The invention relates flow reversing device and fluid treatment apparatus adopting said flow reversing device.
In many applications fluid flowing in a conduit may need to be treated by a treatment unit outside the conduit and then returned to the same. In such cases part or all the fluid is withdrawn from the conduit in correspondence of an upstream portion of the conduit, treated by the treatment unit and then returned to the conduit in a downstream portion of the same conduit. In certain cases it may be needed to withdraw the fluid from the downstream portion and return it to the upstream portion of the conduit. In these cases where the flow withdrawal and flow return areas may need to be switched, it can be convenient to adopt flow reversing systems which allow an easy commutation between the two configurations.
Referring by way of non limiting example to extracorporeal blood treatments, it is known removing blood from a patient by means of an arterial set, passing of the blood to a blood processing device such as a dialyzer, and returning of the blood to the patient again through a venous blood set. The venous and arterial lines create the communication of blood between a vascular access on the patient and the blood processing device. In order to monitor the patient access site it can be convenient to switch the arterial and venous lines between a first configuration, where blood is withdrawn from an upstream portion of the vascular access and returned to a downstream portion of the same, and a second configuration, where blood is withdrawn from a downstream portion of the vascular access and returned to an upstream portion of the same.
Also in this case it is useful adopting flow reversal devices which allow easy commutation between the two mentioned configurations without need of connecting and disconnecting the lines from the patient.
Devices capable of enabling flow inversion at the patient-side suction and delivery branches, while keeping the circulation flow within the filtering unit unchanged have been also developed.
A first known device is disclosed in the publication Kidney International Vol. 56, 1999, page 1564, FIG. 6 and in U.S. Pat. No. 6,189,388, again in FIG. 6, as well as in the French publication FR2889451 and consists in a set of four tube portions where 2 parallel tube portions are connected via two transversal tube portions. Clips are provided on each tube portion.
U.S. Pat. No. 6,695,807 and US2006161094 show flow reversal systems including arterial and venous lines+2 transverse tubes to form a square-shaped ring. A switching device can act on the square shaped ring to open and close selectively the four tube portions forming the ring.
U.S. Pat. No. 6,308,737 discloses an inverter device interposed between the vascular access to the patient and the blood pump, and the dialyser capable of enabling a flow inversion in the blood circuit portion directly in communication with the patient's vascular system while keeping the extracorporeal blood flow within the dialyser unchanged.
The inverter in particular comprises a deformable chamber provided with a plurality of ports. By deforming the chamber along a predetermined direction, a fluid communication between the pre-established ports is created while a fluid communication between other ports is prevented.
In particular, by suitably studying the connections of the extracorporeal blood circuit with the chamber doors and the deformations to be imposed to the chamber itself a flow inversion as above stated is obtained.
U.S. Pat. No. 5,894,011 discloses a device for flow inversion in haemodialysis apparatus. This device comprises two discs such interconnected that they can rotate relative to each other without separating. The two discs have appropriate fluid accesses, those of one disc being susceptible of connection with the blood lines directly associated with the patient and those of the other disc being susceptible of direct connection with the blood lines in fluid communication with the filtering unit. The two discs can take at least two relative angular positions; in a first position they enable passage of the blood flow in a first direction of direct circulation, in the other position (in which they are rotated relative to each other) they allow an inverted circulation flow in the circuit. In particular in the second inverted configuration the blood suction line from the patient in the first position becomes the delivery line of same and correspondingly, the delivery line of the first position becomes the suction line in the second position.
U.S. Pat. Nos. 6,177,049 and 6,319,465 disclose two further typologies of flow inverting valves both to be positioned between the vascular accesses to the patient and the blood pump and filtering unit. The first patent teaches use of a fixed external valve body to the inside of which an appropriate insert is connected which is capable of being moved between a first direct-circulation configuration and a second reverse circulation configuration. In particular, in the second reverse-circulation condition the suction line and delivery line at the vascular access to the patient are inverted with each other with respect to the first direct-flow condition. The second patent too shows a valve capable of exactly performing the same functions as the first patent, this valve being however made up of two halves coupled with each other so that they have a degree of freedom in rotation and, through mutual rotation of the two halves, a first direct-flow condition and a second reverse-flow condition are obtained at the vascular access to the patient.
US20060079827 shows a flow reversal valve having valve portions rotatably secured to one another, and detent features enabling audible or tactile feedback to a clinician or alignment features, such as visible indicators, on either side of the valve to confirm normal or reverse flow.
