The present disclosure relates to a sprinkler assembly and, more particularly, to a corridor sprinkler assembly that exhibits reduced energy losses.
This section provides background information related to the present disclosure which is not necessarily prior art.
Significant energy losses occur at the fire protection sprinkler assemblies where the fluid is dispersed. Conventional sprinkler assemblies include a base with a passageway, an inlet opening, and a discharge opening, which is adapted for connecting to the system piping, and a deflector that is supported spaced from the base, typically by a pair of frame arms that extend from the base. The frame arms are often joined at their distal ends by a boss, which is used to mount the deflector to the frame arms. The boss is typically aligned with the discharge opening of the base. Pendent sprinklers and upright sprinklers typically include deflectors with a solid central portion and a plurality of tines that extend radially outwardly from the central portion for dispersing the fluid as it flows across the solid central portion, which is mounted to the boss. Sidewall sprinklers typically include a deflector, also with a solid central portion with tines extending from the central portion and a blade that is positioned above the central portion to direct the fluid that flows above the central portion outwardly and downwardly. In each case, when the fluid flows from the discharge opening of the base the fluid impinges on the boss and on the central portion of the deflector. The boss and deflector disperse the fluid radially outward, relative to the axis of the discharge opening, and the fluid is thereafter further dispersed by the tines, and in the case of the sidewall sprinklers also by the blade. This results in a sizeable energy or head loss in the fluid at the sprinkler assembly.
Significant savings can be realized for a sprinkler system if the supply pressure to the sprinkler assembly can be reduced. As would be understood by those skilled in the art, where the supply pressure to the sprinkler assemblies of a system can be reduced, the size of the piping delivering the fluid to the sprinkler assemblies can be reduced and/or the size of the system pump can be downsized. If comparable performance of a sprinkler assembly can be provided at a lower pressure for any given system, the need for a pump might even be avoided. Any of these modifications could provide significant savings in the installation cost of a fire protection system. Accordingly, a sprinkler assembly that can disperse fluid with a reduced head loss may reduce the required pressure at the sprinkler assembly and, hence, provide cost savings for the installation of a fire protection system incorporating such sprinkler assemblies.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
A corridor sprinkler includes a first flow shaper member supported by a support for shaping the flow of fluid from a sprinkler that includes a shelf portion having a proximal end and a distal end, the shelf being generally parallel to and spaced from the axis of the flow passage through the sprinkler body. A shield extends directly from the distal end of the shelf and generally perpendicular to the axis and partially intersecting the column of fluid without the support obstructing the column of fluid between the discharge opening and the shield. The shelf and the shield can each have a diameter greater than a diameter of the discharge opening. A second flow shaper can extend from the support on an opposite side of the axis from the first flow shaper and partially intersecting the column of fluid.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure. The drawings shown are all drawn to scale.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Referring to
Further, the sprinkler assembly of the present disclosure may be configured as a fast response sprinkler as defined by the response time index. The response time index of a sprinkler is referred to as “RTI”, which is a measure of the sensitivity of the thermal element of a sprinkler. RTI is usually determined by plunging a sprinkler into a heated laminar airflow within a test oven. RTI is calculated using operating time of the sprinkler, operating temperature of the sprinkler's heat-responsive element (as determined in a bath test), air temperature of the test oven, air velocity of the test oven, and the sprinkler's conductivity. Fast response sprinklers have an RTI typically less than 50 (m-s)1/2.
As will be more fully described below, the sprinkler assembly 10 of the present disclosure reduces the friction between the fluid and the sprinkler assembly and, hence, the energy loss of the fluid as it flows from the sprinkler assembly. Consequently, a sprinkler assembly of the present disclosure provides an optimally-sized sprinkler that will be able to cover greater areas for a given pressure than conventional sprinklers of the same size.
As best seen in
As seen in
To reduce the energy loss of the fluid as it flows from sprinkler assembly 10, support 14 is configured to allow at least a portion and, optionally most, if not all, of the fluid to flow through support 14 rather than into and around the support 14. In addition, as will be more fully described below, at least a portion, and optionally most of the fluid flows between upper and lower flow-shaper members 16, 18, which direct and shape the fluid in a desired pattern in contrast to conventional sprinkler assemblies that typically include frames and deflectors that deflect and redirect the fluid and form barriers around which the fluid must flow.
