Various packaging techniques have been used to build a load of unit products and subsequently wrap them for transportation, storage, containment and stabilization, protection and waterproofing. One system uses wrapping machines to stretch, dispense, and wrap packaging material around a load. The packaging material may be pre-stretched before it is applied to the load. Wrapping can be performed as an inline, automated packaging technique that dispenses and wraps packaging material in a stretch condition around a load on a pallet to cover and contain the load. Stretch wrapping, whether accomplished by a turntable, rotating arm, vertical rotating ring, or horizontal rotating ring, typically covers the four vertical sides of the load with a stretchable packaging material such as polyethylene packaging material. In each of these arrangements, relative rotation is provided between the load and the packaging material dispenser to wrap packaging material about the sides of the load.
Loads have been wrapped with packaging material by securing a leading end portion of the packaging material to the load or a turntable clamp, dispensing the packaging material, and providing relative rotation between the load and a packaging material dispenser to cause the load to be enveloped by the packaging material. The relative rotation may be provided several different ways. Either the load can be rotated on a turntable, or the dispenser can be rotated around the stationary load. Wrapping usually employs a web of packaging material as the packaging material.
Semi-automatic wrapping machinery generally requires an operator to attach a leading end portion of the packaging material to the load prior to wrapping. This is typically accomplished by collapsing the leading end portion into a rope, then inserting the rope between the layers of the load or tying the end of the packaging material to the edge of the supporting wood pallet or any suitable outcropping on the load. This attachment must be relatively strong since it provides the resistance to pulling the packaging material from the packaging material dispenser during the initiation of the relative rotation between the load and the packaging material dispenser. The attachment or tying of the packaging material makes packaging material removal more difficult after the load has been shipped to its destination.
Automatic wrapping machines typically use packaging material clamps that grip the packaging material web between two opposed surfaces and use electrical or pneumatic actuators to open and close the clamps. Such packaging material clamps may create a “tenting” effect during wrapping due to the distance between the clamp and the load during wrapping, resulting in wasted packaging material and loosely wrapped loads. In addition, such clamps are generally expensive and may require costly maintenance for the electrical and mechanical actuators.
In addition, many wrapping machines integrate packaging material cutters that sever the web of packaging material at the end of a wrapping operation and once the packaging material has been gripped by a clamp. Furthermore, a wipe down mechanism is generally used to press the “tail” of packaging material that remains attached to the load once the web is severed. Conventional wipe down mechanisms utilize a reach arm that either pops up from a retracted position or swings inwardly from a position outside of the wrap zone (or zone of rotation), and many generally employ plastic loops that wipe across the side of the load to adhere the packaging material tail to the side of the load. In some instances, the movement of the load itself, e.g., on a conveyor once the wrapping operation is complete, may be used to move the load past a stationary wipe down mechanism.
Conventional wipe down mechanisms, however, are often relatively complex and may be difficult to incorporate into some applications, including, for example, applications where a load is supported on the ground rather than on a conveyor or turntable. Furthermore, some wipe down mechanisms can produce inconsistent results, with tails that are inadequately adhered to the side of the load. Such unadhered tails, however, can be problematic during later transportation and storage as they can present a snagging hazard for fork trucks and other load racking devices.
Attempts have also been made to direct airflow at a tail to improve adherence to the side of the load. However, it has been found that such attempts may not generate airflow of a sufficient velocity to have a meaningful effect on the tail's adherence to the side of the load, or if sufficient velocity is generated, the turbulence induced during the process can lead to inconsistent results, with tails folding over and/or twisting prior to adherence to the side of the load.
Therefore, a significant need continues to exist in the art for an improved manner of adhering a packaging material tail to a load at the completion of a wrapping operation.
The invention addresses these and other problems associated with the art by providing in one aspect a method and apparatus that in some instances may utilize a flow stabilized high speed axial fan blower to assist in adhering a packaging material tail to the side of a load at the completion of a wrapping operation.
Therefore, consistent with one aspect of the invention, an apparatus for wrapping a load may include a packaging material dispenser configured to dispense a web of packaging material to the load, a rotational drive configured to generate relative rotation between the packaging material dispenser and the load about a center of rotation, a cutting assembly configured to sever the web of packaging material to form a packaging material tail extending from a corner of the load, and a flow stabilized high speed axial fan blower positioned to direct a flow of fluid towards the packaging material tail from a position generally upstream of a free end of the packaging material tail and at an acute angle relative to the side of the load while the free end of the packaging material tail is unsupported to cause the packaging material tail to come into contact with the side of the load. The flow stabilized high speed axial fan blower may be configured to generate the flow of fluid to have, proximate the corner of the load, a velocity of at least about 10 miles per hour throughout a target area defined in a plane generally transverse to a longitudinal axis of the flow stabilized high speed axial fan blower.
In some embodiments, the target area has a height that is at least about a height of the packaging material tail proximate the corner of the load. Also, in some embodiments, the flow stabilized high speed axial fan blower is configured to generate the flow of fluid to have, proximate a center of the target area, a velocity of at least about 20 miles per hour, and proximate a perimeter of the target area, a velocity of at least about 10 miles per hour. Further, in some embodiments, the flow stabilized high speed axial fan blower is configured to generate the flow of fluid to have a velocity of at least about 50 miles per hour proximate an outlet of the flow stabilized high speed axial fan blower.
In some embodiments, the flow stabilized high speed axial fan blower is inclined upwardly at least about 8 degrees. In addition, in some embodiments, the flow stabilized high speed axial fan blower is inclined upwardly at least about 16 degrees. In some embodiments, the flow stabilized high speed axial fan blower is positioned such that the target area extends at least about 3 inches on each side of the corner of the load.
Some embodiments may also include a rotating arm, where the packaging material dispenser is coupled to the rotating arm and the rotational drive is configured to generate the relative rotation between the packaging material dispenser and the load about the center of rotation by rotating the rotating arm about the center of rotation, and a base supporting the rotating arm, where the flow stabilized high speed axial fan blower is mounted to the base. In some embodiments, the base includes at least one leg and a bollard disposed proximate an end of the at least one leg, and the flow stabilized high speed axial fan blower is mounted within the bollard.
In addition, some embodiments may also include a turntable for supporting the load, and the rotational drive is configured to generate the relative rotation between the packaging material dispenser and the load about the center of rotation by rotating the turntable. Moreover, in some embodiments, the flow stabilized high speed axial fan blower is mounted to a support leg disposed proximate the turntable.
