Flow shut-off at the top of a sprinkler head is rapidly becoming a standard feature in high-end rotating sprinklers. Flow shut-off allows contractors to selectively shut off water flow at any sprinkler head in a watering zone. This feature is particularly useful for installing new sprinkler nozzles in each sprinkler since a contractor can shut off the water flow at a sprinkler head, change the nozzle, and turn the head back on. In this respect, the contractor does not need to travel to the remote central irrigation controller, shut down irrigation at a particular zone, travel to the zone and replace a sprinkler nozzle, then travel back to the central controller to turn the zone back on.
Another benefit heralded by installers and contractors is the ability to selectively shut-off multiple sprinklers in a zone to prevent a construction zone from getting sprayed. Typically, with a standard sprinkler, the whole zone would be shut down at the controller. This risks drying out and killing landscaping that is not near or associated with the construction zone.
Prior art sprinkler flow shut-off valves can be seen in U.S. Pat. Nos. 6,869,026; 5,762,270; 6,802,458 and 7,793,868; the contents of which are hereby incorporated by reference.
One embodiment according to the present invention is directed to a flow shut-off valve for a sprinkler that includes an actuator member that is rotatably disposed within a sprinkler head and restricted from vertical movement. The inside of the actuator member includes a helical groove within an inner cavity. A plunger at least partially fits within the actuator member's inner cavity and further includes a thread that mates with the helical groove of the actuator member. As the actuator member is rotated by a user (e.g., via a tool from the top of the sprinkler), its helical groove causes the plunger to move downwards toward the top of a tube or water passage. If fully extended downward, the flat portion of the plunger fully covers and seals the top of the tube, preventing water from escaping from the sprinkler.
These and other aspects, features and advantages of which embodiments of the invention are capable of will be apparent and elucidated from the following description of embodiments of the present invention, reference being made to the accompanying drawings, in which
Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.
While the present flow shut-off valve 110 can be used in a variety of different irrigation sprinklers, it is depicted in a rotary sprinkler. As seen in
As best seen in
A lower portion of the actuator 112 includes a lip 112D that engages a mating portion of the sprinkler 100. In this respect, the actuator can freely rotate in the sprinkler body, but is unable to move vertically. A seal 122 or o-ring is located under the lip 112D to prevent dirt and water from entering or exiting from this area.
As seen best in
The valve plunger 116 (seen best in
The disk portion 116C includes a seal 116E or o-ring around its outer circumference and is sized to close off a top opening of a water passage formed by tubular member 118. Hence, when the disk portion 116C is moved into contact with the top surface of the tubular member 118, it closes off the water passage and prevents water from reaching the nozzle 106 or exit aperture of the sprinkler 100.
The bottom of the disk portion 116C also includes a flow conditioning fin 116D for reducing turbulence in the water flow passing through. Preferably, the fin 116D is fixed to the disk portion 116C in an orientation that is longitudinally aligned with the general direction of water flow . For example, as seen in
The fin 116D may be formed in a variety of shapes that are generally shaped to reduce turbulence. For example, the fin shape may be uniformly rounded, asymmetrically rounded, square or rectangle.
As best seen in
As best seen in
In operation, a tool (e.g., screw driver) can be used to rotate the actuator member 112. As the actuator member 112 rotates, it maintains its vertical position relative to the nozzle base 104 of the sprinkler 100. The rotating helical groove 112C exerts force on the threads 166A of the valve plunger 166. Since the valve plunger 166 is “keyed” to prevented from rotation (via groove 1168 and key 114B), the plunger 116 moves vertically, depending on the direction of rotation of the actuator 112. Hence, the user can adjust the valve plunger 166 to a fully open position (
One advantage of this design is that the valve 110 can be partially closed. Such a partial valve closure allows a user to reduce the amount of water that exits the sprinkler 100. Additionally, partial closure can reduce the distance the water is thrown from the sprinkler (i.e., the sprinkler's water radius). Many prior art sprinklers rely solely on a “break-up” screw 120 to reduce a sprinkler's radius by moving the screw 120 into the path of outgoing water. However, these break-up screws do not limit the sprinkler's flow rate and therefore can lead to overwatering in areas of turf nearby to the sprinkler. In contrast, partial closure of the present valve mechanism can reduce the flow rate and watering radius of a sprinkler, decreasing the risk of overwatering nearby turf.
A test was performed by the inventor to compare radius reduction solely via a break-up screw with radius reduction via a sprinkler valve according to the present invention. Both sprinklers were tested using similar nozzle sizes and water pressure. The resulting data is summarized in Table 1 below. As seen in this table, a 25% reduction in radius via the break-up screw resulted in an increased precipitation rate of 0.26 inches/hour with sprinklers in what is known in the art as a “square spacing” and 0.34 inches/hour in what is known in the art as a “triangular spacing”. In contrast, a 25% reduction in radius via the example valve 110 according to the present invention resulted in only a 0.09 inches/hour precipitation increase in both spacings. Hence, the example valve 110 was better able to limit any precipitation increase when the radius is reduced. Additionally, what is known in the art as a “scheduling coefficient” or more simply the uniformity or efficiency of water flow, increases (i.e., becomes less efficient/uniform) with a prior art breakup (from 1.2 to 1.7) but remains constant at 1.4 for the present invention.
While the previous embodiments show a mechanism in which the shut-off valve is closed when a plunger is in the lowest position, it should be recognized that an alternate arrangement is possible. Namely, the shut-off valve may be modified such that raising the plunger to an upper position causes it to seal against a valve seat and lowering the plunger causes the plunger to unseal and allow passage of water.
Additional modifications of the actuator mechanism are also possible. For example, the actuator/plunger threads 112C/116A may be reversed or inverted such that the actuator 112 has a male thread and the plunger 116 includes a female thread. A similar switch is possible with the “key” arrangement of the plunger and sprinkler.
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
This application claims priority to U.S. Provisional Application Ser. No. 61/508,462 filed Jul. 15, 2011 entitled Flow Shut-Off Valve for Sprinkler, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61508462 | Jul 2011 | US |