A further device for flow inversion in accordance with the U.S. Pat. No. 5,605,630 is also known. However this device is not used to invert the circulation flow at the vascular accesses to the patient, but to enable flow inversion within the filtering unit. In other words, the blood flow is inverted within the filtering unit intermittently and simultaneously the flow of the dialysis liquid is inverted within the same in such a manner that counter-current conditions are maintained therein. The above is carried out for quite different purposes from those of the present invention, i.e. to avoid blood clotting within the filter for dialysis.
All the devices briefly mentioned above however appeared to be susceptible of improvements under different points of view.
Accordingly, it is one object of the present invention to overcome some limits of the known art.
A further object of the invention is providing a flow reversing device which can be easily and quickly actuated.
Another object of the invention is providing a flow reversing device which can be operated without creating or at least significantly limiting problems of stagnation and clotting.
According to one embodiment of the invention, the device may be actuated very simply with only one hand (if manual actuation is used) or with a very simple actuator (if automated actuation is required).
A further aim of the invention is to provide a fluid treatment apparatus adopting the new flow reversing device of the invention.
When the invention is used with extracorporeal blood treatment apparatus, is a further aim of the invention to provide a circuit and a device for flow inversion capable of maintaining the blood flow within the filtering unit even following inversion of the flow at the vascular accesses to the patient.
It is then an auxiliary aim of the invention to provide a device for flow inversion of different structure and conception as compared with the devices hitherto on the market, which is cheap and reliable.
One or more of the foregoing aims are substantially achieved by a flow reversing device and by a blood treatment apparatus according to one or more of the appended claims.
Some aspects of the invention are below summarized.
An extracorporeal medical device for reversing flow according to the invention comprises:
a housing (16) presenting at least four ports (12,13,14 and 15) and a lateral wall (21) having an inner surface (22) radially delimiting an internal chamber (17),
a selector body (19) having at least an active portion (20) movable relative to the housing inside the internal chamber, between at least a first position and at least a second position, in said first position the active portion being positioned relative to the housing so that the first port (12) is in fluid communication with the second port (13) through said internal chamber (17) while the third port (14) is in fluid communication with the fourth port (15) through said internal chamber (17), and in said second position the active portion being positioned relative to the housing so that the first port (12) is in fluid communication with the fourth port (15) through said internal chamber (17) while the second port (13) is in fluid communication with the third port (14) through said chamber, characterized in that, as a consequence of the displacement of the selector body between the first and second position, the active portion of the selector body displaces at least axially along said inner surface of the lateral wall.
The device may include means (23) for linearly displacing the selector body between said first position and said second position, parallel to a longitudinal axis (18) of the internal chamber (17). The means for linearly displacing the selector body can be one or more, manually actionable, pushers (24) connected to the selector body or one or more actuators active on said selector body. Any suitable actuator acting directly or indirectly on the selector body can be adopted: for instance an hydraulic actuator, a pneumatic actuator, an electric actuator, an electromagnetic actuator cooperating with a magnetic or magnetizable portion of the selector body. A control unit may be connected to the actuator and control the actuator to move the selector body between said first and second positions.
The lateral wall inner surface (22) may have the shape of a generalized cylinder extending parallel to a longitudinal axis (18) of the internal chamber (17), the active portion of the selector body displacing axially, parallel to the inner surface of the lateral wall. For instance, the cross section of the inner surface (22) can be constant at least for a longitudinal portion of the internal chamber (17) equal or grater than an axial stroke of the selector body in the chamber between the first and second position. The cross section of the inner surface (22) may be shaped as a polygon, a circle, or an ellipse.
The ports (12,13,14,15) may be arranged on the lateral wall (21) and may present respective axis oriented transversally to the longitudinal axis of the internal chamber, for instance the ports axis may be perpendicular to the longitudinal axis of the internal chamber and lying on a common plane. The ports (12,13,14,15) can be symmetrically arranged on the lateral wall with respect to said longitudinal axis.
The housing can be in the shape of a tubular body presenting axially opposite open ends (50, 51).
The selector can include first and second terminals (52, 53) tightly coupled in a sliding manner to the lateral wall inner surface, said active portion extending between the first and second terminals. The first and second terminals (52, 53) present respective inner surfaces (57, 58), facing one another and cooperating with the active portion (20) of the selector and with a portion of the inner surface (21) of the housing to define at least two tightly separated fluid chambers (59, 60).