In some embodiments, the acute angle is a first angle, the position is a first position, the flow of fluid is a first flow of fluid, and the apparatus further includes a flow device configured to direct a second flow of fluid towards the packaging material tail from a second position and at a second angle relative to the side of the load. Moreover, in some embodiments, the flow device includes one or more nozzles coupled to a source of pressurized fluid. In some embodiments, the one or more nozzles are rotatably supported by a support assembly that is at least partially inside of a zone of rotation for the packaging material dispenser to rotate between a substantially horizontal storage position and a substantially vertical operating position. In addition, in some embodiments, the second angle is substantially orthogonal relative to the side of the load, the flow device is configured to be activated after the flow stabilized high speed axial fan blower is activated, and the flow device is configured to be activated concurrently with the packaging material tail coming into contact with the side of the load.
In some embodiments, the flow stabilized high speed axial fan blower includes a housing extending along the longitudinal axis between an inlet and an outlet, an axial fan blade disposed in the housing and configured to rotate about the longitudinal axis, a fan motor coupled to the axial fan blade and configured to rotate the axial fan blade about the longitudinal axis at a rate at or greater than about 10,000 RPM, and a plurality of stabilizing vanes extending between the axial fan blade and the outlet of the housing and configured to stabilize fluid flow downstream of the axial fan blade.
Moreover, in some embodiments, the housing is substantially cylindrical and has a length to width ratio between about 1.5 to 1 and about 4 to 1. Also, in some embodiments, the axial fan blade includes 8 to 15 blades. In some embodiments, the fan motor is configured to rotate the axial fan blade at a rate at or greater than about 20,000 RPM. In addition, in some embodiments, the fan motor is configured to rotate the axial fan blade at a rate at or greater than about 40,000 RPM. Also, in some embodiments, the fan motor is a variable speed DC motor.
Moreover, in some embodiments, the plurality of stabilizing vanes includes four stabilizing vanes. Further, in some embodiments, each of the plurality of stabilizing vanes includes a leading edge disposed proximate the axial fan blade and a trailing edge disposed proximate the outlet of the housing such that the plurality of stabilizing vanes extend substantially throughout a space between the axial fan blade and the outlet of the housing. Also, in some embodiments, each of the plurality of stabilizing vanes includes a curved leading edge that curves in a direction opposite of a direction of rotation of the axial fan blade.
Further, in some embodiments, the blower further includes an inner housing extending along the longitudinal axis within the outer housing, and the plurality of stabilizing vanes are coupled to the inner housing. In some embodiments, the inner housing is substantially cylindrical. Also, in some embodiments, the inner housing includes an open end facing the inlet of the outer housing and at least a portion of the fan motor is received within the open end of the inner housing. In some embodiments, the blower further includes a flared inlet. Further, in some embodiments, a leading end of the axial fan blade is substantially even with a narrower diameter end of the flared inlet.
Consistent with another aspect of the invention, an apparatus for wrapping a load may include a packaging material dispenser configured to dispense a web of packaging material to the load, a rotational drive configured to generate relative rotation between the packaging material dispenser and the load about a center of rotation, a cutting assembly configured to sever the web of packaging material to form a packaging material tail extending from a corner of the load, and a flow stabilized high speed axial fan blower positioned to direct a flow of fluid towards the packaging material tail from a position generally upstream of a free end of the packaging material tail and at an acute angle relative to the side of the load while the free end of the packaging material tail is unsupported to cause the packaging material tail to come into contact with the side of the load. The flow stabilized high speed axial fan blower may also include a housing extending along a longitudinal axis between an inlet and an outlet, an axial fan blade disposed in the housing and configured to rotate about the longitudinal axis, a fan motor coupled to the axial fan blade and configured to rotate the axial fan blade about the longitudinal axis at a rate at or greater than about 10,000 RPM, and a plurality of stabilizing vanes extending between the axial fan blade and the outlet of the housing and configured to stabilize fluid flow downstream of the axial fan blade.
In some embodiments, the housing is substantially cylindrical and has a length to width ratio of between about 1.5 to 1 and about 4 to 1. Further, in some embodiments, the axial fan blade includes 8 to 15 blades. Also, in some embodiments, the fan motor is configured to rotate the axial fan blade at a rate at or greater than about 20,000 RPM. In addition, in some embodiments, the fan motor is configured to rotate the axial fan blade at a rate at or greater than about 40,000 RPM. In some embodiments, the fan motor is a variable speed DC motor.
In addition, in some embodiments, the plurality of stabilizing vanes includes four stabilizing vanes. Also, in some embodiments, each of the plurality of stabilizing vanes includes a leading edge disposed proximate the axial fan blade and a trailing edge disposed proximate the outlet of the housing such that the plurality of stabilizing vanes extend substantially throughout a space between the axial fan blade and the outlet of the housing. In addition, in some embodiments, each of the plurality of stabilizing vanes includes a curved leading edge that curves in a direction opposite of a direction of rotation of the axial fan blade.
In some embodiments, the blower further includes an inner housing extending along the longitudinal axis within the outer housing, and the plurality of stabilizing vanes are coupled to the inner housing. Further, in some embodiments, the inner housing is substantially cylindrical. In addition, in some embodiments, the inner housing includes an open end facing the inlet of the outer housing and at least a portion of the fan motor is received within the open end of the inner housing. Further, in some embodiments, the blower further includes a flared inlet. Moreover, in some embodiments, a leading end of the axial fan blade is substantially even with a narrower diameter end of the flared inlet.
Consistent with another aspect of the invention, an apparatus for wrapping a load may include a packaging material dispenser configured to dispense a web of packaging material to the load, a rotational drive configured to generate relative rotation between the packaging material dispenser and the load about a center of rotation, a cutting assembly configured to sever the web of packaging material to form a packaging material tail extending from a corner of the load, and a flow stabilized high speed axial fan blower positioned to direct a flow of fluid towards the packaging material tail. The flow stabilized high speed axial fan blower may include a housing extending along a longitudinal axis between an inlet and an outlet, an axial fan blade disposed in the housing and configured to rotate about the longitudinal axis, a fan motor coupled to the axial fan blade and configured to rotate the axial fan blade about the longitudinal axis at a rate at or greater than about 10,000 RPM, and a plurality of stabilizing vanes extending between the axial fan blade and the outlet of the housing and configured to stabilize fluid flow downstream of the axial fan blade.
