This application is a national stage application of International Application No. PCT/JP2012/050740, filed Jan. 16, 2012, which claims priority to Japanese Application No. 2011-005847, filed Jan. 14, 2011, the content of which is incorporated by reference in its entirety.
The present invention relates to the art of inhibiting stir-up of bottom dross due to a flow of a hot dip coating metal occurring along with running of a steel sheet or rotation of a sink roll.
A hot dip galvanizing system which performs hot dip galvanization on a steel sheet, as shown in
If performing such hot dip galvanization, the iron which is eluted from the steel sheet and the molten zinc react whereby bottom dross 72 which is mainly comprised of an iron-zinc alloy is produced and deposits at the bottom of the coating tank 51. In such a hot dip galvanization process, as shown in
If the bottom dross 72 is stirred up, the stirred up bottom dross 72 deposits on the surface of the steel sheet 75. The bottom dross 72 is hard, so at the time of rolling or working, the surface of the steel sheet 75 is formed with dents as bottom dross defects.
PLT 1 and PLT 2 propose the arts of preventing stir-up of bottom dross 72 and preventing bottom dross defects by providing flow regulating members which cover the bottom or sides of the sink roll 52 and blocking the flow of molten zinc 71 toward the lateral bottom sides of the sink roll 52 by the flow regulating members so as to prevent stir-up of the bottom dross 72.
PLT 3 proposes the art of providing the bottom of a sink roll 52 with a flow regulating member which is provided with a plurality of holes so as to prevent stir-up of the bottom dross 72.
PLT 1: Japanese Patent Publication No. 2002-69602A
PLT 2: Japanese Patent Publication No. 2000-54097A
PLT 3: WO2007/139206
The flow regulating members which are shown in PLT 1 and PLT 2 are attached to the roll support members 53 which support the sink roll 52 or to the bearing parts of the sink roll 52 (side members which are shown in PLT 2). Therefore, when pulling up the sink roll 52 from the coating tank 51 to replace the sink roll 52, the flow regulating members have to be detached from the roll support members 53 or the sink roll 52, so the work of replacement of the sink roll 52 becomes troublesome.
Further, when replacing the sink roll 52, the line has to be made to stop and the tension between the steel sheet and the sink roll 52 eased. The flow regulating members which are shown in PLT 1 and PLT 2 completely cover the bottom of the sink roll 52, so if easing the tension between the steel sheet and the sink roll 52, the drooping steel sheet will contact the flow regulating members and damage the steel sheet or the flow regulating members will break.
Further, the bearings of the sink roll 52 are comprised of ceramic. For this reason, to prevent cracking of the ceramic bearings due to sudden heat expansion, before immersing the sink roll 52 and the roll support members 53 in the molten zinc 71, a preheating step of gradually making the sink roll 52 and the roll support members 53 rise in temperature becomes necessary. If the flow regulating members are attached to the sink roll 52 and roll support members 53 at this time, energy is wasted for preheating the flow regulating members.
Furthermore, the flow regulating members entirely cover the bottom of the sink roll 52, so the bottom dross 72 which is produced builds up on the flow regulating members. The built up bottom dross 72 is stirred up by the flow of molten zinc 71 which accompanies rotation of the sink roll 52 and deposits on the surface of the steel sheet 75.
The flow regulating member which is shown in PLT 3 has the effect of attenuating the wall surface flow rate which occurs at the two side surface parts of the sink roll and stirs up the bottom dross. However, it does not have side plates serving as flow regulating plates. The effect is insufficient in particular when the running speed of the steel sheet is fast and when the running steel sheet is wide.
The present invention has as its task to solve the above problems and provide a flow regulating member of a hot dip coating tank which can suppress stir-up of bottom dross and provide a continuous hot dip coating system which uses the same.
The inventors worked to complete the above task by studying in depth the structure of a system for preventing stir-up inside of a continuous hot dip plating bath tank. As a result, they discovered as follows. By providing inside the plating bath tank a flow regulating member which comprises horizontal plates and side members which extend above the end parts of the bath tank wall side of the horizontal plates vertical to the horizontal plates and which are formed with large numbers of dispersion holes, the strong flow of the trailing flow can be weakened while passed by a two-stage mechanism. Therefore stir-up of the bottom dross can be effectively prevented.
That is, by using horizontal plates to attenuate the flow of the trailing flow while changing the direction of flow and using side members in which large numbers of dispersion holes are formed so as to further attenuate and disperse the flow of the trailing flow. Therefore, even if the trailing flow strikes the side walls of the coating tank, it no longer has enough strength to stir up the bottom dross and therefore the flow motion after the trailing flow strikes the wall surfaces of the plating system can be rendered harmless.
The present invention was made based on the above discoveries and has as its gist the following.