The selector active portion may comprise at least a first surface (54), facing the second port, a second surface (55), opposite the first surface and facing the fourth port, and a peripheral edge (56) tightly coupled in a sliding manner to internal wall. The first and second surfaces (54, 55) are continuous surfaces axially extending along and bending about the longitudinal axis (18). The peripheral edge (56) comprises two radially opposing edges (56a, 56b) extends axially, along the inner surface, in a non straight manner to define, in each of said first and second positions of the active portion, a non rectilinear seal line along said inner surface. Said first and second surfaces (54, 55) can be substantially in the shape of helicoids and each of the opposing edges (56a 56b) have substantially the shape of a cylindrical helix extending around the longitudinal axis (18). Alternatively, each of said first and second surface (54, 55) may present a first flat part, a second flat part (57,58) rotated (for instance perpendicular) with respect to the first flat part around said longitudinal axis, and a transition part joining the two flat parts; in this case the opposing edges (56a, 56b) comprises at least two parallel and transversally spaced portions (57a, 58a), which are interacting with the inner surface of the lateral wall in correspondence of circumferentially and axially spaced positions. In one solution (
The device may comprise (see embodiment of
The device may also be provided with a first tubing line (4a) having one end coupled to the first port and a second end provided with a connector, a second tubing line (4b) having one end coupled to the second port and a second end provided with a connector, a third tubing line (5a) having one end coupled to the third port and a second end provided with a connector, a fourth tubing line (5b) having one end coupled to the fourth port and a second end provided with a connector. The connectors on the first tubing line (4a) and on the third tubing line (5a) can be coupled with corresponding counter-connectors of access devices designed to be connected with a cardiovascular system of a living body. The connectors on the second tubing line (4b) and on the fourth tubing line (5b) can be coupled with corresponding counter-connectors of a treatment unit.
A blood processing apparatus according to the invention comprises the device having one or more of the features above summarized and at least one peristaltic pump (8) acting on a portion of at least one of said first, second, third and fourth tubing lines.
According to an independent aspect, a device for reversing flow according to the invention comprises:
a housing presenting at least three ports (12, 13, 14) and a lateral wall having an inner surface (22) radially delimiting an internal chamber (17), a selector body (19) having at least an active portion (20) movable relative to the housing inside the internal chamber, between at least a first position and at least a second position, in said first position the active portion being positioned relative to the housing so that the first port is in fluid communication with the second port through said internal chamber, and in said second position the active portion being positioned relative to the housing so that the first port is in fluid communication with the third port through said internal chamber,
wherein said active portion comprises a first and a second opposed surfaces (54, 55) and a peripheral edge (56) radially and tightly coupled in a sliding manner to inner surface (22), said peripheral edge (56) comprising two radially opposing edges (56a, 56b), at least one of said radially opposing edges (56a, 56b) axially extending, along the inner surface, in a non straight manner.
The active portion may be axially movable between said first and second positions parallel to said lateral wall inner surface (22).
In one embodiment, the housing (16) presents at least four ports (12,13,14 and 15) the active portion in said first position is positioned relative to the housing so that the first port (12) is in fluid communication with the second port (13) through said internal chamber (17) while the third port (14) is in fluid communication with the fourth port (15) through said internal chamber (17), and in said second position the active portion is positioned relative to the housing so that the first port (12) is in fluid communication with the fourth port (15) through said internal chamber (17) while the second port (13) is in fluid communication with the third port (14) through said chamber.
The first and second surface (54, 55) can be continuous surfaces bending about the longitudinal axis (18) when axially moving along said the longitudinal axis. For example said first and second surfaces (54, 55) can be substantially in the shape of helicoids and the opposing edges (56a, 56b) have substantially the shape of a cylindrical helix axially extending around the longitudinal axis (18). Alternatively said first and second surface (54, 55) can present a first flat part and a second flat part (57, 58) joined by a transition part, the first flat part being transversal to the second flat part; each of the opposing edges (56a, 56b) comprises at least two parallel and transversally spaced portions (57a, 58a), which are interacting with the inner surface of the lateral wall in correspondence of circumferentially and axially spaced positions. According to a further alternative said active portion (20) may include two axially consecutive flat bodies (20a,20b) which are axially guided inside the internal chamber and kept in angularly spaced positions by first and a second guides (61, 62) obtained in the housing slidingly receiving a respective of said flat bodies. The housing may also present a first and a second end wall (63, 64) each extending on a respective side of the internal chamber transversally to the longitudinal axis, said guides being formed by through passages in said end walls realizing a fluid tight coupling with the flat bodies. The first and second end walls present respective inner surfaces, facing one another and cooperating with the active portion of the selector and with a portion of the inner surface of the housing to define at least two tightly separated fluid chambers; the flat bodies comprise the axially opposing edges (56a, 56b), each of the opposing edges presenting at least two parallel portions interacting with the inner surface of the lateral wall in correspondence of circumferentially and axially spaced positions.