Some embodiments may further include a controller coupled to the rotational drive and the flow stabilized high speed axial fan blower, and the controller may be configured to activate the flow stabilized high speed axial fan blower a first time to direct a first flow of fluid towards the packaging material tail from a position generally upstream of a free end of the packaging material tail and at an acute first angle relative to the side of the load while the free end of the packaging material tail is unsupported to cause the packaging material tail to come into contact with the side of the load, activate the rotational drive to rotate the load relative to the flow stabilized high speed axial fan blower, and after rotation of the load relative to the flow stabilized high speed axial fan blower, activate the flow stabilized high speed axial fan blower a second time and at a second angle relative to the side of the load to increase adherence of the packaging material tail to the side of the load.
Consistent with another aspect of the invention, a method of wrapping a load may include dispensing a web of packaging material to the load with a packaging material dispenser and generating relative rotation between the packaging material dispenser and the load about a center of rotation to wrap the web of packaging material around the load, severing the web of packaging material to form a packaging material tail extending from a corner of the load, and directing a flow of fluid towards the packaging material tail from a position generally upstream of a free end of the packaging material tail and at an acute angle relative to the side of the load while the free end of the packaging material tail is unsupported to cause the packaging material tail to come into contact with the side of the load using a flow stabilized high speed axial fan blower. The flow stabilized high speed axial fan blower may be configured to generate the flow of fluid to have, proximate the corner of the load, a velocity of at least about 10 miles per hour throughout a target area defined in a plane generally transverse to a longitudinal axis of the flow stabilized high speed axial fan blower.
In some embodiments, the flow of fluid is a first flow of fluid and the acute angle is a first angle, and the method further includes rotating the load relative to the flow stabilized high speed axial fan blower, and after rotation of the load relative to the flow stabilized high speed axial fan blower, activating the flow stabilized high speed axial fan blower at a second angle relative to the side of the load to increase adherence of the packaging material tail to the side of the load.
These and other advantages and features, which characterize the invention, are set forth in the claims annexed hereto and forming a further part hereof. However, for a better understanding of the invention, and of the advantages and objectives attained through its use, reference should be made to the Drawings, and to the accompanying descriptive matter, in which there is described example embodiments of the invention.
Embodiments consistent with the invention may utilize in some aspects a flow stabilized high speed axial fan blower to direct pressurized fluid flow upstream from a packaging material tail and/or in two or more directions to assist in adhering the packaging material tail to the side of a load at the completion of a wrapping operation. In this regard, a packaging material tail generally refers to a portion of a web of packaging material that extends between a load and a packaging material dispenser at the completion of a wrapping operation, and generally the portion of the web that extends between a last corner of the load around which the web of packaging material is wrapped and a cutting assembly that severs the web of packaging material at the completion of the wrapping operation. In addition, as will become more apparent below, embodiments consistent with the invention may also utilize a flow device disposed downstream of a wrap position at which the load is wrapped to direct a flow of fluid towards a packaging material tail to increase adherence of the packaging material tail to the side of a load after the load has been wrapped and conveyed away from the wrap position.
A packaging material tail may, in many instances, be shorter in length than the width of the side of the load to which it adheres, and it is generally desirable to adhere the packaging material tail to the side of the load to minimize the risk that the packaging material tail will detach from the load. An improperly adhered tail, for example, may detract from the visual appearance of the load, and can also potentially result in a snagging hazard, e.g., capable of snagging on a fork truck, a shelf, a truck trailer, or any other structures that a load may encounter during transportation and/or storage.
It will be appreciated that the packaging material used in a stretch wrapping machine is generally formed of a polymer material having some degree of stickiness, particularly between overlapping layers of the packaging material. Thus, to optimize the adherence of the packaging material tail to the load, it is generally desirable to lay the packaging material tail over a portion of the load that is already wrapped with packaging material, and to do so with as little bunching of the packaging material tail (both across its width and along its length) as is feasible to maximize the surface area overlapped by the packaging material tail.
In some embodiments consistent with the invention, pressurized fluid flow is emitted in multiple directions to both inhibit bunching of the packaging material tail prior to the packaging material tail engaging with the side of the load (e.g., during the time period between the web of packaging material being severed and coming into contact with side of the load) and to further adhere the packaging material tail to the side of the load. The pressurized fluid flow may, for example, be forced air or another gas, and may be generated, for example, using a fan, a blower, a compressor or another source of pressurized and/or compressed fluid. In some embodiments, and as will be discussed in greater detail below, the pressurized fluid flow may be generated by a flow stabilized high speed axial fan blower. Moreover, the pressurized fluid flow emitted in different directions may be emitted from different distances, from different positions, at different pressures, at different volumes, at different velocities and/or over different time periods.
In some instances, the pressurized fluid flow may occur in multiple stages, and may be directed in multiple directions, to inhibit bunching of the packaging material and/or improve adherence of the packaging material to the side of the load. In some particular instances, a pressurized fluid such as air may be directed in two directions during two different stages.
In a first stage, pressurized fluid may be directed from an upstream position relative to the free end of the packaging material tail and in a first direction that forms an acute angle relative to a plane of the web of packaging material prior to severing the web, with the first stage occurring proximate in time to the severing of the web, e.g., slightly before, slightly after, or simultaneously therewith. It may be desirable in some embodiments for the flow to be higher volume but lower velocity than the second stage, with the goal being to at least temporarily “fill” the packaging material tail in a similar manner to a sail or flag and lay the packaging material tail over the side of the load. By filling the packaging material tail as it lays over the side of the load, bunching of the packaging material tail both across its width and along its length is desirably reduced, thereby increasing the surface area of the load overlapped by the packaging material tail, increasing the adhesion of the packaging material tail to the side of the load, and providing a visually pleasing appearance.