(1) A flow regulating member of a hot dip coating tank characterized by being provided with
(2) The flow regulating member of a hot dip coating tank of (1), characterized in that the side members have an aperture ratio in a range of 30 to 70 % and hole diameters in a range of 10 to 35 mm.
(3) A continuous hot dip coating system characterized by being provided with a flow regulating member of a hot dip coating tank of (1) or (2).
(4) The continuous hot dip coating system of (3), characterized in that a horizontal direction dimension from bearing parts of the sink roll in a steel sheet exit side direction is 300 mm or more and in that a horizontal direction dimension from bearing parts of the sink roll in a steel sheet entry side direction is 350 mm or more.
(5) The continuous hot dip coating system of (3) or (4), characterized in that a separation dimension from a bottom end of the sink roll to the horizontal plates is 100 to 160 mm.
(6) The continuous hot dip coating system of any of (3) to (5), characterized in that the horizontal plates are laid from below the end parts of the sink roll in inside directions of 0 to 15% of a barrel length of the sink roll.
(7) The continuous hot dip coating system of any of (3) to (6), characterized in that the flow regulating member is attached by the support members and horizontal members to edge faces of the hot dip coating tank.
In the present invention, the flow regulating member of a hot dip coating tank is comprised of horizontal plates which are respectively arranged horizontally from below two side end parts of a sink roll, which is arranged inside of a coating tank in a rotatable manner, toward outside directions of the sink roll and side members which are arranged at positions separated from the two ends of the sink roll, which extend upward from the end parts of the respective horizontal plates, and in which large numbers of dispersion holes are formed. Therefore a trailing flow of molten zinc strikes the horizontal plates, flows changed in direction toward the outside directions, is dispersed by the dispersion holes of the side members in various directions at the outsides of the side members, and is attenuated in flow rate, so stir-up of the bottom dross is suppressed.
[
[
[
[
[
[
[
[
[
[
Below, while referring to the drawings, preferable embodiments of the present invention will be shown. As shown in
As shown in
As shown in
Further, the diameters of the dispersion holes 2a do not have to be constant from the sink roll sides of the side members 2 to the wall surface sides of the plating bath tank. For example, the holes may be shapes which gradually increase in diameters from the sink roll sides of the side members 2 to the wall surface sides of the plating bath tank or the opposite.
Note that, when the diameters of the dispersion holes 2a differ at the sink roll sides and the wall surface sides of the plating bath tank, the “hole diameter” which is defined in the present invention shall mean the diameter at the sink roll sides. Further, when a dispersion hole 2a is not a round hole, the “hole diameter” shall mean the circle equivalent diameter of the dispersion hole 2a which is calculated from the area of the hole.
As shown in
In the present embodiment, as shown in
Next, using
The horizontal plates 1 are flat plate shapes and are arranged in the horizontal direction, so dross will almost never accumulate on the horizontal plates 1. However, when operation is stopped etc., slight dross may accumulate, so the horizontal plates 1 may also be provided with holes. Even if the horizontal plates 1 are provided with holes, the trailing flow will strike the horizontal plates 1 at a slant, so the mechanism by which the flow rate is attenuated and the direction of flow is changed to an upward direction will work. When the running speed is fast, the trailing flow which passes through the holes easily causes dross to be stirred up, so the horizontal plates 1 are preferably flat plates with no holes.
Below, using
Dr=number of tracers of particle size of 50 μm or more stirred up/Total number of stirred up tracers (1)
As shown in
As shown in
As shown in
As shown in
Next, the preferable sizes and installation locations of the horizontal plates serving as the roll bottom members and the side members comprised of the punched metal sheets will be explained.
In general, a sink roll 52 has an outside diameter of 600 to 1000 mm (mostly 800 mm or so) and a width dimension of 1800 to 2800 mm (mostly 2300 mm or so). In this case, the side members 2 are arranged separated from the ends of the sink roll 52 by 200 to 800 mm or so.
Below, the optimum dimensions when the sink roll 52 has the above dimensions will be explained. Note that, the entry angle θ of the steel sheet from the vertical direction is usually 25 to 40° or so. The steel sheet 75 which is wound around the sink roll 52 has a width of 600 to 2000 mm.