Further features and advantages will be best understood from the detailed description of a preferred, but not exclusive embodiment of a flow reversing device and of a fluid treatment apparatus adopting said flow reversing device in accordance with the present invention. This description will be carried out hereinafter with reference to the accompanying drawings, given by way of non-limiting example, in which:
With reference to the enclosed drawings, reference number 1 denotes an extracorporeal medical device for reversing flow according to the present invention. The device 1 can for instance be used for reversing blood flow in the extracorporeal blood circuit of a blood treatment machine as per the non limiting example of the enclosed
Notice that while the device 1 shown in
The device 1 presents a housing 16 having at least four ports: a first port 12, connected or connectable by means of a connector piece with portion 4a of line 4, a second port 13, connected or connectable by means of a connector piece with portion 4b of line 4, a third port 14, connected or connectable by means of a connector piece with portion 5a of line 5, and a fourth port 15, connected or connectable by means of a connector piece with portion 5b of line 5. The housing 16 has an internal chamber 17 presenting a longitudinal axis 18, a selector body 19 having at least an active portion 20 movable relative to the housing inside the internal chamber. More in detail the selector body is movable between at least a first position and a second position; in the first position of the selector body, the active portion is positioned relative to the housing so that the first port 12 is in fluid communication with the second port 13 through said chamber while the third port 14 (not shown in
According to a possible aspect of the invention the internal chamber 17 has a lateral wall 21 presenting an inner surface 22 parallel to the longitudinal axis and radially delimiting the internal chamber. The lateral wall inner surface 22 has the shape of a generalized cylinder extending parallel to the longitudinal axis. In the embodiment of
In further detail the housing 16 comprises a hollow body, for instance a tubular body as in
In the embodiments of
In order to move the active portion relative to the housing, the flow reversing device comprises means 23 for linearly displacing the selector body between the first and second position. The means 23 for linearly displacing the selector body can be one or two, manually actionable, pushers 24, 25 each connected to a respective terminal 52, 53 of the selector body 19. The pushers can comprise a base 26 extending transversally to the internal chamber longitudinal axis, a rod 27 rigidly connecting the base to the first terminal. In the embodiments of
As an alternative embodiment, the means for linearly displacing the selector body can also be automatically controlled. In this case the means 23 would comprise an actuator, such as for instance an hydraulic actuator, a pneumatic actuator, an electric actuator, an electromagnetic actuator, or an actuator of other nature active on said selector body and controlled by a control unit connected to the actuator and controlling the actuator to move the selector body between said first and second positions.
Under a cinematic point of view, while the means for linearly displacing the selector body as per the attached drawings are only working linearly according to a straight axis of actuation, it is not excluded that means, like screw type transmissions or other cinematic solutions involving combined linear and rotational movement, could be envisaged as long as said means are also able to provide the selector body with a straight displacement in the chamber. As example of means 23 controlled automatically, a bi-stable electromechanical linear displacement and magnetic locking device could be used: an electrical winding associated around or in proximity to the housing, with a ferromagnetic selector body or portion of it; the selector body thus has two positions or stable states: retention or locking at one end of the housing can be performed by a permanent magnet and at the other, for instance by a helicoidal spring (of course instead of the helicoidal spring another permanent magnet could be used).