In some embodiments, this lower velocity but higher volume flow may be generated by a flow stabilized high speed axial fan blower, as discussed in greater detail below, and in some embodiments, a flow stabilized high speed axial fan blower that is disposed outside of a wrap zone (or zone of rotation) for a stretch wrapping machine, and may be used to effectively transport the free end of the packaging material tail from a first position where it is initially cut (in many cases in a plane extending between the packaging material dispenser and the corner of the load) to a second position against the side of the load, while maintaining the packaging material tail in a substantially open or spread out state, and such that the tail, once adhered to the side of the load, has a generally “flat” appearance, with minimal wrinkling or bunching. It is also generally desirable to do so using a blower positioned outside of the zone of rotation for a packaging material dispenser in non-turntable applications, which may, in some instances may be a distance greater than about 30 inches, and in some instances, a distance greater than about 40 to about 45 inches.
It should also be note that when a web is severed, the web is generally under tension, so the packaging material tail formed once the web is severed is generally subject to a restoring force that in the absence of any fluid flow will tend to cause the packaging material tail to “spring back” and bunch up lengthwise. Thus, the first stage fluid flow may also be suitable for opposing this restoring force and resisting lengthwise bunching of the packaging material tail as it lays onto the side of the load.
In a second stage, pressurized fluid may be directed from a relatively closer position to the load and in a second direction that is generally orthogonal to the side of the load, with the second stage occurring proximate in time to the packaging material tail coming into contact with the side of the load, e.g., slightly before, slightly after, or simultaneously therewith. In some instances, the second stage may also occur well after the packaging material tail comes into contact with the side of the load. In some embodiments, it may be desirable for the second stage flow to be relatively higher velocity but lower volume than the first stage, and generally with a shorter duration. In addition, the second stage flow may include multiple pulses or blasts, at either the same location or at multiple locations across the width of the packaging material tail, with the goal being to effectively press the packaging material tail against the side of the load to increasing adherence of the packaging material tail to the packaging material wrapped around the load.
In other embodiments, pressurized fluid flow may only be used in a single stage, e.g., directed from an upstream position relative to the free end of the packaging material tail and in a direction that forms an acute angle relative to a side of the load, or in some instances, an acute angle relative to a plane of the web of packaging material prior to severing the web, with the single stage occurring proximate in time to the severing of the web, e.g., slightly before, slightly after, or simultaneously therewith. In such embodiments, the single stage fluid flow may provide sufficient adherence of the packaging material tail to the side of the load, although in other embodiments, it may be desirable to mechanically contact the packaging material tail to press the packaging material tail against the side of the load once the packaging material tail has come into contact with the side of the load. The mechanical contact may be provided, for example, by a finger, a pad, a brush or another mechanism capable of pressing, wiping, or smoothing the packaging material tail against the side of the load.
It will be appreciated that embodiments consistent with the invention generally are utilized in connection with a trailing packaging material tail that extends between a last corner of the load around which the web of packaging material is wrapped and a cutting assembly that severs the web of packaging material at the completion of the wrapping operation, rather than with any unsupported section of packaging material forming a leading end of the packaging material that may extend between a temporary from a first corner of a load and a clamp that initially holds the web of packaging material at the start of a wrapping operation performed by some types of stretch wrapping machines. Blasts of air have been used for the latter application for the purpose of blowing the unsupported section of packaging material against the side of the load so that subsequent wraps will cover up this unsupported section; however, such blasts have generally been performed predominantly upwardly from a location beneath a conveyor supporting the load and alongside the side of the load. Similar blasts of air, from a similar position and in a similar predominantly upward orientation have also been used in connection with a mechanical contact mechanism. Embodiments consistent with the invention, in contrast, may direct one or more fluid flows at a trailing packaging material tail from different positions and orientations as described above to improve the adhesion of the packaging material tail to the side of the load and/or improve the appearance of the adhered packaging material tail on the load.
Now turning to the drawings, wherein like numbers denote like parts throughout the several views,
In the illustrated embodiment, apparatus 100 is a rotating arm-type wrapping apparatus, and moreover, is configured to wrap loads that are placed directly on a floor 114. In other embodiments, however, apparatus 100 may be a turntable-type wrapping apparatus or a vertical or horizontal ring-type apparatus, and furthermore, apparatus 100 may be configured to wrap loads supported on various types of load supports, e.g., turntables, conveyors, platforms, floors, etc.
Apparatus 100 may include a support assembly 120, also referred to as a cut and clamp assembly, positioned adjacent a load and configured to both position a leading end of a packaging material web against load 102 at the start of a wrapping operation and sever a trailing end of the packaging material web wrapped around load 102 at the end of a wrapping operation. Further, as discussed above, apparatus 100 is additionally capable of performing a packaging material tail treatment operation such that, when the trailing end of the packaging material web is severed, the packaging material tail formed thereby is secured to the side of the load.
Support assembly 120 may include a base 122, a packaging material holder 124 for selectively holding and releasing (or engaging and disengaging) a leading end portion of a packaging material web, a cutting assembly 126 for severing the packaging material web, and an insertion tool 128 for urging the web of packaging material into an opening 130 disposed between first and second opposing jaws 132, 134 of packaging material holder 124. One or more bladders or inflatable elements 136 are disposed between second opposing jaws 132, 134 and are convertible between first, unpressurized conditions defining a gap within opening 130, and second, pressurized conditions closing the gap to thereby clamp the web of packaging material in opening 130 when packaging material is received in opening 130.
Cutting assembly 126 may be used to sever the packaging material while the web of packaging material is engaged by holder 124, and may, in some embodiments, be implemented using a hot wire that melts the packaging material when current is passed through the wire and the packaging material comes into contact with the wire. In other embodiments, however, other cutting assemblies, e.g., using knives or sharp edges, may be used.
Packaging material holder 106 is movable between a first position adjacent the side of the load (illustrated in
In the illustrated embodiment, support assembly 120 is at least partially inside of a zone of rotation for a packaging material dispenser of apparatus 100 (not shown in
For example, in the illustrated embodiment, each of cutting assembly 126 and insertion tool 128 are rotatably supported on respective arms 144, 146 to rotate between respective substantially horizontal storage positions (illustrated, for example, in
Support assembly 120 may otherwise be configured in various manners, e.g., as disclosed in U.S. Pat. No. 8,695,312, which is assigned to the same assignee as the present application, and which is incorporated by reference herein.
