluctuation due to the deformation of the detection portion can be suppressed, and the flow-rate measuring device with high accuracy can be provided.
In addition, by bringing the housing 11 and the sensor assembly 10 into contact with each other and forming the air passage 13 by the housing 11 and the sensor assembly 10, a factor of dimensional tolerance of the air passage can be determined by the housing 11 and the sensor assembly 10, and the cover 31 and the circuit board 15 can be reduced from the factor of dimensional tolerance, so that dimensional tolerance variation can be reduced.
This embodiment includes: a resin package in which a flow-rate detecting element is sealed with resin such that at least a detection portion is exposed; a circuit board on which the resin package is mounted; and a housing on which the circuit board is mounted, in which the resin package is mounted on the circuit board such that the detection portion side is closer to the housing, the resin package has a contact portion in contact with the housing on the detection portion side, and the resin package is provided with the detection portion between a first contact portion in contact with the housing and a second contact portion.
A third embodiment of the invention will be described using
In this embodiment, the housing 11 is configured such that the wall surface portion constituting the air passage 13, the first contact portion 35 in contact with the first contact portion 32 of the sensor assembly 10, and the second contact portion 35 in contact with the second contact portion 33 of the sensor assembly 10 are substantially flush. In other words, a flat surface without a step is formed in the housing 11, the first contact portion 32 and the second contact portion 35 of the sensor assembly 10 are in contact with the flat surface, and the detection portion of the detecting element 4 faces the flat surface. That is, the housing 11 is formed such that the contact portion 35 in contact with the sensor assembly 10 and the facing portion facing the detection portion are substantially flush.
According to this embodiment, since the height D1 of the air passage 13 is determined by the sensor assembly 10, the influence of the thickness variation of the housing 11 can be eliminated from the dimensional variation of D1. That is, only the height variation of the side wall 18 of the sensor assembly 10 affects the D1 dimension. Therefore, the D1 dimension can be positioned with higher accuracy.
Further, as illustrated in
Next, a fourth embodiment of the invention will be described using
In this embodiment, a part of the sub-passage wall surface of the housing 11 includes an electrostatic diffusion region 28. The electrostatic diffusion region 28 is more preferably provided in a region facing the detection portion. The electrostatic diffusion region 28 has a function of removing electric charge of dust or the like coming flying together with air.
Fouling such as dust is charged by friction. Wiring constituting a heater or the like is formed in the detection portion of the flow-rate detecting element, and is attracted by an electric field generated by a current flowing through the wiring and deposited on the flow-rate detection portion. According to this embodiment, it is possible to suppress the accumulation of contaminants on the flow-rate detection portion by removing charges such as dust, and the contamination resistance is improved.
The electrostatic diffusion region 28 may be formed of a conductive resin containing carbon or the like, may be formed of a metal plate, or may be formed by depositing metal plating on a housing. The electrostatic diffusion region is preferably fixed at a constant potential, and is preferably fixed at a GND potential.
An advantage of forming the electrostatic diffusion region 28 in the housing 11 by inserting the metal plate into the housing 11 is that the rigidity of the housing is improved, so that the shape of the sub-passage can be suppressed from being deformed by vibration, and the change in D1 can be reduced, so that the flow rate measurement accuracy can be further improved. Here, in a case where the metal plate is insert-fixed to the housing 11, a minute step is generated between the surface of the housing 11 and the surface of the metal plate as the resin runs over the surface of the metal plate. However, since the thickness is negligible with respect to the dimensional variation D1, the thickness is within the range of substantially the same plane in the third embodiment.
Next, a fifth embodiment of this invention will be described with reference to
A configuration different from the above embodiment is that the side wall 18 of the air passage 13 formed by the sensor assembly 10 has a throttle shape so as to be narrowed toward the flow-rate detecting element 4.
In a case where the flow velocity is improved by narrowing the sub-passage wall surface facing the flow-rate detecting element 4, the flow becomes a flow of air blown against the detection surface of the flow-rate detecting element, and contaminants are likely to be accumulated on the detection portion. On the other hand, by forming a diaphragm on the side wall 18 formed in the sensor assembly 10 and narrowing the diaphragm in a direction parallel to the detection surface of the detection portion, it is possible to reduce the flow of air blown to the detection portion, and the stain resistance is improved.
In addition, in a case where the throttle is formed on the sub-passage wall surface facing the detecting element, it is necessary to form the throttle by a member different from the sensor assembly 10. However, dimensional variation of the different member is added to D1 dimensional variation. Thus, by forming the throttle by the side wall 18 of the sensor assembly 10, dimensional variation of the different member can be excluded from the flow D1 dimensional variation. In particular, when being combined with the third embodiment, the effect of the latter is increased.
Therefore, in the invention described in this embodiment, as illustrated in
As illustrated in
Next, a sixth embodiment of the invention will be described using
A configuration different from that of the previous embodiment is that at least one protrusion 21 is formed on the circuit board 15 side of the sensor assembly 10 as illustrated in
In addition, as illustrated in
Next, a seventh embodiment of the invention will be described using
A configuration different from that of the previous embodiment is that an opening 26 is formed in a part of the circuit board 15 as illustrated in
Next, an eighth embodiment of the invention will be described using
A configuration different from the above embodiment is that, in the circuit board 15 having the opening 26, as illustrated in
Next, a ninth embodiment of the invention will be described using
A configuration different from that of the above embodiment is that in the circuit board 15 having the opening 26, the protrusion 21 is formed at least at one place of the sensor assembly 10. The protrusion 21 is provided closer to the connection portion 14 with the circuit board 15 than the contact portions 32 and 33 with the housing 11. As described above, when the protrusion 21 is formed in the sensor assembly 10, the sensor assembly 10 can be supported by the protrusion 21 when a pressing force is applied when the circuit board 15 is fixed to the housing 11. As a result, deformation of the sensor assembly 10 can be suppressed, and the positioning accuracy of the height D1 of the air passage 13 can be improved. In addition, as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2019-038139 | Mar 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/001809 | 1/21/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/179249 | 9/10/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20110140211 | Kono et al. | Jun 2011 | A1 |
20130061684 | Frauenholz et al. | Mar 2013 | A1 |
20130192388 | Kono et al. | Aug 2013 | A1 |
20170211958 | Yogo et al. | Jul 2017 | A1 |
20180306619 | Uenodan et al. | Oct 2018 | A1 |
20180372521 | Millies et al. | Dec 2018 | A1 |
20190120675 | Watanabe et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
106537099 | Mar 2017 | CN |
2011-122984 | Jun 2011 | JP |
2017-190948 | Oct 2017 | JP |
2018-538537 | Dec 2018 | JP |
WO 2012049934 | Apr 2012 | WO |
WO 2017073271 | May 2017 | WO |
Entry |
---|
International Search Report (PCT/ISA/210) issued in PCT Application No. PCT/JP2020/001809 dated Apr. 7, 2020 with English translation (eight (8) pages). |
Japanese-language Written Opinion (PCT/ISA/237) issued in PCT Application No. PCT/JP2020/001809 dated Apr. 7, 2020 (three (3) pages). |
English translation of Chinese Office Action issued in Chinese Application No. 202080006908.7 dated Aug. 26, 2023 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20220082421 A1 | Mar 2022 | US |