In the illustrated embodiment, support 14 comprises a frame that includes a pair of arms 32a and 32b and a transverse member 34 that joins the ends of arms 32a and 32b and which is spaced from discharge opening 24. Arms 32a and 32b extend generally away from discharge opening 24 on opposed sides of body 12 and, as noted, are joined by transverse member 34. While two symmetrically positioned arms are illustrated, it should be understood that support 14 may include one, two, three, or four or more arms, for example three or four arms that are all symmetrically positioned around and spaced away from axis 36 of the passageway 26. As would be understood by those skilled in the art, support 14 is substantially rigid so as to provide support for the flow-shaper members 16, 18 and, further, support for a heat responsive trigger 30, as will be more fully described below.
In the illustrated embodiment in
The opening or the innermost diameter 42 of the annular member is at least 0.4 inches in diameter and, more typically, in a range of about 0.5 to 2.5 inches in diameter. Further, opening 42 may be at least as large in diameter as discharge opening 24 and, further, may be larger in diameter than discharge opening 24. In this manner, the flow of fluid from body 12 is substantially unimpeded by support 14 and, instead, may flow through support 14 through opening 42. As a result, the flow of fluid is directed and shaped rather than redirected. Consequently, the energy loss of the fluid as it flows through the support 14 is reduced, if not eliminated. Furthermore, although opening 42 is depicted as a right cylindrical opening with a stepped side, the inner surface of opening 42 may be tapered inwardly or outwardly.
In order to then direct the fluid in a desired spray pattern, upper and lower fluid flow-shaper members 16, 18 are located adjacent or at opening 42, and can be downstream of the opening 42 as shown. Further, flow-shaper members 16, 18 may be offset from axis 36 of the sprinkler head body so as not to intersect the axis 36.
As best seen in
The shield 52 can be attached to a distal end of the upper shelf 50. The shield can have a width (W2) generally equal to the width (W1) of the upper shelf portion 50. Alternatively, the shield 52 can be wider or narrower than the upper shelf portion depending upon a desired spray pattern of the sprinkler. The shield 52 can include a distal edge 54 having a protruding portion 56 and pair of recessed regions 58 flanking the protruding portion 56 and laterally inward from the outer edges 60 of the shield 52. The shape of the distal edge 58 can be modified to obtain a desired spray pattern for a specific application. The shield portion 52 of the upper fluid flow shaper 16 can extend toward the longitudinal axis 36 by a desired distance in order to provide a desired spray pattern. In the embodiment shown, the shield portion 52 does not intersect the longitudinal axis 36 and is spaced from the longitudinal axis 36.
The lower fluid flow-shaper 18 extends upward from a lower edge of the opening 42 toward the longitudinal axis 36 and can have an arcuate shape at its origin and a planar shape at its distal end. The distal edge 62 of the lower flow-shaper 18 includes a central protruding portion 64. The lower flow-shaper 18 also can include a pair of tabs 66 extending rearwardly from lateral sides 68 of the flow-shaper 18. The shape of the lower fluid flow-shaper 18 can be modified to provide a desired spray pattern for a given application. The lower flow-shaper 18 can extend toward and be spaced from the longitudinal axis 36 by a distance less than the upper flow-shaper 16 is spaced from the longitudinal axis 36.
Referring to
In the illustrated embodiment, fluid flow-shaper members 16, 18 are formed as a pair of tabs that are mounted to or formed with an annular transverse member 34. The flow-shaper members 16, 18 can be attached to a ring 70. In this manner, the fluid flow-shaper members 16, 18 are attached to support 14 by mounting ring member 70 in support 14. It should be understood that flow-shaper members 28 may alternatively be attached to support 14 by attaching flow-shaper members 28 to support 14, for example by welding the flow-shaper members to the support, such as to annular member 34a, or by integrally forming the support 14 with the flow-shaper members. Flow-shaper members 16, 18 can be formed, cut or otherwise machined into the support structure so as to be formed integrally therewith. Alternately, tabs 16, 18 may be mounted by a member that mounts about support 14 and annular member 34 outwardly of opening 42.
In this application, opening 42 of annular member 34 is preferably at least as large in diameter as discharge opening 24. In this manner, most, if not all, the fluid discharged from discharge opening 24 may flow through support 14 unimpeded by support 14 or annular member 34.
As noted above, trigger 30 is mounted so as to retain closure device 28 in position over discharge opening 20. In the illustrated embodiment of
Referring to
As best seen in