In addition, support assembly 120 further includes first and second flow devices 150, 152 that are respectively supported on arms 154, 156 and that are similarly retractable as cutting assembly 126 and insertion tool 128, whereby each flow device 150, 152 is movable between a respective substantially horizontal storage position (illustrated, for example, in
First flow device 150 is disposed at a first position that is generally upstream of free end 112 of packaging material tail 106 and includes one or more nozzles oriented to direct a first flow of fluid towards packaging material tail 106 at a first angle relative to the side of the load. Similarly, second flow device 152 is disposed at a second position that is generally closer to the side of the load than the first position, and includes one or more nozzles oriented to direct a second flow of fluid towards packaging material tail 106 at a second angle relative to side 108 of load 102. As will become more apparent below, the first angle is smaller than the second angle, and in some embodiments, the first angle is acute relative to the side of the load. In some instances, the first angle is less than about 45 degrees relative to the side of the load, and in some instances, the first angle is less than about 30 degrees relative to the side of the load. Further, in some embodiments, the first angle is acute relative to a plane extending between corner 110 of load 102 and cutting assembly 126. Moreover, in some embodiments, the second angle is substantially orthogonal relative to side 108 of load 102. Further, in some embodiments, the elevation of each of flow devices 150, 152 is also desirably at a similar elevation to that of tail 106 such that both flows of fluid are substantially horizontal relative to floor 114. In some embodiments, it may be desirable to orient one or both of flow devices 150, 152, to direct their flows of fluid at a somewhat upward angle to compensate for the downward gravitational force due to the weight of the packaging material in the tail, as it is generally desirable for tail 106 to lay over the side 108 of load 102 substantially horizontally. It will be appreciated that, from the perspective of the flows of fluid, substantially horizontally may be considered in some embodiments to include a flow of fluid where at least one axis of flow (e.g., an axis defined by a nozzle of a flow device) is substantially horizontal (e.g., within about +/−10 degrees of a horizontal plane). It may also be desirable in some embodiments for a flow of fluid to be at least predominantly horizontal, which in the context of this disclosure maybe considered to be a flow of fluid in which the majority of the fluid flow is less than about 45 degrees from a horizontal plane.
Each flow device 150, 152 may be implemented in a number of manners, and may be coupled to a source of pressurized fluid, e.g., a fan, a blower, a compressor, a pressurized hose, etc. Each flow device 150, 152 may include one or more nozzles, and each nozzle may have different flow characteristics, e.g., in terms of exit velocity, flow volume, stream width, etc. suitable for providing desired fluid flow at each of the first and second positions. A flow device may also incorporate an air amplifier or air knife, and may generate fluid flow of various sizes, cross-sections, etc.
In some embodiments, for example, flow device 150 may be configured to generate fluid flow having a rate of about 9 to about 15 miles per hour, and in some embodiments, a rate of about 11 to about 13 miles per hour. In addition, the cross-section of the fluid flow emitted by flow device 150 may desirably be about 18 inches in height and about 12 to about 14 inches in width in the plane extending between corner 110 and cutting assembly 126 (which also generally corresponds to the plane of a packaging material web 160 as presented to the cutting assembly 126), with the height generally selected to be less than or equal to the height of the packaging material web 160 as presented to the cutting assembly 126, and with the width generally selected to be sufficient to accommodate loads 102 of differing dimensions (given that the location of corner 110 will necessarily depend upon the length, width and/or offset of the load relative to support assembly 120.
Now turning to
First, in block 202, holder 124 is rotated from the second position to the first position adjacent side 108 of load 102, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
It should be noted that, as a result of the acute angle at which the flow of fluid is directed, the fluid flow imparts both a force component F1 that urges the packaging material tail 106 toward side 108 of load 102, as well as a force component F2 that resists lengthwise bunching of the tail and opposes the restoring force resulting from severing of the web while under tension by cutting assembly 156.
Next, as illustrated in
Finally, returning to
Now turning to
A controller 318, which is capable of operating the various components of apparatus 300, is coupled to a fluid source 320 that drives first and second flow devices 322, 324. As noted above, each flow device 322, 324 may be positioned in various locations and supported by various structures in different embodiments, and
As also mentioned above, in other embodiments, only a single stage operation may be used, e.g., to perform a first stage operation as described herein from any of the various positions and/or directions described herein (e.g., using either of the positions of flow device 150 or flow device 322). As such, in some embodiments, flow device 324 may be omitted. Moreover, in some embodiments, a single stage operation may be followed by mechanically contacting the packaging material tail to press the packaging material tail against the side of the load to increase the adhesion of the packaging material tail thereto, and as such, flow device 324 may be replaced with a finger, a pad, a brush, etc.
In still other embodiments, a flow device such as flow device 322 may be used to perform both a first stage and a second stage, where between the first and second stages, the load is rotated relative to flow device 322 (e.g., when supported on a turntable, such as on a turntable-type wrapping apparatus), such that rotation of the load orients flow device 322 to a position relative to the rotated side of the load that directs a second fluid flow at the side of the load with an angle similar to that of flow device 324, e.g., angle A3 discussed above, which in some embodiments may be substantially orthogonal to the side of the load.
In still other embodiments, it may be desirable to heat at least a portion of the packaging material tail prior to contact with the side of the load to further improve adherence of the packaging material tail. In some embodiments, the heat may be supplied to the packaging material from one or more of the fluid flows, e.g., using a fluid source 320 including an integrated heat source capable of providing a heated fluid, or by injecting heated air into one or more of the fluid flows, e.g., using an optional heat source 330 that is separate from the fluid source 320 as illustrated in
In still other embodiments, the heat may be supplied to the packaging material via direct contact, e.g., via a roller or other surface over which the packaging material passes.
Regardless of whether fluid-based heating and/or direct contract-based heating is used, however, the application of heat at the end of a wrapping operation may increase the adherence of the packaging material tail to the side of the load in some embodiments of the invention. It will be appreciated, however, that the use of heat is optional, and may not be utilized in other embodiments.
Controller 318 in the embodiment illustrated in
In general, the routines executed to implement the embodiments of the invention, whether implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions, or even a subset thereof, will be referred to herein as “computer program code,” or simply “program code.” Program code typically comprises one or more instructions that are resident at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processors in a computer, cause that computer to perform the steps necessary to execute steps or elements embodying the various aspects of the invention. Moreover, while the invention has and hereinafter will be described in the context of fully functioning controllers, computers and computer systems, those skilled in the art will appreciate that the various embodiments of the invention are capable of being distributed as a program product in a variety of forms, and that the invention applies equally regardless of the particular type of computer readable media used to actually carry out the distribution.