Note that,
When the steel sheet 75 is large in width, as shown in
When the steel sheet 75 is small in width, as shown in
In this way, depending on the width of the steel sheet 75 which is wound around the sink roll 52, the direction of flow of the trailing flow of the molten zinc 71 changes. For this reason, the side members 2 have to be able to handle the flows which are created from all widths of steel sheets 75 which are wound around the sink roll 52. As shown in
If the Bf dimension is smaller than 300 mm or the Bb dimension is smaller than 350 mm, depending on the width of the steel sheet 75, much of the trailing flow of the molten zinc 71 will not strike the side members 2, but will leak out from the side members 2. Therefore, the preferable width direction dimensions of the side members 2 are a Bf dimension of 300 mm or more and a Bb dimension of 350 mm or more. Note that, if the Bf dimension is larger than 500 mm or if the Bb dimension is larger than 850 mm, no further improvement in the effect of dispersion of the trailing flow by the side members 2 can be obtained. Further, depending on the variation in flow of the trailing flow of the molten zinc 71, even if setting the side members 2 to the preferable width dimensions, the trailing flow of the molten zinc 71 is liable to leak out from the side members 2. Therefore, it is more preferable to add 100 mm to the preferable width dimensions of the side members 2. Therefore, the preferable width dimensions of the side members 2 are a Bf dimension of 400 to 500 mm and a Bb dimension of 450 to 850 mm.
Note that, the height of the top ends of the side members 2 from the bottom of the coating tank 51 is preferably made approximately the same height as the bearing parts of the sink roll 52. If the top end positions of the side members 2 are lower than the bearing parts of the sink roll 52, the trailing flow of the molten zinc 71 is liable to leak out from the side members 2. On the other hand, even if making the top end positions of the side members 2 higher than the bearing parts of the sink roll 52 (for example, 50 mm or more from the axial center of the sink roll), no further effect of suppression of stir-up of bottom dross can be obtained.
Below, using
As shown in the graph of
Below, using
As shown in
As shown in
On the other hand, as shown in
As shown in
Next, using
Further, the distance between the horizontal plates 1 and the bottom of the coating tank is also not particularly limited. It is sufficient that a space be suitably maintained. Basically, if the coating tank is sufficiently deep, the problem of stir-up does not arise, but if making the coating tank deeper, a large amount of molten metal becomes necessary and the cost becomes high, so the depth of the coating tank is limited to a certain extent. The distance between the horizontal plates 1 and the bottom of the coating tank is usually 500 to 1500 mm or so.
In consideration of the above reasons, the inventors ran water model tests. As a result, as shown in
The flow regulating member 10 of the present invention, to secure work efficiency, may also be attached to the edge faces of the coating tank 51 by support members which connect to the flow regulating member 10 and horizontal members which connect to the support members.
The flow regulating member 10 of the present invention was placed in an actually operating coating tank 51 and the horizontal plates 1 and side members 2 were made preferred sizes and were set at preferable places so as to confirm the advantageous effects. For the method of confirming the advantageous effects, the dross stir-up index was used in the same way as the water model test. However, the particle size and the number of particles of the bottom dross were visually viewed using an electron microscope rather than a solution particle counter.
The results are shown in
Note that, in the embodiments which were explained above, the molten metal which was filled in the coating tank 51 was molten zinc, but the molten metal is not limited to that. Even if tin, copper, or another molten metal, the technical idea of the present invention can be applied needless to say.
Further, in the embodiments which were explained above, the metal sheet material which was wound around the sink roll 52 and was coated in the coating tank 51 was a steel sheet, but the metal sheet material is not limited to this. Even when coating an aluminum sheet, copper sheet, or other metal sheet material, the technical idea of the present invention can be applied needless to say.
Above, the present invention was explained in relation to embodiments which are believed to be the most practical and preferable at the present point of time. Of course, the present invention is not limited to the embodiments which are disclosed in the description of the present application. The present invention may be suitably changed in a range not contravening the gist or idea of the invention which can be read from the claims or the description as a whole. A flow regulating member of a hot dip coating tank which is accompanied with such changes must be understood as being encompassed by the technical scope.
1 horizontal plate
2 side member
2
a dispersion hole
3 support member
3
a horizontal member
3
b vertical member
10 flow regulating member of hot dip coating tank
51 coating tank
51
a edge face
52 sink roll
53 roll support member
71 molten zinc
72 bottom dross
73 tracers simulating bottom dross
75 steel sheet
Number | Date | Country | Kind |
---|---|---|---|
2011-005847 | Jan 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/050740 | 1/16/2012 | WO | 00 | 7/9/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/096401 | 7/19/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2742019 | Queer, Sr. | Apr 1956 | A |
20090183674 | Kuwana et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
2000-054097 | Feb 2000 | JP |
2002-069602 | Mar 2002 | JP |
2006-316346 | Nov 2006 | JP |
2010-024472 | Feb 2010 | JP |
WO2007139206 | Dec 2007 | WO |
Entry |
---|
International Search Report dated Apr. 17, 2012, issued in corresponding PCT Application No. PCT/JP2012/050740. |
Number | Date | Country | |
---|---|---|---|
20130291793 A1 | Nov 2013 | US |