Housing—Variant of
This figure shows a variant for the housing which could be adopted as housing in any of the embodiments described herein. This housing is substantially similar to that of the embodiment of
Selector Body—Variants of
The device 1 of the third embodiment presents a housing 16 having four ports: a first port 12, connected or connectable by means of a connector piece with portion 4a of line 4, a second port 13, connected or connectable by means of a connector piece with portion 4b of line 4, a third port 14, connected or connectable by means of a connector piece with portion 5a of line 5, and a fourth port 15, connected or connectable by means of a connector piece with portion 5b of line 5. The housing 16 has an internal chamber 17 presenting a longitudinal axis 18, a selector body 19 having at least an active portion 20a, 20b movable relative to the housing inside the internal chamber. More in detail the selector body is movable between at least a first position and a second position; in the first position (
The internal chamber 17 has a lateral wall 21 presenting an inner surface 22 parallel to the longitudinal axis and radially delimiting the internal chamber. The lateral wall inner surface 22 has the shape of a generalized cylinder extending parallel to the longitudinal axis. In the third embodiment the generalized cylinder has a circular cross section (i.e. the curve defined by the lateral wall inner surface 22 on a section plane perpendicular to the longitudinal axis 18 is a circle). It should however be noticed that the inner surface 22 could also present cross section in the form of a polygon or of an ellipse or of another closed line (in principle regular and symmetric shapes are preferable, however said cross section could also be a closed line of alternative shape). In any case, the cross section of the inner surface 22 should be such to allow the axial stroke of the selector body 19 in the chamber 17. Indeed the active portion 20a, 20b of the selector body is at least axially displaceable in the chamber 17 parallel to said longitudinal axis as a consequence of the displacement of the selector body 19 between the first and second position. The active portion of the third embodiment includes two axially consecutive flat bodies axially guided inside the internal chamber and kept in angularly spaced position (basically in the embodiment shown the two flat body extend on respective planes orthogonal one another). The two flat bodies part of the selector body 19 define a first flat surface 54, a second flat surface 55 opposite the first surface and a peripheral edge 56 having two radially opposed edges, which allow the necessary liquid tight during operation. Each of the opposing edges present two parallel and non aligned portions 57a, 58a, which are interacting with the inner surface of the lateral wall in correspondence of circumferentially and axially spaced positions.
In further detail the housing 16 comprises a hollow body, a first and a second guides 61, 62 for slidingly receiving a respective of said flat bodies. The housing presents a first and a second end wall 63, 64 each extending on a respective side of the internal chamber transversally to the longitudinal axis, said guides being formed by passages in said end walls. The passages realize a fluid tight coupling with the flat bodies so that the chamber 17 is only communicating fluid to the outside via the ports 12, 13, 14, 15.
The first and second end walls present respective inner surfaces 65, 66, facing one another and cooperating with the active portion of the selector and with a portion of the inner surface of the housing to define the two tightly separated fluid chambers.
In this case the selector body separates the inner chamber 17 in the two fluid chambers by means of the flat bodies which selectively enter into the inner chamber 17 according to two transversal planes. In this manner the inner chamber is not axially displacing relative to the ports as in the previously described embodiments, but simply each of the flat bodies cuts the inner chamber in two parts according to two different planes depending upon the axial position of the selector body. In practice in the first position of the selector body only the flat body 20b enters in the chamber 17 to separate it into two parts (tightly separated fluid chambers), while in the second position of the selector body, it is the first flat body 20a entering the chamber 17 to split it into two parts (tightly separated fluid chambers).
As to the means 23, they could be similar to those described in connection with the first and second embodiment. Alternatively as shown in
Of course also in the embodiments of
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2007/001754 | 6/27/2007 | WO | 00 | 12/18/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/001152 | 12/31/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3905275 | Saida et al. | Sep 1975 | A |
5549582 | Larsson et al. | Aug 1996 | A |
5605630 | Shibata | Feb 1997 | A |
5819775 | Holloway | Oct 1998 | A |
5894011 | Prosl et al. | Apr 1999 | A |
5931163 | Stegmann et al. | Aug 1999 | A |
6177049 | Schnell et al. | Jan 2001 | B1 |
6189388 | Cole et al. | Feb 2001 | B1 |
6269839 | Wickham et al. | Aug 2001 | B1 |
6308737 | Krivitski | Oct 2001 | B1 |
6319465 | Schnell et al. | Nov 2001 | B1 |
6565525 | Burbank et al. | May 2003 | B1 |
6695807 | Bell et al. | Feb 2004 | B2 |
6793194 | Grinberg | Sep 2004 | B1 |
6830073 | Lee | Dec 2004 | B2 |
7121291 | Sueda | Oct 2006 | B2 |
20050124943 | Yang | Jun 2005 | A1 |
20050131335 | Drott et al. | Jun 2005 | A1 |
20060079827 | Jensen et al. | Apr 2006 | A1 |
20060161094 | Utterberg et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
1 017 443 | Jul 2000 | EP |
1 090 655 | Apr 2001 | EP |
2 889 451 | Feb 2007 | FR |
1 212 408 | Nov 1970 | GB |
9500194 | Jan 1995 | WO |
9851368 | Nov 1998 | WO |
03029706 | Apr 2003 | WO |
Entry |
---|
Mercadal Lucile et al., “Determination of access blood flow from ionic dialysance: Theory and validation”, Kidney International, vol. 56, 1999, pp. 1560-1565. |
Number | Date | Country | |
---|---|---|---|
20100198129 A1 | Aug 2010 | US |