Such computer readable media may include computer readable storage media and communication media. Computer readable storage media is non-transitory in nature, and may include volatile and non-volatile, and removable and non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules or other data. Computer readable storage media may further include RAM, ROM, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other solid state memory technology, CD-ROM, digital versatile disks (DVD), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and which can be accessed by controller 318. Communication media may embody computer readable instructions, data structures or other program modules. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above may also be included within the scope of computer readable media.
Controller 318 for the purposes of this example is assumed to be incorporated wholly within components that are local to wrapping apparatus 300. It will be appreciated, however, that in other embodiments, at least a portion of the functionality incorporated into a wrapping apparatus may be implemented in hardware and/or software that is external to the aforementioned components. For example, in some embodiments, some user interaction may be performed using an external device such as a networked computer or mobile device, with the external device converting user or other input into control variables that are used to control a wrapping operation. In other embodiments, user interaction may be implemented using a web-type interface, and the conversion of user input may be performed by a server or a local controller for the wrapping apparatus, and thus external to a networked computer or mobile device. In still other embodiments, a central server may be coupled to multiple wrapping stations to control the wrapping of loads at the different stations. As such, the operations described herein may be implemented by various local and/or remote components and combinations thereof in different embodiments.
Now turning to
Blower 402 is positioned within a bollard 416 of one of legs 408, and is generally directed towards a corner C of load 410. With additional reference to
Returning to
It will be appreciated, however, that blower 402 may be used in a wide variety of different load wrapping apparatus types, including turntable-type or ring-type load wrapping apparatuses, as well as load wrapping apparatuses having different levels of automation (e.g., manual, automatic, or semi-automatic), for loads conveyed via fork trucks, hand trucks, or conveyors, or for loads supported on floors, turntables, conveyors, platforms, etc. Therefore, the invention is not limited to the use of blower 402 in a semi-automatic rotating arm-type load wrapping apparatus.
Blower 402 includes a generally cylindrical outer housing 440 having a longitudinal axis L and secured to mounting bracket 426 through a plurality of fasteners 442, e.g., threaded bolts. In some embodiments, cylindrical outer housing 440 may have a length of about 8 inches and a diameter of about 4 inches, and in some embodiments, it may be desirable to provide a length to diameter ratio of outer housing 440 that is between about 1.5 to 1 and about 4 to 1, with lower ratios suitable for blowers positioned closer to a load (e.g., 18-24 inches), and with higher ratios suitable for blowers positioned farther from a load (e.g., 45+ inches). Blower 402 includes an axial fan 444 that is upstream of a plurality of downstream stabilizing vanes 446. In the illustrated embodiment, axial fan 444 includes a motor 448 and an axial fan blade 450, while stabilizing vanes 446 extend axially within outer housing 440, supported by a cylindrical inner housing 452.
Inner housing 452 includes a threaded cap 454 at one end, and at the other end, the inner housing is open to receive motor 448. A mounting bracket 456 is secured to motor 448 and inner housing 452 includes a pair of slots 458 that receive arms of the mounting bracket 456, and a set of threaded fasteners 460 secure mounting bracket 456, and thus motor 448, within outer housing 440. A threaded fastener 461 secures inner housing 452 to outer housing 440. A plurality of apertures 462 are disposed in inner housing 452 to provide airflow to motor 448, and a slot 464 is used to support a grommet 466 that receives power wires (not shown) for motor 446 that are routed out of blower 402 through a fitting 468 secured to outer housing 440.
Motor 448 is a high speed motor, e.g., a GS-775M motor available from Genmitsu and axial fan blade 450 is a 539306001 fan blade available from Homelite, although motors and fans may be used in other embodiments. In some embodiments, for example, it may be desirable to utilize a motor having a speed rating of about 10,000 to about 40,000 RPM (or higher) and a low pitch axial fan blade having 8 to 15 blades, e.g., 11 blades, such that the axial fan 444 is capable of generating an air velocity of about 15 to about 50 MPH (or higher) at the output of blower 402, and in some embodiments, about 10 to about 25 MPH at the corner of the load. It will also be appreciated that motor 448 may be a variable speed DC motor in some embodiments and may have a speed that varies with voltage, thereby enabling the air velocity output by blower 402 to be regulated through control over the DC voltage supplied to the blower (e.g., between about 12 VDC and about 24 VDC). In some embodiments, motor 448 may be operated at at least about 10,000 RPM, while in some embodiments, motor 448 may be operated at at least about 20,000 RPM, and in some embodiments, motor 448 may be operated at at least about 40,000 RPM.
Also, in the illustrated embodiment a plurality of stabilizing vanes 446 disposed downstream of axial fan blade 450 to stabilize the flow of air output from blower 402, reducing turbulence and increasing air velocity at the load, as will be discussed in greater detail below. Four stabilizing vanes 446 are used in block 402, although it will be appreciated that different numbers of vanes may be used in other embodiments. In addition, stabilizing vanes 446 extend at least about 7 inches axially in some embodiments, although longer or shorter vanes may be used in other embodiments as well. In addition, as illustrated at 470, it may be desirable in some embodiments to utilize a curved leading edge on each stabilizing vane 446, with the curve extending in the opposite direction from the direction of rotation of motor 448 and axial fan blade 450 (here, counter-clockwise when viewed from an inlet 472 of blower 402), although the invention is not so limited. Opposite from inlet 472 is an outlet 474 from which air flow is directed from blower 402, and it may be seen that in the illustrated embodiment, each vane 446 has a trailing edge that extends proximate outlet 474, such that each vane 446 extends substantially throughout the space between axial fan blade 450 and outlet 474.
Moreover, in some embodiments, it may be desirable to flare inlet 472, such that inlet 472 serves as a collector to facilitate the intake of air into blower 402, e.g., by including an integrally-formed or attached flared portion of outer housing 440. In one embodiment, for example, a flared fitting 476 may be secured to outer housing 440 to provide a flared inlet for blower 402. In other embodiments, however, no flare or collector may be used. Furthermore, axial fan blade 450 is desirably positioned with a leading end thereof substantially even with where inlet 472 begins to flare, i.e., at a narrower diameter end of the flare. Furthermore, where a separate flared fitting is used, axial fan blade 450 may be positioned with the leading end thereof substantially even with the inlet end of outer housing 440.
Each of the aforementioned design features has been found to contribute to a blower design capable of generating fluid flow having a velocity, distribution, and turbulence that is suitable for adhering a packaging material tail to a side of a load in an effective and visually-desirable manner. With additional reference to
With an about 50 MPH fluid flow at the outlet 474 of blower 402, it may be seen that the air velocity at the center of each target area 482, 484 is about 22 MPH, while the air velocity around the perimeter of each target area 482, 484 is about 10 MPH, thereby providing a well-distributed air velocity across the width of each target area, and thus the packaging material web 480 and tail 486.
Such a configuration may have a number of advantages of alternate flow device designs. For example, as compared to a flow device that relies on pressurized fluid supplied by a compressor, blower 402 can be used for an extended amount of time if desired. Moreover blower 402 may be used in applications where pressurized fluid is problematic, e.g., in cold conditions (e.g., below about 36 degrees Fahrenheit) where air dryers are often required, or in applications where pressurized fluid is not available. In addition, even where pressurized air is used for other operations in a load wrapping apparatus, the requirements are substantially reduced.
Blower 402 is also cost effective and easily retrofittable into existing load wrapping apparatuses. In addition, as with other designs discussed above, blower 402 may be combined with a heater to heat the air exiting the blower to warm up the packaging material tail and improve tackiness.
For other load wrapping apparatuses, different positioning and performance characteristics may be desired. For example, for an SL Automatic Rotating Arm-Type Stretch Wrapper available from Lantech.com, LLC (the assignee of the present application), blower 402 may be mounted to a support leg of the machine, outside of the zone of rotation and about 42 to about 45 inches from the corner of the load at about the same elevation as the turntable, with a direction of flow relative to the side of a load (angle AL) of about 40 to about 60 degrees and an angle of incline from the floor (angle AF) of about 8 degrees. A similar target area profile as discussed above in connection with
As another example, for a QL Automatic Turntable-Type Stretch Wrapper available from Lantech.com, LLC (the assignee of the present application), blower 402 may be mounted to a support leg of the machine, outside of the zone of rotation and about 31 inches from the corner of the load at about the same elevation as the turntable, with a direction of flow relative to the side of a load (angle AL) of about 40 degrees and an angle of incline from the floor (angle AF) of about 16.5 degrees. Due to the closer distance to the load, a target area profile having a central air velocity of about 30 MPH and a perimeter air velocity of about 12 MPH may be provided using an about 50 MPH air velocity at the output of the blower.
As yet another example, for a G Semi-Automatic Turntable-Type Stretch Wrapper available from Lantech.com, LLC (the assignee of the present application), blower 402 may be mounted to a support leg of the machine, outside of the zone of rotation and about 13 inches from the corner of the load at about the same elevation as the turntable, with a direction of flow relative to the side of a load (angle AL) of about 60 degrees and an angle of incline from the floor (angle AF) of about 16.5 degrees. Due to the closer distance to the load, a smaller target area profile may be defined, e.g., as a circular target area having an about 11 inch diameter or an 8″ square target, and that smaller target area profile may have a central air velocity of about 36 MPH and a perimeter air velocity of about 22 MPH based upon an about 50 MPH air velocity at the output of the blower.
Blower 402, in different embodiments, may be used to provide a flow of fluid from a position generally upstream of a free end of the packaging material tail and at an acute angle relative to the side of the load while the free end of the packaging material tail is unsupported to cause the packaging material tail to come into contact with the side of the load. In addition, in some embodiments, a blower similar to blower 402 may be used as a second flow device for directing a second flow of fluid towards the packaging material tail from a second position and at different angle from that of blower 402 to increase adherence of the packaging material tail to the side of the load. In other embodiments, however, other flow devices discussed above may be used at the second flow device, while in still other embodiments, no second flow device may be used, with only a single flow of fluid from blower 402 used to adhere a packaging material tail to the load, or alternatively, where the load is rotatable relative to the blower, e.g., as in the case with a turntable-type wrapping apparatus, the same blower 402 may be used to direct the second flow of fluid towards the packaging material tail after the load has been further rotated after directing the first flow of fluid towards the packaging material tail. It will also be appreciated that blower 402 may be used as the first flow device and/or the second flow device in the various embodiments discussed above in connection with
Inner housing 516 includes a threaded cap 518 at one end, and at the other end, the inner housing is open to receive motor 512. A mounting bracket 520 is secured to motor 512 and inner housing 516 includes a pair of slots 522 that receive arms of the mounting bracket 520, and a set of threaded fasteners 524 secure mounting bracket 520, and thus motor 512, within outer housing 502. A threaded fastener 526 secures inner housing 516 to outer housing 502. A plurality of apertures 528 are disposed in inner housing 516 to provide airflow to motor 512, and a fitting 530 is secured to outer housing 502 to pass power wires to motor 512.
In this embodiment, stabilizing vanes 510 may also include curved leading edges 532, and inner housing 516 may also include, in addition to stabilizing vanes 510, a plurality of (e.g., eight) shorter vanes 534 distributed around the perimeter of inner housing 516 to restrict access to the interior of outer housing 502 through outlet 536. Moreover, in this embodiment, a flared inlet is provided on blower 500 using a flared fitting 538 that is secured to outer housing 502 by a pair of threaded fasteners 540. In addition, a cover or grill 542 is provided on flared fitting 538 to restrict external access to the interior of outer housing 502, including axial fan 508.
It may also be desirable in some embodiments to perform a packaging material tail adherence operation downstream of a wrapping operation and the wrap position at which the load is disposed when such a wrapping operation is performed, in order to increase adherence of a packaging material tail to a load. In some applications, for example, such as in colder, drafty or windy environments, a packaging material tail, adhered to a load in the various manners described above, may benefit from an additional packaging material tail adherence operation to increase adherence of the tail to the load, and thereby reduce the likelihood of the tail delaminating from the load during shipping or transport.
In some embodiments consistent with the invention, for example, a packaging material tail adherence operation may be performed after a wrapping operation has been completed, and the packaging material tail has been formed and initially positioned over the load, e.g., using the aforementioned first stage, and in some instances, the second stage, discussed above. In some embodiments, a packaging material tail adherence operation may also be performed after a mechanical wiping operation, e.g., using a mechanical wiping assembly, has been performed.
A packaging material tail adherence operation may also be performed after the load has been moved away from the wrap position at which the load is disposed when the wrapping operation is performed, e.g., using a conveyor. By doing so, a flow device may be positioned adjacent to the conveyor, and in relatively close proximity to the load, to facilitate a desirable fluid flow pattern suitable for increasing the adherence of the packaging material tail to the load.
In the illustrated embodiments, a packaging material tail adherence operation is performed using a flow device that is configured to direct a flow of fluid towards the packaging material tail at an angle relative to the side of the load that in some instances is substantially orthogonal to the side of the load, and in other instances an acute angle of greater than about 45 degrees relative to the side of the load. It is generally desirable for the flow of fluid to engage the packaging material tail throughout a target area that is substantially upstream of an end of the packaging material tail, and that, in some instances, establishes lateral fluid flow along the side of the load towards the end of the packaging material tail to deter separation of the end of the packaging material tail from the load.
In addition, while a tail adherence operation may be performed using a similar flow device, and from a similar position relative to the load, as the second stage operation discussed above, in many embodiments it is desirable to generate fluid flow during a tail adherence operation to engage the tail across a relatively large portion of the width of the tail, and generally over a longer duration, to effectively “press” the tail against the side of the load to increase adherence. In some embodiments, for example, a second stage operation may be implemented using pressurized nozzles, and impact the tail with brief blasts of high velocity air in a few specific locations to ensure that the tail, once blown onto the side of the load by the first stage, adheres to the load. Where a tail adherence operation follows such a stage, a longer duration, and more broadly distributed fluid flow across much of the width of the tail may be used to increase adherence beyond that supplied by the second stage. In some embodiments, for example, a flow stabilized high speed axial fan blower as described above may be well suited for providing the desired fluid flow for a tail adherence operation.
Now turning to
Similar, for example, to apparatus 100 of
In addition, similar to apparatus 100, apparatus 600 may also include first and second flow devices 622, 624 suitable for performing the aforementioned first and second stages for initially adhering the packaging material tail to the load. In addition, in some embodiments, first flow device 622 may be configured as a flow stabilized high speed axial fan blower, e.g., similar to flow stabilized high speed axial fan blower 402 described above in connection with
Apparatus 600 also includes a third flow device 626 that is disposed downstream of load wrapping apparatus 602, e.g., downstream of wrap zone 612, and configured to direct a flow of fluid towards a packaging material tail adhered to load 610 from a position adjacent to a side of the load and at an angle relative to the side of the load after the load has been moved away from its initial wrap position to increase adherence of the packaging material tail to the side of the load. In some embodiments, for example, flow device 626 may be positioned adjacent to conveyor 604 such that when load 610 is conveyed to the position illustrated at 610′, the flow device may be actuated to perform a tail adherence operation consistent with the invention.
It will be appreciated that a tail adherence operation is generally performed after the load has been moved away from the wrap position illustrated for load 610 in
Further, in other embodiments, a tail adherence operation may be performed while the load is still in the initial wrap position, i.e., has not moved since it was wrapped. In addition, in some embodiments, a tail adherence operation may be performed from a different location while the load remains in the wrap position, e.g., based upon rotation of the load (e.g., on a turntable) to orient the packaging material tail in a different rotational orientation opposing a suitable flow device (e.g., as discussed in greater detail below in connection with
Now turning to
The target area, in this regard, may be considered to represent the area where the primary fluid flow “column” generated by flow device 626 (illustrated at 638 in
Returning to
In addition, as noted above, it is generally desirable for the target area 636 to be disposed upstream of the end 632 of packaging material tail 630, e.g., by an offset O (illustrated in
While other fluid flow devices may be used in other embodiments, flow device 626 is implemented using a flow stabilized high speed axial fan blower as described above in connection with
In general, in some embodiments, it may be desirable for flow device 626 to generate a fluid velocity that is at least about 20 mph throughout the target area to assist with adhering the packaging material tail to the load. In other embodiments, however, other flow devices, velocities and profiles may be used, so the invention is not limited to the specific embodiments disclosed herein.
In addition, in this embodiment, rather than moving the load away from a wrapping position in order to perform a tail adherence operation, as is the case in
In addition, similar to apparatus 600, apparatus 670 may also include a flow device 690. However, rather than including a second stage flow device, a mechanical wiping assembly 692 is instead utilized to mechanically wipe the packaging material tail against the side of the load.
Apparatus 670 also includes a flow device 694 suitable for performing a tail adherence operation consistent with the invention. While flow device 694 may also be configured as a flow stabilized high speed axial fan blower similar to that described above, other flow device designs may be used in other embodiments. In addition, rather than being positioned at a fixed position downstream of the wrap zone and oriented substantially orthogonal to the side of the load, as is the case with flow device 626 of
Moreover, in some embodiments a heater 698 may be used to heat the flow of fluid generated by flow device 694 and thereby increase the adherence of the packaging material tail to the side of the load.
It will be appreciated that any of the variations discussed above in connection with
Next, at the conclusion of wrapping, holder 616 may be released and returned to its original position and the packaging material dispenser may be rotated to a rotational position that orients the packaging material web proximate the holder 616 (block 708). Then, in block 710, holder 616, cutting assembly 618 and flow device 622 are actuated to clamp the packaging material web, sever the packaging material web to form a packaging material tail, and blow or urge the packaging material tail onto the side of the load 102.
Next, depending on whether a mechanical wiping assembly is used (as in the case of the apparatus of
Then, as illustrated in block 716 the load may be conveyed away from the wrap position, and optionally out of the wrap zone, e.g., using conveyor 604. In addition, as illustrated in block 718, the conveyor may optionally be paused to stop the load in a predetermined position (e.g., position 610′ of
It will be appreciated that, while certain features may be discussed herein in connection with certain embodiments and/or in connection with certain figures, unless expressly stated to the contrary, such features generally may be incorporated into any of the embodiments discussed and illustrated herein. Moreover, features that are disclosed as being combined in some embodiments may generally be implemented separately in other embodiments, and features that are disclosed as being implemented separately in some embodiments may be combined in other embodiments, so the fact that a particular feature is discussed in the context of one embodiment but not another should not be construed as an admission that those two embodiments are mutually exclusive of one another. Various additional modifications may be made to the illustrated embodiments consistent with the invention. Therefore, the invention lies in the claims hereinafter appended.
Number | Date | Country | |
---|---|---|---|
63495610 | Apr 2023 | US |